JP2575948B2 - Method for growing ZnSe crystal - Google Patents
Method for growing ZnSe crystalInfo
- Publication number
- JP2575948B2 JP2575948B2 JP2331268A JP33126890A JP2575948B2 JP 2575948 B2 JP2575948 B2 JP 2575948B2 JP 2331268 A JP2331268 A JP 2331268A JP 33126890 A JP33126890 A JP 33126890A JP 2575948 B2 JP2575948 B2 JP 2575948B2
- Authority
- JP
- Japan
- Prior art keywords
- crystal
- znse
- solvent
- growth
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体結晶の成長方法に関し、特に高品質
なZnSe単結晶を安定して効率的に製造するのに好適な結
晶成長方法に関する。Description: TECHNICAL FIELD The present invention relates to a method for growing a semiconductor crystal, and more particularly to a crystal growth method suitable for stably and efficiently producing a high-quality ZnSe single crystal.
第6図にZnSe半導体結晶の液相成長装置を示す。適当
な径を有する石英製の結晶成長用容器10の底部に、カー
ボン等の熱伝導性のよい材料で作成したヒートシンク11
を収納し固定する。成長容器10の上部にはソース結晶と
なるZnSeの多結晶12を配置する。さらに、ZnSe多結晶12
とヒートシンク11の間をSe溶媒13で満たしている。FIG. 6 shows a liquid phase growth apparatus for a ZnSe semiconductor crystal. A heat sink 11 made of a material having good thermal conductivity such as carbon is provided on the bottom of a quartz crystal growth vessel 10 having an appropriate diameter.
And fix it. A polycrystalline ZnSe 12 serving as a source crystal is arranged on the upper portion of the growth vessel 10. Furthermore, ZnSe polycrystal 12
The space between the heat sink 11 is filled with the Se solvent 13.
このような構成からなる結晶成長装置の容器10内を所
定圧力に真空排気して封止する。従来の技術において
は、第6図の結晶成長装置を同図右に示すような温度勾
配中に配置すると、高温部(Ts)のソース結晶12は飽和
溶解度まで溶解して、低温部(Tg)に向って拡散する。
溶媒下部の低温部は温度がソース結晶12付近より低いた
め、溶媒13においてZnSeは過飽和溶解度になり、ヒート
シンク11上にバルク状にZnSeが結晶成長する。The inside of the container 10 of the crystal growth apparatus having such a configuration is evacuated to a predetermined pressure and sealed. In the prior art, when the crystal growth apparatus of FIG. 6 is arranged in a temperature gradient as shown on the right side of FIG. 6, the source crystal 12 in the high temperature part (Ts) dissolves to the saturation solubility and the low temperature part (Tg) Spread toward.
Since the temperature of the low-temperature portion below the solvent is lower than that of the vicinity of the source crystal 12, ZnSe becomes supersaturated in the solvent 13, and ZnSe crystal grows on the heat sink 11 in bulk.
このような液相成長装置において、溶媒としては、Zn
Seの構成元素であるZnあるいはSeが考えられるが、第2
図のZnSeの各種溶媒に対する溶解度曲線で示されるよう
に、溶媒としてZnを用いると、ZnSeの溶解度が非常に低
く、バルク状の結晶を得ることは困難である。また、第
6図のようにSeを溶媒とした場合には、第3図の各種溶
媒の蒸気圧の温度依存性に示されるように蒸気圧が非常
に高く、溶解度を上げるために温度を上げると蒸気圧が
急増し石英容器10が爆発する危険性がある。また、その
ための対策として容器10の外側から圧力を与えるような
装置を作成すると全体として大掛かりで複雑な結晶成長
装置となり、生産装置として好ましくない。さらに、第
4図のZnSeとSeとTeの密度比較に示すように、Se(100:
0)とZnSe(点線)とを比重(密度)において比較する
と、ZnSe>Seであるため、成長工程途中で、ソース結晶
の一部が落下したり溶媒中での拡散中で核発生した結晶
が結晶成長面上に落下したりするため、均質なバルク状
単結晶の成長が阻害されるといった問題点があった。In such a liquid phase growth apparatus, the solvent is Zn.
The constituent element of Se, Zn or Se, can be considered.
