JPH04300298A - Method for liquid-phase epitaxial growth of silicon carbide single crystal - Google Patents

Method for liquid-phase epitaxial growth of silicon carbide single crystal

Info

Publication number
JPH04300298A
JPH04300298A JP8993291A JP8993291A JPH04300298A JP H04300298 A JPH04300298 A JP H04300298A JP 8993291 A JP8993291 A JP 8993291A JP 8993291 A JP8993291 A JP 8993291A JP H04300298 A JPH04300298 A JP H04300298A
Authority
JP
Japan
Prior art keywords
single crystal
carbide single
silicon carbide
silicon
epitaxial growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8993291A
Other languages
Japanese (ja)
Inventor
Takahiro Kamiya
上谷 高弘
Yasuhiko Matsushita
保彦 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP8993291A priority Critical patent/JPH04300298A/en
Publication of JPH04300298A publication Critical patent/JPH04300298A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To provide a method for liquid-phase epitaxial growth of a silicon carbide single crystal capable of readily and accurately controlling the concentration of a silicon carbide single crystal carrier to be produced. CONSTITUTION:The subject method is a method for liquid-phase epitaxial growth of a silicon carbide single crystal by dipping a silicon carbide single crystal substrate in a silicon melt and epitaxially growing the silicon carbide single crystal on the aforementioned silicon carbide single crystal substrate. In the aforementioned method, a chip composed of a silicon substrate 1 and a silicon nitride layer 2, formed thereon and having a uniform thickness is used as a doping material.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、炭化珪素単結晶基板
上に、炭化珪素単結晶をエピタキシヤル成長させる炭化
珪素単結晶の液相エピタキシャル成長方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for liquid phase epitaxial growth of silicon carbide single crystals on a silicon carbide single crystal substrate.

【0002】0002

【従来の技術】炭化珪素単結晶の成長は液相エピタキシ
ヤル成長の一種であるデイップ法により行われる。すな
わち、図4に示すようにグラファイトからなるるつぼ2
1内に珪素が充填され、不活性ガス雰囲気中において、
るつぼ21を加熱し珪素を融液化する。そして、珪素融
液22中に、ホルダー23の先端部に固定された炭化珪
素単結晶基板24を一定時間浸漬することにより、基板
24上に炭化珪素単結晶が成長する。
2. Description of the Related Art Silicon carbide single crystals are grown by a dip method, which is a type of liquid phase epitaxial growth. That is, as shown in FIG. 4, a crucible 2 made of graphite
1 is filled with silicon, and in an inert gas atmosphere,
The crucible 21 is heated to melt silicon. Then, silicon carbide single crystal substrate 24 fixed to the tip of holder 23 is immersed in silicon melt 22 for a certain period of time, thereby growing a silicon carbide single crystal on substrate 24 .

【0003】このときに、アルミニウムや窒素を不純物
として若干量るつぼ21内に添加することによって、炭
化珪素のキャリア濃度を制御している。
At this time, the carrier concentration of silicon carbide is controlled by adding a small amount of aluminum or nitrogen as impurities into the crucible 21.

【0004】0004

【発明が解決しようとする課題】上記従来技術において
、n型の炭化珪素単結晶層を成長させる場合、るつぼ2
1内に微量の窒化珪素(Si3 N4 )を珪素ととも
に添加することが一般的に行われている。
[Problems to be Solved by the Invention] In the above prior art, when growing an n-type silicon carbide single crystal layer, crucible 2
It is common practice to add a small amount of silicon nitride (Si3 N4) to the silicon nitride along with silicon.

【0005】ところが、添加する窒化珪素重量は、珪素
の重量に対して10000分の1から1000000分
の1程度となってくる。そのため窒化珪素を秤量するこ
とが非常に困難である。このことが原因となり、n型炭
化珪素単結晶層のキャリア濃度の制御が難しくなってい
る。
However, the weight of silicon nitride to be added is about 1/10,000 to 1/1,000,000 of the weight of silicon. Therefore, it is very difficult to weigh silicon nitride. This causes difficulty in controlling the carrier concentration of the n-type silicon carbide single crystal layer.

