JP2706210B2 - Liquid crystal growth method and liquid crystal growth apparatus - Google Patents

Liquid crystal growth method and liquid crystal growth apparatus

Info

Publication number
JP2706210B2
JP2706210B2 JP7025793A JP7025793A JP2706210B2 JP 2706210 B2 JP2706210 B2 JP 2706210B2 JP 7025793 A JP7025793 A JP 7025793A JP 7025793 A JP7025793 A JP 7025793A JP 2706210 B2 JP2706210 B2 JP 2706210B2
Authority
JP
Japan
Prior art keywords
crystal
crystal growth
growth
solvent
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7025793A
Other languages
Japanese (ja)
Other versions
JPH08208367A (en
Inventor
裕幸 加藤
尚太郎 富田
保男 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Academy of Science and Technology
Stanley Electric Co Ltd
Original Assignee
Kanagawa Academy of Science and Technology
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Academy of Science and Technology, Stanley Electric Co Ltd filed Critical Kanagawa Academy of Science and Technology
Priority to JP7025793A priority Critical patent/JP2706210B2/en
Publication of JPH08208367A publication Critical patent/JPH08208367A/en
Application granted granted Critical
Publication of JP2706210B2 publication Critical patent/JP2706210B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は液相結晶成長に関する。
蒸気圧の高い化合物半導体、特にII−VI族化合物半
導体のバルク結晶成長技術として、成長温度を低下でき
る溶液結晶成長が期待されている。
This invention relates to liquid crystal growth.
Solution crystal growth that can lower the growth temperature is expected as a bulk crystal growth technique for compound semiconductors having a high vapor pressure, particularly II-VI group compound semiconductors.

【0002】[0002]

【従来の技術】II−VI族化合物半導体は高い融点を
有し、さらに構成元素の蒸気圧が高い。従って融液成長
では結晶成長容器に高い耐圧性が必要となるばかりでな
く、成長した結晶には高密度の結晶欠陥が生じ易い。
2. Description of the Related Art Group II-VI compound semiconductors have a high melting point and the constituent elements have a high vapor pressure. Therefore, in melt growth, not only high pressure resistance is required for the crystal growth container, but also high-density crystal defects are likely to occur in the grown crystal.

【0003】溶液成長を利用すると、II−VI族化合
物半導体の結晶成長温度を低下することが可能となり、
良質の結晶を得られる可能性がある。溶媒としてはII
−VI族化合物半導体の構成元素であるII族元素やV
I族元素を用いる方法が提案されている。
The use of solution growth makes it possible to lower the crystal growth temperature of II-VI compound semiconductors,
Good quality crystals may be obtained. II as solvent
A group II element or V which is a constituent element of a group VI compound semiconductor;
A method using a group I element has been proposed.

【0004】図3を使用して、従来の技術によるII−
VI族化合物半導体の溶液成長による結晶成長方法を説
明する。図中左側に結晶成長装置を断面で示し、右側に
結晶成長装置内に設定される温度分布をグラフで示す。
[0004] Referring to FIG. 3, a conventional II-
A crystal growth method by solution growth of a group VI compound semiconductor will be described. The left side of the figure shows the crystal growth apparatus in cross section, and the right side shows a graph of the temperature distribution set in the crystal growth apparatus.

【0005】2種類の適当な径を有する石英管を接続し
て結晶成長容器1が形成されている。なお、初めは上端
を開放しておく。結晶成長容器1内の下部にはカーボン
等の熱伝導率のよい材料で作成したヒートシンク6が配
置されている。
A crystal growth vessel 1 is formed by connecting two kinds of quartz tubes having appropriate diameters. At the beginning, the upper end is left open. A heat sink 6 made of a material having a high thermal conductivity such as carbon is arranged at a lower portion in the crystal growth vessel 1.