As shown by the solubility curves of ZnSe for various solvents in the figure, when Zn is used as the solvent, the solubility of ZnSe is extremely low, and it is difficult to obtain bulk crystals. When Se is used as the solvent as shown in FIG. 6, the vapor pressure is very high as shown in the temperature dependence of the vapor pressure of various solvents in FIG. 3, and the temperature is increased to increase the solubility. Then, there is a danger that the vapor pressure will suddenly increase and the quartz container 10 will explode. If a device for applying pressure from the outside of the container 10 is prepared as a countermeasure, a large-scale and complicated crystal growth device as a whole is not preferable as a production device. Furthermore, as shown in the density comparison between ZnSe, Se and Te in FIG.
When 0) and ZnSe (dotted line) are compared in terms of specific gravity (density), ZnSe> Se, and during the growth process, a part of the source crystal may fall or a crystal that has nucleated during diffusion in a solvent may be generated. There is a problem that growth of a homogeneous bulk single crystal is hindered due to dropping on a crystal growth surface.
本発明の目的は、上記問題点を解決し、高品質なZnSe
単結晶を安定に効率的に製造する結晶成長方法を提供す
ることにある。An object of the present invention is to solve the above-mentioned problems and to provide a high-quality ZnSe
An object of the present invention is to provide a crystal growth method for stably and efficiently producing a single crystal.
本発明のZnSe単結晶の成長方法は、結晶成長用容器中で
ZnSeのソース結晶を溶媒に溶解させ、溶媒中からZnSeを
成長結晶させる方法において、結晶成長用容器の上部は
下部よりも大径にされて段差が設けられ、該段差部には
インゴット状のZnSeソース結晶を配置し、成長用容器の
下部には成長用容器と異なる良熱伝導性材料で成長結晶
を析出させる面が平坦かつ鏡面のヒートシンクが内設さ
れており、前記成長結晶が400〜800nmの波長範囲でZnSe
のバンド端発光の単一ピークを発光するように混合溶液
におけるSeの混合比率を30〜60mol%範囲内から選択し
たSeとTeの混合溶媒が該ヒートシンクとソース結晶の間
に配置されており、ソース結晶側が温度勾配の高温部と
なるように溶媒に所定の温度勾配を設け、温度勾配の低
温部においてZnSe単結晶を成長させる。The method for growing a ZnSe single crystal according to the present invention includes the steps of:
In a method of dissolving a source crystal of ZnSe in a solvent and growing and crystallizing ZnSe from the solvent, the upper portion of the crystal growth container is provided with a step having a larger diameter than the lower portion, and an ingot-shaped ZnSe is formed at the step. A source crystal is arranged, and a heat sink having a flat and mirror-finished surface for depositing a growth crystal with a good heat conductive material different from the growth container is provided at the lower part of the growth container, and the growth crystal has a thickness of 400 to 800 nm. ZnSe in the wavelength range of
A mixed solvent of Se and Te selected from a mixture ratio of Se in the mixed solution within a range of 30 to 60 mol% so as to emit a single peak of band edge emission of light is disposed between the heat sink and the source crystal, A predetermined temperature gradient is provided in the solvent so that the source crystal side becomes a high temperature portion of the temperature gradient, and a ZnSe single crystal is grown in the low temperature portion of the temperature gradient.
第2図のZnSeの各種溶媒に対する溶解度曲線で示され
るように、溶媒としてTeはZnSeの溶解度が非常に高いの
で、Seとの混合溶液にした場合、Se溶媒と較べZnSe結晶
の結晶成長が速くなる。As shown in the solubility curves of ZnSe in various solvents in FIG. 2, the solubility of Zn as a solvent in ZnSe is very high. Therefore, when a mixed solution with Se is used, the crystal growth of ZnSe crystals is faster than in the Se solvent. Become.
また、第3図の各種溶媒の蒸気圧特性に示されるよう
に、Teの蒸気圧は低いのでSeとの混合溶液とすることに
よりSe溶媒と較べ蒸気圧を低くできる。Further, as shown in the vapor pressure characteristics of the various solvents in FIG. 3, since the vapor pressure of Te is low, the vapor pressure can be made lower than that of the Se solvent by using a mixed solution with Se.
