JPH04198096A - Method for growing znse crystal - Google Patents
Method for growing znse crystalInfo
- Publication number
- JPH04198096A JPH04198096A JP33126890A JP33126890A JPH04198096A JP H04198096 A JPH04198096 A JP H04198096A JP 33126890 A JP33126890 A JP 33126890A JP 33126890 A JP33126890 A JP 33126890A JP H04198096 A JPH04198096 A JP H04198096A
- Authority
- JP
- Japan
- Prior art keywords
- znse
- crystal
- solvent
- growth
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 61
- 238000000034 method Methods 0.000 title claims description 8
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 claims abstract description 43
- 239000011259 mixed solution Substances 0.000 claims abstract description 13
- 239000002904 solvent Substances 0.000 claims description 31
- 238000002109 crystal growth method Methods 0.000 claims description 4
- 239000010453 quartz Substances 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 230000005484 gravity Effects 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- ORFSSYGWXNGVFB-UHFFFAOYSA-N sodium 4-amino-6-[[4-[4-[(8-amino-1-hydroxy-5,7-disulfonaphthalen-2-yl)diazenyl]-3-methoxyphenyl]-2-methoxyphenyl]diazenyl]-5-hydroxynaphthalene-1,3-disulfonic acid Chemical compound COC1=C(C=CC(=C1)C2=CC(=C(C=C2)N=NC3=C(C4=C(C=C3)C(=CC(=C4N)S(=O)(=O)O)S(=O)(=O)O)O)OC)N=NC5=C(C6=C(C=C5)C(=CC(=C6N)S(=O)(=O)O)S(=O)(=O)O)O.[Na+] ORFSSYGWXNGVFB-UHFFFAOYSA-N 0.000 description 3
- 238000005136 cathodoluminescence Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000012047 saturated solution Substances 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、半導体結晶の成長方法に関し、特に高品質な
ZnSe単結晶を安定して効率的に製造するのに好適な
結晶成長方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for growing semiconductor crystals, and particularly to a crystal growth method suitable for stably and efficiently producing high-quality ZnSe single crystals.
第6図にZnSe半導体結晶の液相成長装置を示す。適
当な径を有する石英製の結晶成長用容器10の底部に、
カーボン等の熱伝導性のよい材料で作成したヒートシン
ク11を収納し固定する。FIG. 6 shows a liquid phase growth apparatus for ZnSe semiconductor crystal. At the bottom of a crystal growth container 10 made of quartz having an appropriate diameter,
A heat sink 11 made of a material with good thermal conductivity such as carbon is housed and fixed.
成長容器10の上部にはソース結晶となるZnSeの多
結晶12を配置する。さらに、ZnSe多結晶12とヒ
ートシンク11の間をSe溶媒13で満たしている。A ZnSe polycrystal 12 serving as a source crystal is placed in the upper part of the growth chamber 10. Furthermore, the space between the ZnSe polycrystal 12 and the heat sink 11 is filled with Se solvent 13.
このような構成からなる結晶成長装置の容器10内を所
定圧力に真空排気して封止する。従来の技術においては
、第6図の結晶成長装置を同図布に示すような温度勾配
中に配置すると、高温部(Ts)のソース結晶12は飽
和溶解度まで溶解して、低温部(’Tg)に向って拡散
する。溶媒下部の低温部は温度かソース結晶12付近よ
り低いため、溶媒13においてZnSeは過飽和溶解度
になり、ヒートシンク11上にバルク状にZnSeか結
晶成長する。The inside of the container 10 of the crystal growth apparatus having such a structure is evacuated to a predetermined pressure and sealed. In the conventional technology, when the crystal growth apparatus shown in FIG. 6 is placed in a temperature gradient as shown in the diagram, the source crystal 12 in the high temperature part (Ts) is melted to the saturated solubility, and the source crystal 12 in the low temperature part ('Tg ). Since the temperature of the low-temperature part below the solvent is lower than that near the source crystal 12, ZnSe has supersaturated solubility in the solvent 13, and ZnSe crystals grow in bulk on the heat sink 11.