【0006】ヒートシンク6は、その上面にシード結晶
5を載置するための凹みを有し、結晶成長容器1に固定
されている。ヒートシンク6上面の凹みにシード結晶5
が載置され、その上から適当な長さの円筒状のシード止
め4が挿入され、結晶成長容器1に固定されている。な
お、原料充填前の状態においては、結晶成長容器1のた
とえば上部が開放されている。
The heat sink 6 has a recess on its upper surface for mounting the seed crystal 5, and is fixed to the crystal growth vessel 1. Seed crystal 5 in dent on top of heat sink 6
Is mounted thereon, and a cylindrical seed stopper 4 having an appropriate length is inserted from above, and is fixed to the crystal growth vessel 1. Note that, before the raw material is filled, for example, the upper part of the crystal growth vessel 1 is open.

【0007】結晶成長容器1に溶媒3としてSe−Te
(所定混合比のSeとTe)、ソース結晶2として所望
の成長結晶量に対して、途中でソースの供給が止まらな
いだけの充分な量のZnSe多結晶を挿入する。なお、
ZnSe結晶成長の溶媒としてSeのみを用いるとZn
Seの溶解度が低い。Se−Teを用いるのは、Teを
添加して溶解度を増大させるためである。ソース結晶
2、溶媒3を投入した後、結晶成長容器1内を真空排気
し、開放部を封止する。
[0007] Se-Te is used as a solvent 3 in a crystal growth vessel 1.
(Se and Te at a predetermined mixing ratio) As a source crystal 2, a sufficient amount of ZnSe polycrystal is inserted into a desired amount of grown crystal so that supply of the source is not stopped halfway. In addition,
If only Se is used as a solvent for ZnSe crystal growth, Zn
Low solubility of Se. The reason for using Se-Te is to add Te to increase the solubility. After the source crystal 2 and the solvent 3 are charged, the inside of the crystal growth vessel 1 is evacuated to vacuum, and the opening is sealed.

【0008】このように準備した結晶成長アンプルを、
図3右側に示すような温度勾配を設定した外熱型の電気
炉中に配置する。外熱型電気炉は炉心管7の周囲にヒー
タ線8を巻回したもので構成され、炉心管7内部に結晶
成長容器1を収容するための縦型空間が形成されてい
る。
The thus prepared crystal growth ampoule is
It is placed in an externally heated electric furnace with a temperature gradient set as shown on the right side of FIG. The external heating type electric furnace is configured by winding a heater wire 8 around a furnace tube 7, and a vertical space for accommodating the crystal growth vessel 1 is formed inside the furnace tube 7.

【0009】炉心管7内部には、図中右側で示すよう
に、上部で高く、下部で低くなる縦方向の温度分布が設
定される。ソース結晶2が配置される位置の温度をT
s、結晶成長が生じるシード結晶5表面の位置の温度が
Tgで示されている。Ts>Tgである。
As shown on the right side of the figure, a vertical temperature distribution is set in the furnace tube 7 that is higher at the upper portion and lower at the lower portion. The temperature at the position where the source crystal 2 is arranged is represented by T
s, the temperature at the position on the surface of the seed crystal 5 where crystal growth occurs is indicated by Tg. Ts> Tg.

【0010】このような温度分布内に結晶成長容器1が
配置されると、高温部のソース結晶2は、高温部での飽
和溶解度まで溶媒3に溶解する。高温部の飽和溶解度は
低温部の飽和溶解度より高い。溶媒3中に溶解したソー
ス結晶成分は、拡散によって低温部にも移動し、低温部
の溶液を過飽和状態にする。
When the crystal growth vessel 1 is arranged in such a temperature distribution, the source crystal 2 in the high-temperature part dissolves in the solvent 3 until the saturation solubility in the high-temperature part. The saturation solubility in the high temperature part is higher than the saturation solubility in the low temperature part. The source crystal component dissolved in the solvent 3 moves to the low-temperature part by diffusion, and makes the solution in the low-temperature part supersaturated.