さらに、第4図のZnSeとSeとTeの密度比較に示すよう
にSeの混合比がある比率(実線と点線の交点、Se60:Te4
0)以下(交点の右側)になると、Se−Te混合溶液(実
線)の比重(密度)がZnSeのそれ(点線)を上回り、従
って、ZnSe結晶成長工程中にソース結晶や結晶成長核が
成長面に落下するようなことはなくなる。Further, as shown in the density comparison of ZnSe, Se and Te in FIG. 4, a mixture ratio of Se (the intersection of the solid line and the dotted line, Se60: Te4
0) Below (to the right of the intersection), the specific gravity (density) of the Se-Te mixed solution (solid line) exceeds that of ZnSe (dotted line), and therefore, source crystals and crystal growth nuclei grow during the ZnSe crystal growth process. No more falling on the surface.
そして、溶液のSeの比率を実質的に30〜60mol%に選
択することにより、後で詳細に説明するように純青色ス
ペクトル発光を行うZnSe半導体素子が得られる。Then, by selecting the ratio of Se in the solution to substantially 30 to 60 mol%, a ZnSe semiconductor device which emits pure blue spectrum light can be obtained as described in detail later.
以下、第1図を参照して、本発明の実施例の方法を説
明する。Hereinafter, a method according to an embodiment of the present invention will be described with reference to FIG.
第1図において、適当な径を有する石英製の結晶成長
用容器10の底部に、カーボン等の熱伝導性のよい材料で
作成したヒートシンク11を収納し、成長容器10の所定位
置に刻みをいれてへこますことによりヒートシンク11を
固定する。ヒートシンク11の結晶を析出させる面は平坦
かつ鏡面に仕上げてある。ヒートシンク11は、たとえば
直径8〜20mmで、長さ5〜200mmの円柱状の高純度カー
ボンで形成する。石英の成長容器10の上部は図示のよう
に下部よりも径が大きく作られており、これは、小口径
の石英管と大口径の石英管とを接続することによって作
成できる。石英の成長容器10の上部にはソース結晶とな
るZnSeのインゴット状多結晶12を配置する。ZnSe多結晶
12の径は成長容器10の小径より大きく、大径よりも小さ
く作られ、成長容器10の上部と下部の段差を利用して固
定する。さらに、ZnSe多結晶12とヒートシンク11の間が
Se−Te混合溶媒14で満たされている。In FIG. 1, a heat sink 11 made of a material having good thermal conductivity such as carbon is stored at the bottom of a quartz crystal growth vessel 10 having an appropriate diameter, and a notch is formed at a predetermined position of the growth vessel 10. The heat sink 11 is fixed by leverage. The surface of the heat sink 11 where crystals are deposited is flat and mirror-finished. The heat sink 11 is formed of, for example, cylindrical high-purity carbon having a diameter of 8 to 20 mm and a length of 5 to 200 mm. The upper portion of the quartz growth vessel 10 is made larger in diameter than the lower portion as shown in the figure, and this can be made by connecting a small-diameter quartz tube and a large-diameter quartz tube. An ingot-like polycrystalline ZnSe 12 serving as a source crystal is arranged on an upper portion of a quartz growth vessel 10. ZnSe polycrystal
The diameter of the growth vessel 10 is made larger than the small diameter of the growth vessel 10 and smaller than the large diameter, and is fixed using the step between the upper and lower parts of the growth vessel 10. Furthermore, the space between the ZnSe polycrystal 12 and the heat sink 11
It is filled with a Se—Te mixed solvent 14.
このような構成からなる結晶成長装置の容器10内を、
2×10-6Torrよりも高い真空度に真空排気して封止す
る。以上の結晶成長装置を第1図右に示すようなソース
結晶部温度Tsと結晶成長部温度Tgを有する温度勾配の炉
中に配置すると、高温部分にあるソース結晶12は飽和溶
解度になるまで溶媒14中に溶解し、温度勾配中を拡散輸
送され、ヒートシンク11の低温部(温度Tg)は過飽和溶
液となる。従って、ヒートシンク11の鏡面上にZnSeの単
結晶が析出成長する。The inside of the container 10 of the crystal growth apparatus having such a configuration,
Evacuate to a degree of vacuum higher than 2 × 10 −6 Torr and seal. When the above crystal growth apparatus is placed in a furnace having a temperature gradient having a source crystal part temperature Ts and a crystal growth part temperature Tg as shown on the right side of FIG. 1, the source crystal 12 in the high temperature part becomes solvent until the solubility becomes saturated. It is dissolved in and diffused and transported through the temperature gradient, and the low temperature part (temperature Tg) of the heat sink 11 becomes a supersaturated solution. Therefore, a single crystal of ZnSe is deposited and grown on the mirror surface of the heat sink 11.