【0006】この発明は、製造しようとする炭化珪素単
結晶キャリア濃度を容易にかつ正確に制御できる炭化珪
素単結晶の液相エピタキシャル成長方法を提供すること
を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for liquid phase epitaxial growth of a silicon carbide single crystal in which the carrier concentration of the silicon carbide single crystal to be manufactured can be easily and accurately controlled.

【0007】[0007]

【課題を解決するための手段】この発明は、珪素融液中
に、炭化珪素単結晶基板を浸漬して、上記炭化珪素単結
晶基板上に、炭化珪素単結晶をエピタキシャル成長させ
る炭化珪素単結晶の液相エピタキシャル成長方法におい
て、珪素基板とその上に形成された厚さが均一の窒化珪
素層とからなるチップをドーピング材として用いること
を特徴とする。
[Means for Solving the Problems] The present invention provides a silicon carbide single crystal that is epitaxially grown on the silicon carbide single crystal substrate by immersing the silicon carbide single crystal substrate in a silicon melt. A liquid phase epitaxial growth method is characterized in that a chip consisting of a silicon substrate and a silicon nitride layer of uniform thickness formed thereon is used as a doping material.

【0008】[0008]

【作用】この発明によれば、窒化珪素層の厚さおよび大
きさによって、窒化珪素の重量を正確に評価できるので
、製造しようとする炭化珪素単結晶層のキャリア濃度を
容易に制御できる。
According to the present invention, since the weight of silicon nitride can be accurately evaluated based on the thickness and size of the silicon nitride layer, the carrier concentration of the silicon carbide single crystal layer to be manufactured can be easily controlled.

【0009】[0009]

【実施例】以下、図1〜図3を参照して、この発明の実
施例について説明する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 3.

【0010】図1は、炭化珪素単結晶を液層エピタキシ
ャル成長させる際に用いられるドーピング材10を示し
ている。
FIG. 1 shows a doping material 10 used in liquid layer epitaxial growth of a silicon carbide single crystal.

【0011】図1において、1は珪素基板であり、2は
珪素基板1上に堆積されたに窒化珪素層である。窒化珪
素2を珪素基板1上に堆積させる方法としては、一般的
にCVD法が利用されている。この方法は、原料ガスと
してモノシラン(SiH4 )とアンモニア(NH3 
)を用い、珪素基板1の温度を約900℃に保持してお
くことで、厚さ500μmの珪素基板1上に窒化珪素(
Si3 N4 )層2を堆積させることができる。この
方法により、珪素基板1上に窒化珪素層2を約5000
Å(=0.5μm)程度堆積させる。
In FIG. 1, 1 is a silicon substrate, and 2 is a silicon nitride layer deposited on the silicon substrate 1. In FIG. As a method for depositing silicon nitride 2 on silicon substrate 1, CVD method is generally used. This method uses monosilane (SiH4) and ammonia (NH3) as raw material gases.
) and keeping the temperature of the silicon substrate 1 at approximately 900°C, silicon nitride (
A Si3N4) layer 2 can be deposited. By this method, a silicon nitride layer 2 is formed on a silicon substrate 1 with a thickness of about 5,000 yen.
A thickness of about Å (=0.5 μm) is deposited.

【0012】その後、窒化珪素層2の膜厚を、エリプソ
メータまたはSEM(走査型電子顕微鏡)で正確に測定
する。
Thereafter, the thickness of the silicon nitride layer 2 is accurately measured using an ellipsometer or a SEM (scanning electron microscope).

【0013】ここで、窒化珪素(Si3 N4 )の密
度は、3.44g/cm3 であることが知られている
ので、たとえば100μgの窒化珪素を添加しようとす
る場合には、窒化珪素の体積は2.9×10−5cm3
 となる。従って、窒化珪素層2の厚さが5000Åの
場合、体積2.9×10−5cm3 分に相当する面積
は0.581cm2 となる。つまり、0.581cm
2 の大きさ分だけ、ドーピング材を切り出せばよい。
[0013] Here, it is known that the density of silicon nitride (Si3 N4) is 3.44 g/cm3, so if, for example, 100 μg of silicon nitride is to be added, the volume of silicon nitride is 2.9×10-5cm3
becomes. Therefore, when the thickness of the silicon nitride layer 2 is 5000 Å, the area corresponding to the volume of 2.9×10 −5 cm 3 is 0.581 cm 2 . That is, 0.581cm
All you have to do is cut out the doping material by the size of 2.