【0011】シード結晶5が低温部に配置され、過飽和
溶液と接触することにより、シード結晶5上に結晶成長
が生じる。このようにして、シード結晶5上にバルク状
の単結晶を成長させる。
When the seed crystal 5 is arranged in the low temperature part and comes into contact with the supersaturated solution, crystal growth occurs on the seed crystal 5. Thus, a bulk single crystal is grown on the seed crystal 5.

【0012】この成長は、一定温度で、ソース結晶がな
くなるまで行われ、一定の成長速度が得られる。
This growth is performed at a constant temperature until the source crystal is exhausted, and a constant growth rate is obtained.

【0013】[0013]

【発明が解決しようとする課題】従来の技術によって作
成された成長結晶の形状は、中心部が周辺部より盛り上
がった凸状である。
The shape of a grown crystal produced by the conventional technique is a convex shape in which the central portion is higher than the peripheral portion.

【0014】凸状部分での結晶の水平面における直径
は、小さくなっているため、一定の均一な直径のウエハ
を切り出すことができない。そのため、凸状部分は切り
落とすか、削り取る必要があり、成長させた結晶を10
0%利用して効率良くウエハを切り出すことができな
い。
Since the diameter of the crystal in the horizontal plane at the convex portion is small, it is not possible to cut out a wafer having a uniform diameter. Therefore, it is necessary to cut off or cut off the convex portion.
The wafer cannot be cut out efficiently using 0%.

【0015】本発明の目的は、ほぼ平面状の上面を有す
る円柱状の成長結晶を得ることができる結晶成長技術を
提供することである。
An object of the present invention is to provide a crystal growth technique capable of obtaining a columnar crystal having a substantially planar upper surface.

【0016】[0016]

【課題を解決するための手段】本発明の液相結晶成長方
法は、溶媒の上下に温度差を形成し、溶媒の高温部にソ
ース結晶を配置し、溶媒の低温部で結晶成長を行なう液
相結晶成長方法において、ソース結晶から溶質を供給
し、ほぼ一定成長速度で結晶成長を行う工程と、ソース
結晶からの溶質の供給を停止し、成長結晶を飽和溶液中
結晶成長温度で熱処理する工程とを有することを特徴
とする。
According to the liquid crystal growth method of the present invention, a temperature difference is formed above and below a solvent, a source crystal is arranged at a high temperature part of the solvent, and a crystal is grown at a low temperature part of the solvent. In the phase crystal growth method, a step of supplying a solute from a source crystal and growing the crystal at a substantially constant growth rate, stopping the supply of the solute from the source crystal , and heat-treating the grown crystal in a saturated solution at a crystal growth temperature . And a process.

【0017】[0017]

【作用】液相結晶成長方法によって結晶を成長させ、ソ
ース結晶からの溶質の供給を停止した後、成長結晶を飽
和溶液中で熱処理することにより、中心部が周辺部より
盛り上がった凸状をなす上面を有する円柱状であった成
長結晶の上面がほぼ平面状になることが認められた。
The crystal is grown by the liquid crystal growth method, the supply of the solute from the source crystal is stopped, and the grown crystal is heat-treated in a saturated solution to form a convex shape with the central portion rising from the peripheral portion. It was recognized that the upper surface of the columnar grown crystal having the upper surface became substantially planar.

【0018】ソース結晶から溶質が供給されており、溶
液が過飽和の状態にある場合には、溶解速度よりも析出
速度の方が支配的であり、中心部の結晶成長速度の方が
周辺部の結晶成長速度よりも大きいため、中心部の盛り
上がった凸状をなす上面を有する円柱状の単結晶が成長
するものと考えられる。
When the solute is supplied from the source crystal and the solution is in a supersaturated state, the deposition rate is more dominant than the dissolution rate, and the crystal growth rate at the center is higher than that at the periphery. Since the growth rate is higher than the crystal growth rate, it is considered that a columnar single crystal having a convex upper surface with a raised central portion grows.

