JPH02111690A - Growth of compound semiconductor crystal and apparatus therefor - Google Patents

Growth of compound semiconductor crystal and apparatus therefor

Info

Publication number
JPH02111690A
JPH02111690A JP26277088A JP26277088A JPH02111690A JP H02111690 A JPH02111690 A JP H02111690A JP 26277088 A JP26277088 A JP 26277088A JP 26277088 A JP26277088 A JP 26277088A JP H02111690 A JPH02111690 A JP H02111690A
Authority
JP
Japan
Prior art keywords
compound semiconductor
solution
crucible
melt
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26277088A
Other languages
Japanese (ja)
Inventor
Chisato Takenaka
竹中 千里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP26277088A priority Critical patent/JPH02111690A/en
Publication of JPH02111690A publication Critical patent/JPH02111690A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To obtain high-quality bulk crystal by passing upward an electric current through a compound semiconductor solution in a crucible so as to produce the electromigration for the solute to effect uniform distribution of each element in the solution containing elements liable to cause gravitational segregation. CONSTITUTION:The bottom of a crucible 1 made from e.g., boron nitride is fitted with a positive electrode 3, while the upper part facing the bottom with a vertically movable negative electrode 4 capable of contact with a compound semiconductor solution (or melt) when made to descend, and an electric current is passed through said solution (melt) with such an intensity as to develop the electromigration of the solute contained (e.g., In+Ga+As). Thence, the current is cut and a seed crystal (e.g., InP) 6 is brought into contact with the solution (melt) 2 to make a growth of the objective compound semiconductor crystal.

Description

【発明の詳細な説明】 〔概要〕 重力偏析が発生し易い組成をもつ化合物半導体結晶を成
長させるのに好適な方法及びそれを実施する装置に関し
、 重力偏析し易い元素を含む溶液中で各元素を簡単な手段
で均一に分布させ、高品質のバルク結晶を得られるよう
にすることを目的とし、化合物半導体溶液(或いは融液
)を収容するるつぼの底面に正側電極を、また、該るつ
ぼの底面に対向する上方に上下可動であって且つ下降さ
せた際に前記化合物半導体溶液(或いは融液)に接触可
能な負側電極をそれぞれ設け、るつぼ内の化合物半導体
溶液(或いは融液)に溶質のエレクトロマイグレーショ
ンが発生する程度の電流を流して該溶質をるつぼ内に均
一に分布させ、その後、該電流を停止してから種結晶を
前記化合物半導体溶液(或いは融液)に接触させて化合
物半導体結品を成長させるよう構成する。
[Detailed Description of the Invention] [Summary] Regarding a method suitable for growing a compound semiconductor crystal having a composition that tends to cause gravitational segregation, and an apparatus for carrying out the same, With the aim of uniformly distributing the compound semiconductor solution (or melt) by simple means and obtaining high-quality bulk crystals, a positive electrode is placed on the bottom of the crucible containing the compound semiconductor solution (or melt). Negative electrodes are provided above facing the bottom surface of the crucible, and are movable up and down and can contact the compound semiconductor solution (or melt) when lowered, and contact the compound semiconductor solution (or melt) in the crucible. A current sufficient to cause electromigration of the solute is applied to uniformly distribute the solute in the crucible, and then the current is stopped and a seed crystal is brought into contact with the compound semiconductor solution (or melt) to form a compound. Configure to grow semiconductor products.

〔産業上の利用分野〕[Industrial application field]

本発明は、重力偏析が発生し易い組成をもつ化合物半導
体結晶を成長させるのに好適な方法及びそれを実施する
装置に関する。
The present invention relates to a method suitable for growing a compound semiconductor crystal having a composition that tends to cause gravitational segregation, and an apparatus for carrying out the method.

現在、種々な化合物半導体装置を製造する為、多様な化
合物半導体結晶が使用されつつあり、バルク結晶も、二
元混晶のみならず、多元混晶が要求されている。一般に
、均一な組成をもつ高品質のバルク結晶を成長させるに
は、成長条件の厳密な制御が必要である。
Currently, various compound semiconductor crystals are being used to manufacture various compound semiconductor devices, and not only binary mixed crystals but also multi-component mixed crystals are required for bulk crystals. In general, growing high quality bulk crystals with uniform composition requires strict control of growth conditions.

〔従来の技術〕[Conventional technology]

従来の半導体バルク結晶成長は、シリコン或いはGaA
sなど、重力偏析が殆ど問題にならない系について実施
されることが多い。
Conventional semiconductor bulk crystal growth uses silicon or GaA
It is often carried out for systems where gravitational segregation is hardly a problem, such as s.