成長温度Tg=950℃、温度勾配ΔT=10°C/cmの条件
の下で、溶媒14のSeの比率を変えて結晶成長を試みた。
Seの混合比率0〜60mol%において、成長フロントがコ
ンベックス形状のバルク状ZnSe単結晶が得られたが、60
mol%を越えると、成長結晶の多結晶化が起こった。こ
れは、溶媒のSe比率が高くなるに従い、ZnSeの溶解度の
減少、溶媒とZnSeの比重が逆転することによるものと考
えられる。また、Seの比率の増大に伴い、蒸気圧も増加
して爆発の危険性が大きくなる。石英容器10の耐圧を考
慮すると、容器10内の圧力(蒸気圧)は10atm以下が望
ましく、この面からも溶媒のSe比率は、実質的に60mol
%を上限にすることが好ましいと考えられる。Under the conditions of a growth temperature Tg = 950 ° C. and a temperature gradient ΔT = 10 ° C./cm, crystal growth was attempted by changing the ratio of Se in the solvent 14.
At a mixing ratio of Se of 0 to 60 mol%, a bulk ZnSe single crystal having a convex growth front was obtained.
If it exceeds mol%, polycrystallization of the grown crystal occurs. This is considered to be due to the decrease in the solubility of ZnSe and the reversal of the specific gravity of the solvent and ZnSe as the Se ratio of the solvent increases. In addition, as the Se content increases, the vapor pressure also increases, increasing the risk of explosion. Considering the pressure resistance of the quartz container 10, the pressure (steam pressure) in the container 10 is desirably 10 atm or less, and from this aspect, the Se ratio of the solvent is substantially 60 mol.
% Is considered to be the upper limit.
第5図は、異なるSe−Te溶媒混合比率の下で成長させ
た結晶のカソードルミネッセンススペクトルの測定結果
を示す。第5図において、(a),(b),(c),
(d),(e)はそれぞれ、溶媒14のSe−Teの比率が6
0:40,45:55,30:70,10:90,0:100(mol%)の場合であ
る。FIG. 5 shows the measurement results of cathodoluminescence spectra of crystals grown under different Se—Te solvent mixing ratios. In FIG. 5, (a), (b), (c),
(D) and (e) show that the ratio of Se—Te in the solvent 14 is 6
0:40, 45:55, 30:70, 10:90, 0: 100 (mol%).
Seの比率が0〜10mol%(第5図(e)〜(d))に
おいては、バンド端のピークが長波長側へシフトしてお
り、かつそれより長波長側にサブピークを有している。
これは成長結晶がZnSe1-X TeXの混晶系になっており、
さらにギャップ内準位を生じているいるものと考えられ
る。Seの混合比率が30mol%以上(第5図(c)〜
(a))になると、ZnSe本来のバンド端発光と考えられ
る単一ピークのみとなり、深い準位を含む発光はなくな
り、純青色の発光が得られた。また、EPMA(EDS)分析
においても、Se比率0%、10%の場合は、Te濃度がそれ
ぞれ2.8at%,0.6at%であったが、Se比率30mol%におい
ては、Teは検出されなかった。従って、Seの比率が実質
的に30mol%以上において、発光素子として実用上利用
可能なZnSe単結晶が得られるとみなすことができる。When the Se ratio is 0 to 10 mol% (FIGS. 5 (e) to 5 (d)), the peak at the band edge is shifted to the longer wavelength side and has a subpeak at a longer wavelength side. .
This is because the grown crystal is a mixed crystal system of ZnSe 1-X Te X ,
Further, it is considered that a level in the gap is generated. The mixing ratio of Se is 30 mol% or more (Fig. 5 (c) ~
In the case of (a)), only a single peak, which is considered to be the intrinsic band edge emission of ZnSe, disappeared, and emission including a deep level disappeared, and pure blue emission was obtained. In the EPMA (EDS) analysis, when the Se ratio was 0% and 10%, the Te concentrations were 2.8 at% and 0.6 at%, respectively. However, when the Se ratio was 30 mol%, Te was not detected. . Therefore, it can be considered that a ZnSe single crystal that can be practically used as a light emitting element is obtained when the ratio of Se is substantially 30 mol% or more.