【0019】ところが、溶質の供給が停止すると、表面
での溶質分子の再分布が支配的となり、成長結晶の中心
部が再溶解し、周辺部に再析出を起こしてほぼ温度分布
に従った成長面が得られるのであろうと考えられる。
However, when the supply of the solute is stopped, the redistribution of the solute molecules on the surface becomes dominant, the central portion of the grown crystal is redissolved, and the peripheral portion is re-precipitated, so that the crystal grows substantially according to the temperature distribution. It is thought that a surface will be obtained.

【0020】[0020]

【実施例】以下、II−VI族化合物半導体のZnSe
をSe−Te溶媒を用いて成長する場合を例にとって説
明する。ZnSeは、青色発光半導体素子として期待さ
れる材料である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, ZnSe of II-VI compound semiconductor will be described.
Will be described by taking as an example the case of growing using a Se—Te solvent. ZnSe is a material expected as a blue light emitting semiconductor device.

【0021】図3に本発明の実施例に用いる結晶成長装
置を示す。図中左側に結晶成長装置の断面図を示し、図
中右側に炉内に設定される温度分布を示す。適当な径を
有する小口径の石英管1aと大口径の石英管1bを接続
し、結晶成長容器1を準備する。なお、この段階では大
口径の石英管1b上部は開放された状態である。
FIG. 3 shows a crystal growth apparatus used in the embodiment of the present invention. A cross-sectional view of the crystal growth apparatus is shown on the left side of the figure, and a temperature distribution set in the furnace is shown on the right side of the figure. A crystal growth vessel 1 is prepared by connecting a small-diameter quartz tube 1a having an appropriate diameter and a large-diameter quartz tube 1b. At this stage, the upper part of the large-diameter quartz tube 1b is open.

【0022】この成長結晶容器1を弗酸でエッチングし
て表面を清浄化する。表面を清浄化した結晶成長容器1
の底部にカーボン等の熱伝導率のよい材料で作成したヒ
ートシンク6を収納し、真空ベーキングを施す。ヒート
シンク6の一部には、予め刻みが入れられており、成長
容器1をそれに応じて変形させることによってヒートシ
ンク6を固定する。
The surface of the grown crystal container 1 is cleaned by etching with hydrofluoric acid. Crystal growth vessel 1 with clean surface
A heat sink 6 made of a material having a good thermal conductivity such as carbon is accommodated in the bottom of the substrate, and subjected to vacuum baking. The heat sink 6 is partially cut in advance, and the heat sink 6 is fixed by deforming the growth container 1 accordingly.

【0023】シード結晶5として、面方位(111)面
を有するZnSe単結晶を準備する。なお、(111)
面以外のZnSe単結晶を用いることも可能である。シ
ード結晶5を鏡面研磨した後洗浄し、鏡面エッチングを
施す。このように準備したシード結晶5をヒートシンク
6の上面に形成された凹み内に載置し、その上に石英等
の材質で形成された円筒状のシード止め4を挿入する。
As the seed crystal 5, a ZnSe single crystal having a (111) plane orientation is prepared. Note that (111)
It is also possible to use a ZnSe single crystal other than a plane. After the seed crystal 5 is mirror-polished, it is washed and mirror-etched. The seed crystal 5 prepared as described above is placed in a recess formed on the upper surface of the heat sink 6, and a cylindrical seed stopper 4 made of a material such as quartz is inserted thereon.

【0024】シード結晶5の上面はヒートシンク6の上
面とほぼ面一とする。シード止め4の上端は、結晶成長
容器1の小径上端よりもわずかに下に配置されるように
する。シード止め4を配置した後、結晶成長容器1を凹
ますことにより、シード止め4を固定する。
The upper surface of the seed crystal 5 is substantially flush with the upper surface of the heat sink 6. The upper end of the seed stopper 4 is arranged slightly below the small-diameter upper end of the crystal growth vessel 1. After disposing the seed stopper 4, the seed stopper 4 is fixed by recessing the crystal growth vessel 1.