近年、研究段階でI nGaAs、GaAs P%In
AsPなど三元結晶を引き上げ法で成長させた例が報告
されている。
In recent years, in the research stage, InGaAs, GaAs P%In
Examples have been reported in which ternary crystals such as AsP are grown by the pulling method.

〔発明が解決しようとする課題〕 前記した従来の技術に於いては、重力偏析を問題にする
程の厳密な組成制御はなされていない。
[Problems to be Solved by the Invention] In the above-mentioned conventional techniques, composition control is not strict enough to make gravitational segregation a problem.

然しなから、例えば、InGaAsを引き上げ成長法で
成長させようとした場合、Inに比較するとGaやAs
は軽い元素である為、溶液状態で放置しておくと、Ga
及びAsが溶液上部に偏ってしまう。
However, for example, when trying to grow InGaAs by the pulling growth method, compared to In, Ga and As
Since Ga is a light element, if left in solution, Ga
And As is concentrated in the upper part of the solution.

第3図はその様子を解説する為の成長装置の要部説明図
である。
FIG. 3 is an explanatory diagram of the main parts of the growth apparatus for explaining the situation.

図に於いて、■はるつぼ、2は溶液をそれぞれ示してい
る。
In the figure, ■ indicates a crucible, and 2 indicates a solution.

図示されているように、溶液2中では、軽い元素である
Ga及びAsが溶液2の上方に移動し、全体として元素
の分布は不均一になる。
As shown in the figure, in the solution 2, Ga and As, which are light elements, move to the upper part of the solution 2, and the distribution of the elements becomes non-uniform as a whole.

通常、バルク結晶を成長させる為の種結晶は、るつぼ1
の上方から下降させて溶液2に接触させるのであるから
、溶液2の上方に於ける組成が均一でなければ、成長さ
れたバルク結晶も均質にならないことは云うまでもない
Usually, the seed crystal for growing bulk crystals is crucible 1.
Since it is brought into contact with the solution 2 by descending from above, it goes without saying that if the composition above the solution 2 is not uniform, the grown bulk crystal will not be homogeneous either.

本発明は、重力偏析し易い元素を含む溶液中で各元素を
簡単な手段で均一に分布させ、商品質のバルク結晶を得
られるようにする。
The present invention makes it possible to uniformly distribute each element by simple means in a solution containing elements that are prone to gravitational segregation, thereby making it possible to obtain bulk crystals of commercial quality.

〔課題を解決するための手段〕[Means to solve the problem]

一般に、金属溶液(或いは融液)中に電流を流した場合
、エレクトロマイグレーションと呼ばれている現象で、
元素が電極の方向に移動することが知られている。
Generally, when a current is passed through a metal solution (or melt), a phenomenon called electromigration occurs.
It is known that elements move towards the electrode.

本発明は、このエレクトロマイグレーション効果を利用
し、溶質元素の重力偏析を緩和する。
The present invention utilizes this electromigration effect to alleviate the gravitational segregation of solute elements.

第1図は本発明の詳細な説明する為の成長装置の要部説
明図であり、第3図に於いて用いた記号と同記号は同部
分を示すか或いは同じ意味を持つものとする。尚、この
場合も?容ン夜はInGaAsであるとする。
FIG. 1 is an explanatory view of the main parts of a growth apparatus for explaining the present invention in detail, and the same symbols as those used in FIG. 3 indicate the same parts or have the same meanings. Also, in this case? It is assumed that the material is InGaAs.

図に於いて、3は正側電極、4は負側電極をそれぞれ示
している。
In the figure, 3 indicates the positive side electrode, and 4 indicates the negative side electrode.

この成長装置に於いては、正側電極3及び負側電極4間
に図示の極性で電圧を印加して溶液2中に電流を流すと
、エレクトロマイグレーション効果に依ってGaやAs
を正側電極3の方向に移動させることができる。
In this growth apparatus, when a voltage is applied with the polarity shown between the positive electrode 3 and the negative electrode 4 and a current is passed through the solution 2, Ga and As are generated due to the electromigration effect.
can be moved in the direction of the positive electrode 3.

従って、この状態で種結晶を下ろし、I nGaAsか
らなろバルク結晶を成長させれば、その組成は所望通り
の均質なものとなる。
Therefore, if a seed crystal is lowered in this state and a bulk crystal made of InGaAs is grown, its composition will be homogeneous as desired.