以上のことから、実用的なZnSe単結晶が得られ、かつ
バルク単結晶の成長が可能な、Se−Te混合溶液における
Seの比率は、実質的に30〜60mol%とするのが好まし
く、特に、30〜45mol%が容器内圧力と結晶成長安定性
の観点から最適であることが判明した。From the above, a practical ZnSe single crystal can be obtained, and a bulk single crystal can be grown, in a Se-Te mixed solution.
The ratio of Se is preferably substantially 30 to 60 mol%, and in particular, 30 to 45 mol% has been found to be optimal from the viewpoint of the pressure in the container and the stability of crystal growth.
以上、実施例に沿って本発明を説明したが、本発明は
これらに制限されるものではない。たとえば、種々の変
更、改良、組合せ等が可能なことは当業者に自明であろ
う。Although the present invention has been described with reference to the embodiments, the present invention is not limited to these embodiments. For example, it will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.
以上説明したように、本発明によれば、ZnSeを溶解拡
散させる溶媒としてSeとTeの混合溶液を用い、しかも混
合液のSeの比率を実質的に30〜60mol%としたことによ
り、結晶の結晶成長速度が早くなる。As described above, according to the present invention, a mixed solution of Se and Te is used as a solvent for dissolving and dispersing ZnSe, and the ratio of Se in the mixed solution is substantially set to 30 to 60 mol%, whereby crystal The crystal growth rate increases.
蒸気圧を低くできるので爆発の危険がなくなる。 Since the vapor pressure can be reduced, there is no danger of explosion.
さらに、Se−Te混合溶液の比重がZnSeの比重を上回
り、従って、成長工程中にソース結晶や結晶成長核が成
長面に落下するようなことはなくなるのでバルク状の単
結晶が得られる。Furthermore, the specific gravity of the Se—Te mixed solution exceeds the specific gravity of ZnSe, and therefore, during the growth process, the source crystal and the crystal growth nucleus do not fall on the growth surface, so that a bulk single crystal can be obtained.
そして、溶液のSeの比率を実質的に30mol%以上に選
択することにより、純青色スペクトル発光を行う実用的
なZnSe半導体素子が得られる。Then, by selecting the ratio of Se in the solution to be substantially 30 mol% or more, a practical ZnSe semiconductor device that emits pure blue spectrum can be obtained.
第1図は、本発明の実施例による結晶成長方法を行う成
長装置を温度勾配と共に示す断面図、 第2図は、ZnSeの各種溶媒に対する溶解度を示す各種飽
和溶液中のZnSeのモル分率のグラフ、 第3図は、各種溶媒の蒸気圧の温度依存性を示すグラ
フ、 第4図は、ZnSeとSeとTeの密度比較を示すグラフ、 第5図は、混合比率の異なるSe−Te溶媒で成長させたZn
Se結晶のカソードルミネッセンススペクトル、 第6図は、ZnSe結晶成長装置の断面図である。 図において、 10……結晶成長容器 11……ヒートシンク 12……ZnSe多結晶(ソース結晶) 13……Se溶媒 14……Se−Te混合溶媒FIG. 1 is a cross-sectional view showing a growth apparatus for performing a crystal growth method according to an embodiment of the present invention, together with a temperature gradient. FIG. 2 is a view showing the mole fraction of ZnSe in various saturated solutions showing the solubility of ZnSe in various solvents. Graph, FIG. 3 is a graph showing the temperature dependence of the vapor pressure of various solvents, FIG. 4 is a graph showing a density comparison between ZnSe, Se and Te, and FIG. 5 is a Se-Te solvent having a different mixing ratio. Zn grown in
Cathodoluminescence spectrum of Se crystal. FIG. 6 is a sectional view of a ZnSe crystal growth apparatus. In the figure, 10: crystal growth container 11: heat sink 12: ZnSe polycrystal (source crystal) 13: Se solvent 14: Se-Te mixed solvent
フロントページの続き (72)発明者 奥野 保男 神奈川県横浜市緑区藤が丘2―37―2 A302 (56)参考文献 特公 昭60−37076(JP,B2)Continuation of the front page (72) Inventor Yasuo Okuno 2-32-2 Fujigaoka, Midori-ku, Yokohama-shi, Kanagawa A302 (56) References JP-B-60-37076 (JP, B2)
Claims (1)
媒に溶解させ、溶媒中からZnSeを成長結晶させる方法に
おいて、 前記結晶成長用容器の上部は下部よりも大径にされて段
差が設けられ、該段差部にはインゴット状のZnSeソース
結晶を配置し、 該成長用容器の下部には成長用容器と異なる良熱伝導性
材料で成長結晶を析出させる面が平坦かつ鏡面のヒート
シンクが内設されており、 前記成長結晶が400〜800nmの波長範囲でZnSeのバンド端
発光の単一ピークを発光するように混合溶液におけるSe
の混合比率を30〜60mol%範囲内から選択したSeとTeの
混合溶媒が該ヒートシンクと前記ソース結晶の間に配置
されており、 前記ソース結晶側が温度勾配の高温部となるように前記
溶媒に所定の温度勾配を設け、 前記温度勾配の低温部においてZnSe単結晶を成長させる
ようにした ZnSe単結晶の成長方法。1. A method for dissolving a source crystal of ZnSe in a solvent in a crystal growth vessel and growing and growing ZnSe from the solvent, wherein an upper portion of the crystal growth container is made larger in diameter than a lower portion and a step is formed. An ingot-shaped ZnSe source crystal is disposed at the step, and a heat sink having a flat and mirror-finished surface for depositing the grown crystal with a good thermal conductive material different from the growth container is provided at the lower part of the growth container. In the mixed solution, the grown crystal emits a single peak of ZnSe band edge emission in a wavelength range of 400 to 800 nm.