【0025】その後、溶媒3として所定組成のSe−T
e混合物、ソース結晶2として溶媒の量および溶解度を
勘案した、所望の成長結晶量に必要な量のZnSeの多
結晶を結晶成長容器1内に投入する。ソース結晶2は、
少なくともシード止め4の内径よりも大きな塊状のもの
を用い、結晶成長容器1の段差を利用して保持される。
Thereafter, the solvent 3 having a predetermined composition of Se-T
(e) As the source crystal 2, an amount of ZnSe polycrystal necessary for a desired amount of crystal to be grown in consideration of the amount and solubility of the solvent is charged into the crystal growth vessel 1. Source crystal 2 is
At least a lump larger than the inner diameter of the seed stopper 4 is used, and is held using the step of the crystal growth vessel 1.

【0026】このようにソース結晶2、溶媒3を充填し
た結晶成長容器1を真空排気装置に接続し、その内部を
2×10-6Torrよりも高い真空度に真空排気し、開
放端を封止する。
The crystal growth vessel 1 thus filled with the source crystal 2 and the solvent 3 is connected to a vacuum evacuation apparatus, and the inside thereof is evacuated to a vacuum higher than 2 × 10 -6 Torr, and the open end is sealed. Stop.

【0027】このように準備した結晶成長容器1を、図
3右側に示すような所定の温度分布を形成した電気炉内
に配置する。電気炉は内部に結晶成長容器1を収容する
ことのできる縦型空間を形成する炉心管7の周囲にヒー
タ線8を巻回した構成を有する。
The crystal growth vessel 1 thus prepared is placed in an electric furnace having a predetermined temperature distribution as shown on the right side of FIG. The electric furnace has a configuration in which a heater wire 8 is wound around a furnace tube 7 forming a vertical space in which the crystal growth vessel 1 can be accommodated.

【0028】なお、電気炉内においてはソース結晶2が
配置される位置の温度をTs、シード結晶5表面の結晶
成長が生じる部分の温度をTgで表す。ソース結晶2
は、ソース温度Tsで溶媒3中に飽和溶解度まで溶解す
る。ソース結晶成分は溶媒中を拡散し、低温部にまで移
動する。低温部においては飽和溶解度が低いため、溶液
は過飽和溶液となる。適当な過飽和度を有する過飽和溶
液がシード結晶5に接触することにより、シード結晶5
上に結晶成長が生じる。
In the electric furnace, the temperature at the position where the source crystal 2 is disposed is represented by Ts, and the temperature at a portion where crystal growth occurs on the surface of the seed crystal 5 is represented by Tg. Source crystal 2
Dissolves in the solvent 3 to the saturation solubility at the source temperature Ts. The source crystal component diffuses in the solvent and moves to a low temperature part. Since the saturation solubility is low in the low temperature part, the solution becomes a supersaturated solution. By contacting the seed crystal 5 with a supersaturated solution having an appropriate degree of supersaturation, the seed crystal 5
Crystal growth occurs on top.

【0029】結晶成長開始前と結晶成長終了直後の結晶
成長容器1内の状態を、それぞれ図1(A)、(B)に
示す。結晶成長終了直後は、図1(B)に示すように、
ソース結晶2は完全に溶媒3中に溶解しており、成長結
晶9の上面は、中心部が周辺部よりも盛り上がった凸状
をしている。
FIGS. 1A and 1B show the state inside the crystal growth vessel 1 before the start of crystal growth and immediately after the end of crystal growth, respectively. Immediately after the completion of crystal growth, as shown in FIG.
The source crystal 2 is completely dissolved in the solvent 3, and the upper surface of the grown crystal 9 has a convex shape in which the central portion is higher than the peripheral portion.