このようなことから、本発明に依る化合物半導体結晶成
長方法及びそれを実施する装置に於いては、るつぼ(例
えばるつぼ1)内の化合物半導体溶液或いは融液(例え
ば溶液2)の下方から上方に向けて溶質のエレクトロマ
イグレーションが・発生する程度の電流を流して該溶質
をるつぼ内に均一に分布させる工程と、その後、該電流
を停止してから種結晶(例えば種結晶6)を前記化合物
半導体溶液或いは融液に接触させて化合物半導体結晶を
成長させる工程とが含まれるように、また、化合物半導
体溶液(或いは融液)を収容するるつぼの底面に設けら
れた正側電極(例えば正側電極3)と、該るつぼの底面
に対向する上方に上下可動であるように設けられ且つ下
降させた際に前記化合物半導体溶液或いは融液に接触可
能な負側電極(例えば負側電極4)とを備える。
For this reason, in the compound semiconductor crystal growth method and the apparatus for carrying out the method according to the present invention, the compound semiconductor solution or melt (for example, solution 2) in the crucible (for example, crucible 1) is grown from below to above. A step of uniformly distributing the solute in the crucible by passing a current to the extent that electromigration of the solute occurs, and then, after stopping the current, a seed crystal (for example, seed crystal 6) is transferred to the compound semiconductor. In addition, a positive side electrode (for example, a positive side electrode) provided on the bottom of the crucible containing the compound semiconductor solution (or melt) is included. 3), and a negative electrode (e.g. negative electrode 4) which is provided so as to be movable up and down above facing the bottom surface of the crucible and which can come into contact with the compound semiconductor solution or melt when lowered. Be prepared.

〔作用〕[Effect]

前記手段を採ることに依り、溶液中の重力偏析し易い溶
質をエレクトロマイグレーションに依って逆方向に移動
させることで、溶液全体の組成を均一な状態にすること
ができ、その結果、得られる結晶の組成も均一なものと
なる。また、それを実現するにも、溶液中にエレクトロ
マイグレーションが生成される程度の電流を流すのみで
事足りるものであるから容易に実施することができる。
By adopting the above method, the composition of the entire solution can be made uniform by moving the solute in the solution that tends to segregate by gravity in the opposite direction by electromigration, and as a result, the resulting crystal The composition also becomes uniform. In addition, to realize this, it is sufficient to flow a current to an extent that electromigration is generated in the solution, so it can be easily implemented.

〔実施例〕〔Example〕

第2図は本発明一実施例を解説する為の成長装置の要部
説明図を表し、第1図及び第3図に於いて用いた記号と
同記号は同部分を示すか或いは同じ意味を持つものとす
る。
FIG. 2 shows an explanatory diagram of the main parts of the growth apparatus for explaining one embodiment of the present invention, and the same symbols as those used in FIGS. 1 and 3 indicate the same parts or have the same meaning. Shall have.

図に於いて、5は種結晶移動杆、6は種結晶、7は導体
をそれぞれ示している。
In the figure, 5 indicates a seed crystal moving rod, 6 indicates a seed crystal, and 7 indicates a conductor.

図示例では、るつぼ1の材料は窒化硼素、溶液2はI 
n +Ga + As (X+n=0.738. XA
s=0.212.X、、=0.05) 、電極3及び4
の材料はカーボン、種結晶はInPからなっている。尚
、溶液2の組成は、840(’C)でInPに格子整合
する組成の結晶との平衡組成になっている。また、電極
4は種結晶移動杆5と同様に」−下可動になっている。
In the illustrated example, the material of crucible 1 is boron nitride, and the solution 2 is I
n + Ga + As (X+n=0.738.XA
s=0.212. X, , = 0.05), electrodes 3 and 4
The material is carbon and the seed crystal is InP. The composition of the solution 2 is an equilibrium composition with a crystal having a composition lattice-matched to InP at 840 ('C). Further, the electrode 4 is movable downward in the same manner as the seed crystal moving rod 5.

さて、るつぼ1の全体を860(’C)まで徐々に昇温
してゆく際、840(’C)付近で電極4を溶液2に浸
漬し、電極3から電極4の方向に電流を流す。
Now, when the temperature of the entire crucible 1 is gradually raised to 860 ('C), the electrode 4 is immersed in the solution 2 near 840 ('C), and a current is passed in the direction from the electrode 3 to the electrode 4.