A mixed solvent of Se and Te selected from a mixing ratio of 30 to 60 mol% is arranged between the heat sink and the source crystal, and the solvent is mixed with the solvent such that the source crystal side becomes a high temperature portion of a temperature gradient. A method for growing a ZnSe single crystal, wherein a predetermined temperature gradient is provided, and a ZnSe single crystal is grown in a low temperature portion of the temperature gradient.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2331268A JP2575948B2 (en) | 1990-11-29 | 1990-11-29 | Method for growing ZnSe crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2331268A JP2575948B2 (en) | 1990-11-29 | 1990-11-29 | Method for growing ZnSe crystal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04198096A JPH04198096A (en) | 1992-07-17 |
JP2575948B2 true JP2575948B2 (en) | 1997-01-29 |
Family
ID=18241792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2331268A Expired - Lifetime JP2575948B2 (en) | 1990-11-29 | 1990-11-29 | Method for growing ZnSe crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2575948B2 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6037076A (en) * | 1983-08-08 | 1985-02-26 | Canon Inc | Input device |
-
1990
- 1990-11-29 JP JP2331268A patent/JP2575948B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH04198096A (en) | 1992-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20040003495A1 (en) | GaN boule grown from liquid melt using GaN seed wafers | |
JPH11209199A (en) | Synthesis method of gallium nitride single crystal | |
US6849121B1 (en) | Growth of uniform crystals | |
JP3109659B2 (en) | Crystal growth method and apparatus | |
US4383872A (en) | Method of growing a doped III-V alloy layer by molecular beam epitaxy utilizing a supplemental molecular beam of lead | |
JP2575948B2 (en) | Method for growing ZnSe crystal | |
Lynch | Vapor growth of Cadmium Telluride single crystals | |
US3549401A (en) | Method of making electroluminescent gallium phosphide diodes | |
JPH08325099A (en) | Method for growing silicon carbide single crystal | |
CN110195258A (en) | Gallium nitride crystal growth device and its growing method | |
JP2537322B2 (en) | Semiconductor crystal growth method | |
Lendvay et al. | Hollow single crystals of ZnS | |
JP2004203721A (en) | Apparatus and method for growing single crystal | |
US3374067A (en) | Process of growing cubic zinc sulfide crystals in a molten salt solvent | |
GB2066299A (en) | Growing doped III-V alloy layers by molecular beam epitaxy | |
JPH11292679A (en) | Crystal growth | |
JP2712247B2 (en) | (II)-Method for producing bulk single crystal of group VI compound | |
JP2525931B2 (en) | Crystal growth method and crystal growth apparatus for ZnSe | |
JPH09183696A (en) | Liquid phase epitaxy | |
JPH03194922A (en) | Device for crystal-growing ii-vi compound semiconductor | |
RU2046161C1 (en) | Method and apparatus for growing of solid phase monocrystals from vapor phase | |
JP2706210B2 (en) | Liquid crystal growth method and liquid crystal growth apparatus | |
JPH0371399B2 (en) | ||
JP2732573B2 (en) | Manufacturing method of compound semiconductor single crystal | |
Rudolph et al. | The state of the art of ZnSe melt growth and new steps towards twin-free bulk crystals |