このような液相成長装置において、溶媒としては、Zn
Seの構成元素であるZnあるいはSeか考えられるか
、第2図のZnSeの各種溶媒に対する溶解度曲線で示
されるように、溶媒としてZnを用いると、ZnSeの
溶解度が非常に低(、バルク状の結晶を得ることは困難
である。また、第6図のようにSeを溶媒とした場合に
は、第3図の各種溶媒の蒸気圧の温度依存性に示される
ように蒸気圧が非常に高く、溶解度を上げるために温度
を上げると蒸気圧か急増し石英容器10が爆発する危険
性がある。また、そのための対策として容器10の外側
から圧力を与えるような装置を作成すると全体として大
掛かりで複雑な結晶成長装置となり、生産装置として好
ましくない。さらに、第4図のZnSeとSeとTeの
密度比較に示すように、Se (100:O)とZnS
e (点線)とを比重(密度)において比較すると、Z
nSe>Seであるため、成長工程途中で、ソース結晶
の一部が落下したり溶媒中での拡散中で核発生した結晶
か結晶成長面上に落下したりするため、均質なバルク状
単結晶の成長が阻害されるといった問題点かあった。In such a liquid phase growth apparatus, Zn is used as a solvent.
Is it possible that Zn or Se is a constituent element of Se?As shown in the solubility curves of ZnSe in various solvents in Figure 2, when Zn is used as a solvent, the solubility of ZnSe is very low (in bulk form). It is difficult to obtain crystals.Also, when Se is used as a solvent as shown in Figure 6, the vapor pressure is extremely high as shown in the temperature dependence of the vapor pressure of various solvents in Figure 3. If the temperature is raised to increase the solubility, the vapor pressure will increase rapidly and there is a risk that the quartz container 10 will explode.Also, if a device is created to apply pressure from the outside of the container 10 as a countermeasure, it will be a large-scale project as a whole. This results in a complicated crystal growth device, which is not desirable as a production device.Furthermore, as shown in the comparison of the densities of ZnSe, Se, and Te in Figure 4, Se (100:O) and ZnS
When comparing the specific gravity (density) with e (dotted line), Z
Since nSe>Se, part of the source crystal may fall during the growth process, or a crystal nucleated during diffusion in the solvent may fall onto the crystal growth surface, resulting in a homogeneous bulk single crystal. There was a problem that the growth of the plant was inhibited.
本発明の目的は、上記問題点を解決し、高品質なZnS
e単結晶を安定に効率的に製造する結晶成長方法を提供
することにある。The purpose of the present invention is to solve the above problems and produce high quality ZnS.
An object of the present invention is to provide a crystal growth method for stably and efficiently producing single crystals.
(課題を解決するための手段〕
本発明においては、ZnSeを溶解拡散させる溶媒とし
てSeとTeの混合溶液を用い、しかも混合液のSeの
比率を実質的に30〜60mol%とした。(Means for Solving the Problems) In the present invention, a mixed solution of Se and Te is used as a solvent for dissolving and diffusing ZnSe, and the ratio of Se in the mixed solution is substantially 30 to 60 mol%.
第2図のZnSeの各種溶媒に対する溶解度曲線で示さ
れるように、溶媒としてTeはZnSeの溶解度が非常
に高いので、Seとの混合溶液にした場合、Se溶媒と
較へZnSe結晶の結晶成長か速くなる。As shown in the solubility curves of ZnSe in various solvents in Figure 2, ZnSe has a very high solubility in Te as a solvent, so when a mixed solution with Se is used, the crystal growth of ZnSe crystals is slower than in Se solvent. It gets faster.
また、第3図の各種溶媒の蒸気圧特性に示されるように
、Teの蒸気圧は低いのでSeとの混合溶液とすること
によりSe溶媒と較へ蒸気圧を低くてきる。Further, as shown in the vapor pressure characteristics of various solvents in FIG. 3, since the vapor pressure of Te is low, by forming a mixed solution with Se, the vapor pressure can be lowered compared to the Se solvent.