この場合、電流密度は例えば10 (A/cm” 3〜
50 (A/cm” )程度の範囲、好ましくは20(
A/am”)程度とし、例えば5〔分〕間通電してから
3〔分〕間遮断する操作を結晶成長の開始時まで繰り返
す。
In this case, the current density is, for example, 10 (A/cm"3~
50 (A/cm”), preferably 20 (A/cm”), preferably 20 (A/cm”)
A/am''), and the operation of turning on the current for, for example, 5 [minutes] and then cutting off for 3 [minutes] is repeated until the start of crystal growth.

前記るつぼ1の昇温を1!続し、860(”C)に達し
たら、その状態で30〔分〕間放置し、その後、降温し
で再び840(”c)になった際に結晶の成長を開始す
る。
The temperature increase of the crucible 1 is 1! Subsequently, when the temperature reaches 860 ("C), it is left in that state for 30 [minutes], and then, when the temperature is lowered to 840 ("C) again, crystal growth is started.

このような操作を行うことで、成長を開始するまでの間
、重力効果とエレクトロマイグレーション効果とで溶液
2内の組成は均一に保たれ、InPと格子整合するIn
GaAsの良質な結晶を得ることができる。
By performing such an operation, the composition of the solution 2 is kept uniform by the gravitational effect and electromigration effect until the growth starts, and InP is lattice-matched to InP.
High quality GaAs crystals can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明に依る化合物半導体結晶成長方法及びそれを実施
する装置に於いては、るつぼの底面に正側電極を、また
、該るつぼの底面に対向する上方に上下可動であって且
つ下降させた際に化合物半導体溶液(或いは融液)に接
触可能な負側電極をそれぞれ設け、その化合物半導体溶
液(或いは融液)に溶質のエレクトロマイグレーション
が発生する程度の電流を流し、その後、該電流を停止し
てから種結晶を前記化合物半導体溶液(或いは融液)に
接触させて化合物半導体結晶を成長させている。
In the compound semiconductor crystal growth method and the apparatus for carrying out the same according to the present invention, a positive electrode is provided on the bottom surface of the crucible, and the positive electrode is movable up and down in an upward direction opposite to the bottom surface of the crucible, and when lowered. A negative electrode capable of contacting the compound semiconductor solution (or melt) is provided at each of the electrodes, a current is applied to the compound semiconductor solution (or melt) to an extent that electromigration of the solute occurs, and then the current is stopped. Thereafter, a seed crystal is brought into contact with the compound semiconductor solution (or melt) to grow a compound semiconductor crystal.

前記構成を採ることに依り、溶液中の重力偏析し易い溶
質をエレクトロマイグレーションに依って逆方向に移動
させることで、溶液全体の組成を均一な状態にすること
ができ、その結果、得られる結晶の組成も均一なものと
なる。また、それを実現するにも、溶液中にエレクトロ
マイグレーションが生成される程度の電流を流すのみで
事足りるものであるから容易に実施することができる。
By adopting the above configuration, the composition of the entire solution can be made uniform by moving the solute in the solution that tends to segregate by gravity in the opposite direction by electromigration, and as a result, the resulting crystal The composition also becomes uniform. In addition, to realize this, it is sufficient to flow a current to an extent that electromigration is generated in the solution, so it can be easily implemented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明する為の化合物半導体結晶
成長装置の要部説明図、第2図は本発明一実施例を解説
する為の成長装置の要部説明図、第3図は化合物半導体
溶液の重力偏析について説明する為の化合物半導体結晶
成長装置の要部説明図をそれぞれ表している。 図に於いて、1はるつぼ、2は溶液、3は正側電極、4
は負側電極、5は種結晶移動杆、6は種結晶、7は導体
をそれぞれ示している。 特許出順人   富士通株式会社 代理人弁理士  拍 谷 昭 司
FIG. 1 is an explanatory diagram of the main parts of a compound semiconductor crystal growth apparatus for explaining the present invention in detail, FIG. 2 is an explanatory diagram of the main parts of the growth apparatus for explaining one embodiment of the present invention, and FIG. Each of the drawings shows an explanatory view of the main parts of a compound semiconductor crystal growth apparatus for explaining gravitational segregation of a compound semiconductor solution. In the figure, 1 is a crucible, 2 is a solution, 3 is a positive electrode, and 4 is a crucible.
5 indicates a negative electrode, 5 a seed crystal moving rod, 6 a seed crystal, and 7 a conductor. Patent Author: Fujitsu Limited Representative Patent Attorney Shoji Utoya

Claims (2)