【0030】ソース結晶2が完全に溶解した後、そのま
ま飽和溶液中で所定の時間熱処理を行う。十分な熱処理
を行った後の結晶成長容器内部の状態を、図1(C)に
示す。成長結晶9の上面は熱処理を行ったことにより、
平面状になっている。
After the source crystal 2 is completely dissolved, heat treatment is performed for a predetermined time in a saturated solution as it is. FIG. 1C shows a state inside the crystal growth vessel after performing a sufficient heat treatment. The upper surface of the growing crystal 9 is subjected to a heat treatment,
It is planar.

【0031】たとえば、シード結晶5の表面の温度(成
長温度)Tgが950℃、温度勾配が15℃/cmの成
長条件において、成長時間550時間でソース結晶がな
くなるような量のソース結晶2を仕込んだ時、成長時間
が510時間では凸状に盛り上がった上面を有し、中心
部の高さが約10mm、周辺部の高さが約7mmの円柱
状の成長結晶が得られた。
For example, under the growth condition in which the temperature (growth temperature) Tg of the surface of the seed crystal 5 is 950 ° C. and the temperature gradient is 15 ° C./cm, an amount of the source crystal 2 that disappears after 550 hours of growth time is obtained. When it was charged, a columnar growth crystal having a convex upper surface with a growth time of 510 hours, a height of about 10 mm at the center and a height of about 7 mm at the periphery was obtained.

【0032】同一の条件の下で、結晶成長を開始してソ
ース結晶消滅後も同一温度条件で熱処理を継続し、60
0時間後に取り出した場合には、中心部も周辺部も約1
0.5mmの円柱状の成長結晶が得られた。
Under the same conditions, the crystal growth is started and the heat treatment is continued under the same temperature condition even after the source crystal disappears.
If it is taken out after 0 hours, both the center and the periphery are about 1
A 0.5 mm cylindrical growth crystal was obtained.

【0033】なお、ソース結晶がなくならない条件にお
いて、600時間結晶成長を行った場合には、凸状に盛
り上がった上面を有し、中心部の高さが約12mm、周
辺部の高さが約8mmの円柱状成長結晶しか得られなか
った。
When the crystal growth is performed for 600 hours under the condition that the source crystal does not disappear, the upper surface has a convexly raised upper surface, the height of the center is about 12 mm, and the height of the periphery is about 12 mm. Only columnar growth crystals of 8 mm were obtained.

【0034】この成長結晶から均一な径のウエハが切り
出せるのは、中心部の高さの2/3しかなく、残りの部
分は切り落とすか削り取る必要がある。このように、円
柱状成長結晶の水平面の直径が均一な部分の長さも、結
晶成長後、ソース結晶がない状態で熱処理を行って60
0時間後に取り出して得られた円柱状成長結晶の長さに
比べて短かった。
A wafer having a uniform diameter can be cut out from the grown crystal only at 2/3 of the height at the center, and the remaining portion needs to be cut off or cut off. As described above, the length of the portion where the diameter of the horizontal growth plane of the columnar growth crystal is uniform can be increased by 60% by heat treatment in the absence of the source crystal after crystal growth.
It was shorter than the length of the columnar crystal obtained after 0 hour.

【0035】上記のように、本実施例によると、均一な
ウエハを切り出すことができる結晶の長さが従来方法で
作成した結晶のものに比べて長くなり、かつ成長した結
晶をほぼ100%使用してウエハを切り出すことが可能
となる。
As described above, according to the present embodiment, the length of a crystal from which a uniform wafer can be cut out is longer than that of a crystal prepared by the conventional method, and almost 100% of the grown crystal is used. To cut out the wafer.

【0036】次に、結晶成長容器1の上部の側面に、結
晶成長工程後に残ったソース結晶を溶液と分離するため
の側室部を設けた場合の実施例について説明する。図2
に、本発明の実施例による結晶成長を示す。図2(A)
は成長開始前、図2(B)は結晶成長終了後、図2
(C)は熱処理工程後の結晶成長容器内の状態を示す。
Next, an embodiment in which a side chamber for separating the source crystal remaining after the crystal growth step from the solution is provided on the upper side surface of the crystal growth vessel 1 will be described. FIG.
FIG. 1 shows crystal growth according to an embodiment of the present invention. FIG. 2 (A)
2B before the start of the growth, and FIG.
(C) shows the state inside the crystal growth vessel after the heat treatment step.