【0014】ドーピング材を所定の面積に切り出す方法
としては、ダイシングソーを用いることにより、正方形
に切り出すことが可能である。上面の面積が0.581
cm2 のドーピング材を切り出すときには、その一辺
の長さは7.62mmとなる。
[0014] As a method of cutting out the doping material into a predetermined area, a dicing saw can be used to cut out the doping material into a square shape. The area of the top surface is 0.581
When cutting out a cm2 doping material, the length of one side is 7.62 mm.

【0015】このようにして切り出されたチップを図4
に示するつぼ21に珪素とともに添加することにより、
窒素が不純物として添加されることになる。
FIG. 4 shows the chips cut out in this way.
By adding silicon together with the crucible 21 shown in
Nitrogen will be added as an impurity.

【0016】図2に示すように、珪素基板1上に堆積さ
せた窒化珪素層2からなるドーピング材を、ダイシング
により1辺の長さが所定長さたとえば1mmの正方形状
チップ11に切り出しておき、添加するチップ11の個
数を調整することにより、窒化珪素の添加量を制御する
ことができる。
As shown in FIG. 2, a doping material consisting of a silicon nitride layer 2 deposited on a silicon substrate 1 is cut into square chips 11 each having a predetermined side length of 1 mm, for example, by dicing. By adjusting the number of chips 11 to be added, the amount of silicon nitride added can be controlled.

【0017】図3は、この方法を用いて、成長させた炭
化珪素単結晶のキャリア濃度と、添加したドーピング材
10における窒化珪素層2の面積との関係を示している
。この図から、キャリア濃度が、窒化珪素層2の面積に
比例していることがわかる。従って、窒化珪素層2の膜
厚を一定にしておけば、ドーピング材10の切り出し面
積を調整するだけでキャリア濃度を制御することができ
る。
FIG. 3 shows the relationship between the carrier concentration of a silicon carbide single crystal grown using this method and the area of silicon nitride layer 2 in added doping material 10. This figure shows that the carrier concentration is proportional to the area of silicon nitride layer 2. Therefore, if the thickness of the silicon nitride layer 2 is kept constant, the carrier concentration can be controlled simply by adjusting the cutout area of the doping material 10.

【0018】[0018]

【発明の効果】この発明によれば、炭化珪素単結晶のキ
ャリア濃度を容易にかつ正確に制御することができ、そ
の再現性も向上する。
According to the present invention, the carrier concentration of a silicon carbide single crystal can be easily and accurately controlled, and its reproducibility is also improved.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】ドーピング材を示す断面図である。FIG. 1 is a cross-sectional view showing a doping material.

【図2】ドーピング材をあらかじめ複数の同じ大きさの
チップに切り出す場合の、チップを示す平面図である。
FIG. 2 is a plan view showing chips when the doping material is cut out in advance into a plurality of chips of the same size.

【図3】添加したドーピング材の面積に対する成長させ
た炭化珪素単結晶のキャリア濃度を示すグラフである。
FIG. 3 is a graph showing the carrier concentration of a grown silicon carbide single crystal with respect to the area of an added doping material.

【図4】炭化珪素単結晶を製造するための液相エピタキ
シャル装置を示す概略構成図である。
FIG. 4 is a schematic configuration diagram showing a liquid phase epitaxial apparatus for producing a silicon carbide single crystal.