さらに、第4図のZnSeとSeとTeの密度比較に示
すようにSeの混合比かある比率(実線と点線の交点、
5e60 :Te40)以下(交点の右側)になると、
5e−Te混合溶液(実線)の比重(密度)がZnSe
のそれ(点線)を上回り、従って、ZnSe結晶成長工
程中にソース結晶や結晶成長核が成長面に落下するよう
なことはなくなる。Furthermore, as shown in the comparison of the densities of ZnSe, Se, and Te in Figure 4, the mixing ratio of Se is a certain ratio (the intersection of the solid line and the dotted line,
5e60:Te40) or less (to the right of the intersection),
The specific gravity (density) of the 5e-Te mixed solution (solid line) is ZnSe
Therefore, the source crystal and crystal growth nuclei will not fall onto the growth surface during the ZnSe crystal growth process.
そして、溶液のSeの比率を実質的に30〜60mo
!%に選択することにより、後で詳細に説明するように
純青色スペクトル発光を行うZnSe半導体素子が得ら
れる。Then, the ratio of Se in the solution is set to substantially 30 to 60 mo
! %, it is possible to obtain a ZnSe semiconductor device that emits light in the pure blue spectrum, as will be explained in detail later.
以下、第1図を参照して、本発明の実施例の方法を説明
する。Hereinafter, a method according to an embodiment of the present invention will be explained with reference to FIG.
第1図において、適当な径を有する石英製の結晶成長用
容器10の底部に、カーボン等の熱伝導性のよい材料で
作成したヒートシンク11を収納し、成長容器10の所
定位置に刻みをいれてへこますことによりヒートシンク
11を固定する。ヒートシンク11の結晶を析出させる
面は平坦かつ鏡面に仕上げである。ヒートシンク11は
、たとえば直径8〜20mmで、長さ5〜200mmの
円柱状の高純度カーボンで形成する。石英の成長容器1
0の上部は図示のように下部よりも径が大きく作られて
おり、これは、小口径の石英管と大口径の石英管とを接
続することによって作成できる。石英の成長容器10の
上部にはソース結晶となるZnSeのインゴット状多結
晶12を配置する。ZnSe多結晶12の径は成長容器
10の小径より大きく、大径よりも小さく作られ、成長
容器10の上部と下部の段差を利用して固定する。In FIG. 1, a heat sink 11 made of a material with good thermal conductivity such as carbon is housed in the bottom of a crystal growth container 10 made of quartz having an appropriate diameter, and a notch is made at a predetermined position in the growth container 10. The heat sink 11 is fixed by bending it. The surface of the heat sink 11 on which the crystals are deposited is flat and has a mirror finish. The heat sink 11 is made of cylindrical high-purity carbon, for example, with a diameter of 8 to 20 mm and a length of 5 to 200 mm. Quartz growth container 1
As shown in the figure, the upper part of the 0 is made to have a larger diameter than the lower part, and this can be made by connecting a small diameter quartz tube and a large diameter quartz tube. An ingot-shaped polycrystalline ZnSe 12 serving as a source crystal is placed in the upper part of the quartz growth container 10. The diameter of the ZnSe polycrystal 12 is made larger than the small diameter of the growth container 10 and smaller than the large diameter, and is fixed using the step between the upper and lower parts of the growth container 10.
さらに、ZnSe多結晶12とヒートシンク11の間か
5e−Te混合溶媒14て満たされている。Furthermore, a 5e-Te mixed solvent 14 is filled between the ZnSe polycrystal 12 and the heat sink 11.
このような構成からなる結晶成長装置の容器10内を、
2X10−6Torrよりも高い真空度に真空排気して
封止する。以上の結晶成長装置を第1画布に示すような
ソース結晶部温度Tsと結晶成長安定性Tgを有する温
度勾配の炉中に配置すると、高温部分にあるソース結晶
12は飽和溶解度になるまで溶媒14中に溶解し、温度
勾配中を拡散輸送され、ヒートシンク11の低温部(温
度Tg)は過飽和溶液となる。従って、ヒートシンク1
1の鏡面上にZnSeの単結晶が析出成長する。Inside the container 10 of the crystal growth apparatus having such a configuration,
It is evacuated to a degree of vacuum higher than 2×10 −6 Torr and sealed. When the above-mentioned crystal growth apparatus is placed in a furnace with a temperature gradient having a source crystal part temperature Ts and a crystal growth stability Tg as shown in the first drawing, the source crystal 12 in the high-temperature part becomes saturated with the solvent 14. The solution is diffused and transported through the temperature gradient, and the low temperature part (temperature Tg) of the heat sink 11 becomes a supersaturated solution. Therefore, heat sink 1
A single crystal of ZnSe precipitates and grows on the mirror surface of 1.