【0037】図2(A)に示すように、結晶成長容器1
0の上部側面に、結晶成長工程後の残ったソース結晶を
溶液から分離するための側室部11を設けてある。側室
部11の底部しきり11aは、溶媒上面より高くするこ
とが望ましい。
As shown in FIG. 2A, the crystal growth vessel 1
A side chamber 11 for separating the source crystal remaining after the crystal growth step from the solution is provided on the upper side surface of the substrate. It is desirable that the bottom gap 11a of the side chamber 11 be higher than the upper surface of the solvent.

【0038】前記実施例と同様の方法を用いて、結晶成
長容器10内にヒートシンク6、シード結晶5、シード
止め4、溶媒3およびソース結晶2を配置し、真空排気
後封止する。この結晶成長容器10を電気炉内に配置す
ることにより、シード結晶5上に結晶成長が生じる。
The heat sink 6, the seed crystal 5, the seed stopper 4, the solvent 3, and the source crystal 2 are arranged in the crystal growth vessel 10 by using the same method as in the above embodiment, and sealed after evacuation. By arranging the crystal growth container 10 in an electric furnace, crystal growth occurs on the seed crystal 5.

【0039】所望の成長結晶9が得られた状態を、図2
(B)に示す。この状態では、成長した結晶の上面は、
中心部が周辺部に比べて盛り上がった凸状になってい
る。その後、この結晶成長容器10を傾けて残ったソー
ス結晶2aを結晶成長容器上部の側室部11に移し、溶
液3aから分離する。この動作は結晶成長容器10のみ
を傾けて行っても、電気炉ごと傾けて行ってもよい。
FIG. 2 shows a state where the desired grown crystal 9 is obtained.
It is shown in (B). In this state, the top surface of the grown crystal is
The central part has a convex shape that is higher than the peripheral part. Thereafter, the source crystal 2a remaining by tilting the crystal growth vessel 10 is transferred to the side chamber 11 on the upper part of the crystal growth vessel, and separated from the solution 3a. This operation may be performed by tilting only the crystal growth vessel 10 or by tilting the entire electric furnace.

【0040】図2(C)に示すように、再び結晶成長容
器10を縦にし、成長結晶9を飽和溶液3a中で熱処理
を行うことにより、成長結晶9の上面が平坦になる。こ
の際の熱処理時間としては、成長結晶の厚さ等にも依存
するが、10〜100時間程度が望ましい。
As shown in FIG. 2 (C), the crystal growth vessel 10 is again turned upright, and the growth crystal 9 is subjected to a heat treatment in the saturated solution 3a, whereby the upper surface of the growth crystal 9 becomes flat. The heat treatment time at this time depends on the thickness of the grown crystal and the like, but is preferably about 10 to 100 hours.

【0041】このようにして、均一なウエハを切り出す
ことのできる結晶の長さが、従来方法で作製したものよ
り長く、かつ成長結晶をほぼ100%使用してウエハを
切り出すことができる結晶を作製することができる。
In this way, a crystal capable of cutting out a uniform wafer is longer than that manufactured by the conventional method, and a crystal which can cut out the wafer using almost 100% of the grown crystal is manufactured. can do.

【0042】以上、Se−Te溶媒を用い、ZnSeを
結晶成長する場合を例にとって説明したが、上述の液相
結晶成長は、ソース結晶からの溶質の供給を停止した
後、成長結晶を飽和溶液中で熱処理することが特徴であ
り、Se−Te溶媒を用いたZnSeの溶液結晶成長に
限らず、広く溶液結晶成長に適用することが可能であ
る。
In the above, the case where ZnSe is grown using a Se—Te solvent has been described as an example. In the above-described liquid crystal growth, the supply of the solute from the source crystal is stopped, and then the grown crystal is turned into a saturated solution. It is characterized in that it is heat-treated in a medium, and is applicable not only to the solution crystal growth of ZnSe using a Se—Te solvent but also to a wide range of solution crystal growth.