【付号の説明】[Explanation of numbers]

1  珪素基板 2  窒化珪素層 10  ドーピング材 11  チップ 1 Silicon substrate 2 Silicon nitride layer 10 Doping material 11 Chip

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  珪素融液中に、炭化珪素単結晶基板を
浸漬して、上記炭化珪素単結晶基板上に、炭化珪素単結
晶をエピタキシャル成長させる炭化珪素単結晶の液相エ
ピタキシャル成長方法において、珪素基板とその上に形
成された厚さが均一の窒化珪素層とからなるチップをド
ーピング材として用いることを特徴とする炭化珪素単結
晶の液相エピタキシャル成長方法。
1. A method for liquid phase epitaxial growth of a silicon carbide single crystal, in which a silicon carbide single crystal substrate is immersed in a silicon melt and a silicon carbide single crystal is epitaxially grown on the silicon carbide single crystal substrate. A method for liquid phase epitaxial growth of a silicon carbide single crystal, characterized in that a chip consisting of a silicon carbide single crystal and a silicon nitride layer of uniform thickness formed thereon is used as a doping material.
JP8993291A 1991-03-27 1991-03-27 Method for liquid-phase epitaxial growth of silicon carbide single crystal Pending JPH04300298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8993291A JPH04300298A (en) 1991-03-27 1991-03-27 Method for liquid-phase epitaxial growth of silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8993291A JPH04300298A (en) 1991-03-27 1991-03-27 Method for liquid-phase epitaxial growth of silicon carbide single crystal

Publications (1)

Publication Number Publication Date
JPH04300298A true JPH04300298A (en) 1992-10-23

Family

ID=13984472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8993291A Pending JPH04300298A (en) 1991-03-27 1991-03-27 Method for liquid-phase epitaxial growth of silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JPH04300298A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010026069A (en) * 1999-09-02 2001-04-06 남기석 Growth of large-area silicon carbide crystal with interfacial modifacation with silicon nitrides
JP2007153719A (en) * 2005-12-08 2007-06-21 Toyota Motor Corp Method for producing silicon carbide single crystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010026069A (en) * 1999-09-02 2001-04-06 남기석 Growth of large-area silicon carbide crystal with interfacial modifacation with silicon nitrides
JP2007153719A (en) * 2005-12-08 2007-06-21 Toyota Motor Corp Method for producing silicon carbide single crystal
JP4661571B2 (en) * 2005-12-08 2011-03-30 トヨタ自動車株式会社 Method for producing silicon carbide single crystal

Similar Documents

Publication Publication Date Title
CA1317857C (en) Homoepitaxial growth of alpha-sic thin films and semiconductor devices fabricated thereon
Wagner et al. Vapor‐liquid‐solid mechanism of single crystal growth
US5011549A (en) Homoepitaxial growth of Alpha-SiC thin films and semiconductor devices fabricated thereon
KR100484482B1 (en) METHOD FOR DOPING OXYGEN TO GaN CRYSTAL AND OXYGEN-DOPED GaN SINGLE CRYSTAL SUBSTRATE
US7449065B1 (en) Method for the growth of large low-defect single crystals
US11624124B2 (en) Silicon carbide substrate and method of growing SiC single crystal boules
US3956032A (en) Process for fabricating SiC semiconductor devices
US4315796A (en) Crystal growth of compound semiconductor mixed crystals under controlled vapor pressure
US5030580A (en) Method for producing a silicon carbide semiconductor device
US4382837A (en) Epitaxial crystal fabrication of SiC:AlN
JPH11162850A (en) Silicon carbide substrate and its production, and semiconductor element using the same
US3715245A (en) Selective liquid phase epitaxial growth process
JPH1045499A (en) Production of silicon carbide single crystal and seed crystal used therefor
JPH04300298A (en) Method for liquid-phase epitaxial growth of silicon carbide single crystal
JP3848446B2 (en) Method for growing low resistance SiC single crystal
US3762943A (en) Procedure and preparation for the production of homogeneous and planeparallel epitactic growth layers of semiconducting compounds by melt epitaxy
CA1333248C (en) Method of forming crystals
JP2680617B2 (en) Method for growing silicon carbide single crystal
von Ehrenwall et al. Growth mechanism of silicon deposited by atmospheric pressure chemical vapor deposition on different ceramic substrates
JPH0249422A (en) Manufacture of silicon carbide semiconductor device
WO2024004314A1 (en) Composite substrate, and substrate for epitaxially growing group 13 element nitride
JPH0455155B2 (en)
JPH0343240B2 (en)
JPS63239186A (en) Crystal article and its formation
JP3717220B2 (en) Liquid phase epitaxial growth method