成長温度Tg:950°C1温度勾配ΔT=10°C/
cmの条件の下て、溶媒14のSeの比率を変えて結晶
成長を試みた。Seの混合比率O〜60mol%におい
て、成長フロントがコンベックス形状のバルク状ZnS
e単結晶が得られたが、60mol%を越えると、成長
結晶の多結晶化が起こった。これは、溶媒のSe比率が
高くなるに従い、ZnSeの溶解度の減少、溶媒とZn
Seの比重か逆転することによるものと考えられる。ま
た、Seの比率の増大に伴い、蒸気圧も増加して爆発の
危険性か大きくなる。石英容器10の耐圧を考慮すると
、容器10内の圧力(蒸気圧)は10atm以下か望ま
しく、この面からも溶媒のSe比率は、実質的に60m
01%を上限にすることが好ましいと考えられる。Growth temperature Tg: 950°C1 Temperature gradient ΔT=10°C/
Crystal growth was attempted under conditions of cm and by changing the ratio of Se in solvent 14. Bulk ZnS with a convex growth front at a Se mixing ratio of 0 to 60 mol%
e single crystal was obtained, but when the amount exceeded 60 mol %, the grown crystal became polycrystalline. This is because as the Se ratio of the solvent increases, the solubility of ZnSe decreases and the solvent and Zn
This is thought to be due to the specific gravity of Se being reversed. Furthermore, as the proportion of Se increases, the vapor pressure also increases, increasing the risk of explosion. Considering the pressure resistance of the quartz container 10, it is desirable that the pressure (vapor pressure) inside the container 10 be 10 atm or less, and from this point of view as well, the Se ratio of the solvent is substantially 60 m
It is considered preferable to set the upper limit to 0.01%.
第5図は、異なる5e−Te溶媒混合比率の下で成長さ
せた結晶のカソードルミネッセンススペクトルの測定結
果を示す。第5図において、(a)、(b)、(C)、
(d)、(e)はそれぞれ、溶媒14の5e−Teの比
率か60:40,45:55,30ニア0,10:90
,0:100100(%)の場合である。FIG. 5 shows the measurement results of cathodoluminescence spectra of crystals grown under different 5e-Te solvent mixing ratios. In FIG. 5, (a), (b), (C),
(d) and (e) are the ratios of 5e-Te in solvent 14, respectively, 60:40, 45:55, 30 near 0, 10:90.
, 0:100100 (%).
Seの比率がO〜10mol%(第5図(e)〜(d)
)においては、ハンド端のピークか長波長側ヘシフトし
ており、かつそれより長波長側にサブピークを有してい
る。これは成長結晶かZnSe、−1Te、の混晶系に
なっており、さらにキャップ内準位を生しているいるも
のと考えられる。The ratio of Se is O to 10 mol% (Fig. 5(e) to (d)
), the peak at the hand end is shifted to the longer wavelength side, and has a sub-peak on the longer wavelength side. It is thought that this is a grown crystal or a mixed crystal system of ZnSe and -1Te, and that an in-cap level is generated.
Seの混合比率か30mol%以上(第5図(C)〜(
a))になると、ZnSe本来のバンド端発光と考えら
れる単一ピークのみとなり、深い準位を含む発光はなく
なり、純青色の発光が得られた。The mixing ratio of Se is 30 mol% or more (Figure 5 (C) - (
In case a)), there was only a single peak, which is considered to be band edge emission inherent to ZnSe, and there was no emission including deep levels, and pure blue emission was obtained.
また、EPMA (EDS)分析においても、Se比率
0%、10%の場合は、Te濃度かそれぞれ2.8at
%、0.6at%であったが、Se比率30mol%に
おいては、Teは検出されなかった。従って、Seの比
率が実質的に30mol%以上において、発光素子とし
て実用上利用可能なZnSe単結晶が得られるとみなす
ことかできる。Also, in EPMA (EDS) analysis, when the Se ratio is 0% and 10%, the Te concentration is 2.8 at.