【特許請求の範囲】[Claims] (1)るつぼ内の化合物半導体溶液(或いは融液)の下
方から上方に向けて溶質のエレクトロマイグレーション
が発生する程度の電流を流して該溶質をるつぼ内に均一
に分布させる工程と、その後、該電流を停止してから種
結晶を前記化合物半導体溶液(或いは融液)に接触させ
て化合物半導体結晶を成長させる工程と が含まれてなることを特徴とする化合物半導体結晶成長
方法。
(1) A step of uniformly distributing the solute in the crucible by passing a current to the extent that electromigration of the solute occurs from below to above the compound semiconductor solution (or melt) in the crucible, and then distributing the solute uniformly in the crucible. A method for growing a compound semiconductor crystal, the method comprising the step of: stopping the current, and then bringing a seed crystal into contact with the compound semiconductor solution (or melt) to grow a compound semiconductor crystal.
(2)化合物半導体溶液(或いは融液)を収容するるつ
ぼの底面に設けられた正側電極と、 該るつぼの底面に対向する上方に上下可動であるように
設けられ且つ下降させた際に前記化合物半導体溶液(或
いは融液)に接触可能な負側電極と を備えてなることを特徴とする化合物半導体結晶成長装
置。
(2) a positive electrode provided on the bottom surface of a crucible containing a compound semiconductor solution (or melt); and a positive electrode provided upwardly facing the bottom surface of the crucible so as to be movable up and down, and when lowered, 1. A compound semiconductor crystal growth apparatus comprising: a negative electrode capable of contacting a compound semiconductor solution (or melt);
JP26277088A 1988-10-20 1988-10-20 Growth of compound semiconductor crystal and apparatus therefor Pending JPH02111690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26277088A JPH02111690A (en) 1988-10-20 1988-10-20 Growth of compound semiconductor crystal and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26277088A JPH02111690A (en) 1988-10-20 1988-10-20 Growth of compound semiconductor crystal and apparatus therefor

Publications (1)

Publication Number Publication Date
JPH02111690A true JPH02111690A (en) 1990-04-24

Family

ID=17380348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26277088A Pending JPH02111690A (en) 1988-10-20 1988-10-20 Growth of compound semiconductor crystal and apparatus therefor

Country Status (1)

Country Link
JP (1) JPH02111690A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19911755B4 (en) * 1998-03-16 2009-09-24 Nec Corp. Device for drawing a semiconductor crystal and method for drawing
US8083852B2 (en) * 2008-05-08 2011-12-27 Shin-Etsu Handotai Co., Ltd. Single crystal growth method and single crystal pulling apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19911755B4 (en) * 1998-03-16 2009-09-24 Nec Corp. Device for drawing a semiconductor crystal and method for drawing
US8083852B2 (en) * 2008-05-08 2011-12-27 Shin-Etsu Handotai Co., Ltd. Single crystal growth method and single crystal pulling apparatus

Similar Documents

Publication Publication Date Title
US5021224A (en) Apparatus for growing multicomponents compound semiconductor crystals
JPH03122097A (en) Preparation of single crystal ii-vi group or iii-v group compound and product made of it
JP3924604B2 (en) Gallium arsenide single crystal
JPH02111690A (en) Growth of compound semiconductor crystal and apparatus therefor
US20190032242A1 (en) Single-Crystal Production Equipment
US2999776A (en) Method of producing differentiated doping zones in semiconductor crystals
JPS62275099A (en) Semi-insulating indium phosphide single crystal
JPS6090897A (en) Method and apparatus for manufacturing compound semiconductor single crystal
JPS6259598A (en) Indium phosphide single crystal and production thereof
JPH02217389A (en) Production of single crystal
JPH07133185A (en) Production of single crystal
JPS56149399A (en) Liquid phase epitaxial growing method
JPS5815472B2 (en) crystal growth equipment
JPH0450188A (en) Method and apparatus for production of single crystal
JPH0367996B2 (en)
JPS63144191A (en) Production of compound semiconductor single crystal and apparatus therefor
JPH02167883A (en) Production of single crystal of compound semiconductor and device therefor
JPH04305089A (en) Method and device for producing semiconductor
JPH0867593A (en) Method for growing single crystal
JPS5988393A (en) Production of iii-v group compound single crystal
JPH0219967B2 (en)
JPH05319973A (en) Single crystal production unit
JPH0369591A (en) Method for growing crystal of semiconductor
JPS6065799A (en) Process for crystal growth
JPH02208282A (en) Growing device of semiconductor crystal and growing method of semiconductor crystal