% and 0.6 at%, but Te was not detected at a Se ratio of 30 mol%. Therefore, it can be considered that when the proportion of Se is substantially 30 mol % or more, a ZnSe single crystal that can be practically used as a light emitting device can be obtained.
以上のことから、実用的なZnSe単結晶が得られ、か
つバルク単結晶の成長が可能な、5e−Te混合溶液に
おけるSeの比率は、実質的に30〜60mol%とす
るのが好ましく、特に、30〜45mo 1%が容器内
圧力と結晶成長安定性の観点から最適であることが判明
した。From the above, it is preferable that the ratio of Se in the 5e-Te mixed solution is substantially 30 to 60 mol%, and in particular, it is possible to obtain a practical ZnSe single crystal and grow a bulk single crystal. , 30-45mo 1% was found to be optimal from the viewpoint of pressure inside the container and stability of crystal growth.
以上、実施例に沿って本発明を説明したか、本発明はこ
れらに制限されるものではない。たとえば、種々の変更
、改良、組合せ等か可能なことは当業者に自明であろう
。Although the present invention has been described above with reference to examples, the present invention is not limited to these examples. For example, it will be obvious to those skilled in the art that various changes, improvements, combinations, etc. are possible.
以上説明したように、本発明によれば、ZnSeを溶解
拡散させる溶媒としてSeとTeの混合溶液を用い、し
かも混合液のSeの比率を実質的に30〜60mol%
とじたことにより、結晶の結晶成長速度が早くなる。As explained above, according to the present invention, a mixed solution of Se and Te is used as a solvent for dissolving and diffusing ZnSe, and the ratio of Se in the mixed solution is substantially 30 to 60 mol%.
By binding, the crystal growth rate of the crystal increases.
蒸気圧を低くできるので爆発の危険かなくなる。Since the vapor pressure can be lowered, there is no risk of explosion.
さらに、5e−Te混合溶液の比重がZnSeの比重を
上回り、従って、成長工程中にソース結晶や結晶成長核
か成長面に落下するようなことはなくなるのでバルク状
の単結晶か得られる。Furthermore, the specific gravity of the 5e-Te mixed solution exceeds the specific gravity of ZnSe, so that no source crystal or crystal growth nucleus falls onto the growth surface during the growth process, so that a bulk single crystal can be obtained.
そして、溶液のSeの比率を実質的に30m。Then, the Se ratio of the solution was substantially 30m.
1%以上に選択することにより、純青色スペクトル発光
を行う実用的なZnSe半導体素子が得られる。By selecting 1% or more, a practical ZnSe semiconductor device that emits light in the pure blue spectrum can be obtained.
第1図は、本発明の実施例による結晶成長方法を行う成
長装置を温度勾配と共に示す断面図、第2図は、ZnS
eの各種溶媒に対する溶解度を示す各種飽和溶液中のZ
nSeのモル分率のグラフ、
第3図は、各種溶媒の蒸気圧の温度依存性を示すグラフ
、
第4図は、ZnSeとSeとTeの密度比較を示すグラ
フ、
第5図は、混合比率の異なる5e−Te溶媒で成長させ
たZnSe結晶のカソードルミネッセンススペクトル、
第6図は、ZnSe結晶成長装置の断面図である。
図において、
10 結晶成長容器
11 ヒートシンク
12 ZnSe多結晶(ソース結晶)13
Se溶媒
14Se−Te混合溶媒
特許出願人 スタンレー電気株式会社FIG. 1 is a cross-sectional view showing a growth apparatus for carrying out a crystal growth method according to an embodiment of the present invention together with a temperature gradient, and FIG.
Z in various saturated solutions showing the solubility of e in various solvents
Figure 3 is a graph showing the temperature dependence of the vapor pressure of various solvents. Figure 4 is a graph showing the density comparison of ZnSe, Se, and Te. Figure 5 is the mixing ratio. Cathodoluminescence spectra of ZnSe crystals grown with different 5e-Te solvents. FIG. 6 is a cross-sectional view of a ZnSe crystal growth apparatus. In the figure, 10 crystal growth container 11 heat sink 12 ZnSe polycrystal (source crystal) 13
Se solvent 14Se-Te mixed solvent patent applicant Stanley Electric Co., Ltd.
Claims (2)
中からZnSeを成長結晶させる方法において、前記溶
媒としてSeとTeの混合溶液を用い、前記混合溶液に
おける前記Seの混合比率を実質的に30〜60mol
%としたZnSe結晶の成長方法。(1) In the method of dissolving a source crystal of ZnSe in a solvent and growing and crystallizing ZnSe from the solvent, a mixed solution of Se and Te is used as the solvent, and the mixing ratio of Se in the mixed solution is substantially 30-60mol
% ZnSe crystal growth method.
度勾配の高温部に前記ソース結晶を配置し、前記温度勾
配の低温部において一定温度で前記ZnSe結晶を成長
させるようにした請求項1記載のZnSe結晶の成長方
法。(2) The solvent is placed in a predetermined temperature gradient, the source crystal is placed in a high temperature part of the temperature gradient, and the ZnSe crystal is grown at a constant temperature in a low temperature part of the temperature gradient. The method for growing a ZnSe crystal according to item 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2331268A JP2575948B2 (en) | 1990-11-29 | 1990-11-29 | Method for growing ZnSe crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2331268A JP2575948B2 (en) | 1990-11-29 | 1990-11-29 | Method for growing ZnSe crystal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04198096A true JPH04198096A (en) | 1992-07-17 |
JP2575948B2 JP2575948B2 (en) | 1997-01-29 |
Family
ID=18241792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2331268A Expired - Lifetime JP2575948B2 (en) | 1990-11-29 | 1990-11-29 | Method for growing ZnSe crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2575948B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6037076A (en) * | 1983-08-08 | 1985-02-26 | Canon Inc | Input device |
-
1990
- 1990-11-29 JP JP2331268A patent/JP2575948B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6037076A (en) * | 1983-08-08 | 1985-02-26 | Canon Inc | Input device |
Also Published As
Publication number | Publication date |
---|---|
JP2575948B2 (en) | 1997-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20040003495A1 (en) | GaN boule grown from liquid melt using GaN seed wafers | |
US7524375B1 (en) | Growth of uniform crystals | |
JPH1179886A (en) | Crystal growing method and apparatus therefor | |
JPH04198096A (en) | Method for growing znse crystal | |
US4869776A (en) | Method for the growth of a compound semiconductor crystal | |
JP2525930B2 (en) | <II>-<VI> Group compound semiconductor crystal growth method | |
JP3231050B2 (en) | Compound semiconductor crystal growth method | |
JPH08325099A (en) | Method for growing silicon carbide single crystal | |
US5679151A (en) | Method for growing single crystal | |
US20130183225A1 (en) | Crystal growth using non-thermal atmospheric pressure plasmas | |
JP2004203721A (en) | Apparatus and method for growing single crystal | |
JPH11292679A (en) | Crystal growth | |
RU2054495C1 (en) | Gallium arsenide monocrystal growing method for manufacturing integrated circuit substrates | |
JP2732573B2 (en) | Manufacturing method of compound semiconductor single crystal | |
JPH0722343A (en) | Vapor growth device | |
JP2537322B2 (en) | Semiconductor crystal growth method | |
Bulakh et al. | Growth of bulk zinc chalcogenide single crystals from the vapour phase and their use for laser screens of projection colour television | |
Clszek et al. | Growth and properties of silicon filaments for photovoltaic applications | |
JP2712247B2 (en) | (II)-Method for producing bulk single crystal of group VI compound | |
JPH07110797B2 (en) | Method for producing compound semiconductor single crystal containing high vapor pressure component | |
JPS6389498A (en) | Production of silicon-added gallium arsenide single crystal | |
JP4557192B2 (en) | Method for producing material having required concentration distribution | |
JPH0426583A (en) | Crystal growing method and crystal growing device for znse | |
Dreeben | Effects of Growth Conditions on Microstructures in CdS: Cu Single Crystals | |
JPH0710688A (en) | Production of single crystal |