【0043】また、本発明は、上記実施例に制限される
ものではない。たとえば、種々の変更、改良、組み合わ
せ等が可能なことは当業者に自明であろう。
The present invention is not limited to the above embodiment. For example, it will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.

【0044】[0044]

【発明の効果】以上説明したように、本発明によれば、
成長結晶を成長後も飽和溶液中にそのまま保持する簡単
な工程により、平坦な上面を有する円柱状の成長結晶を
得ることができる。上面が平坦なため、均一な直径のウ
エハを切り出すことができる結晶の長さが長くなり、結
晶の利用効率を向上させることができる。
As described above, according to the present invention,
By a simple process of keeping the grown crystal in a saturated solution even after the growth, a columnar grown crystal having a flat upper surface can be obtained. Since the upper surface is flat, the length of the crystal from which a wafer having a uniform diameter can be cut out becomes longer, and the efficiency of using the crystal can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例による溶液結晶成長を説明する
ための断面図である。
FIG. 1 is a cross-sectional view illustrating solution crystal growth according to an embodiment of the present invention.

【図2】本発明の他の実施例による溶液結晶成長を説明
するための断面図である。
FIG. 2 is a cross-sectional view illustrating solution crystal growth according to another embodiment of the present invention.

【図3】溶液結晶成長を説明するための断面図およびグ
ラフである。
FIG. 3 is a sectional view and a graph for explaining solution crystal growth.

【符号の説明】[Explanation of symbols]

1 結晶成長容器 2 ソース結晶 3 溶媒 4 シード止め 5 シード結晶 6 ヒートシンク 7 炉心管 8 ヒータ線 9 成長結晶 10 結晶成長容器 11 側室部 DESCRIPTION OF SYMBOLS 1 Crystal growth container 2 Source crystal 3 Solvent 4 Seed stopper 5 Seed crystal 6 Heat sink 7 Furnace tube 8 Heater wire 9 Growth crystal 10 Crystal growth container 11 Side chamber

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥野 保男 神奈川県横浜市緑区藤が丘2−37−2 A302 審査官 徳永 英男 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Yasuo Okuno 2-302 Fujigaoka, Midori-ku, Yokohama-shi, Kanagawa Prefecture A302 Examiner Hideo Tokunaga

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 溶媒の上下に温度差を形成し、溶媒の高
温部にソース結晶を配置し、溶媒の低温部で結晶成長を
行なう液相結晶成長方法において、 ソース結晶から溶質を供給し、ほぼ一定成長速度で結晶
成長を行う工程と、 ソース結晶からの溶質の供給を停止し、成長結晶を飽和
溶液中で結晶成長温度で熱処理する工程とを有すること
を特徴とする液相結晶成長方法。
1. A liquid crystal growth method in which a temperature difference is formed above and below a solvent, a source crystal is arranged in a high temperature portion of the solvent, and crystal growth is performed in a low temperature portion of the solvent, wherein a solute is supplied from the source crystal. A liquid phase crystal growth method, comprising: a step of growing a crystal at a substantially constant growth rate; and a step of stopping supply of a solute from a source crystal and heat-treating the grown crystal at a crystal growth temperature in a saturated solution. .
【請求項2】 前記溶質の供給を停止し、熱処理する工
程は、成長結晶と接する溶液からソース結晶を隔離する
ことを含む請求項1記載の液相結晶成長方法。
2. The method of growing a liquid crystal according to claim 1, wherein the step of stopping the supply of the solute and performing the heat treatment includes isolating the source crystal from a solution in contact with the grown crystal.
【請求項3】 溶媒の上下に温度差を形成し、溶媒の高
温部にソース結晶を配置し、溶媒の低温部で結晶成長を
行なう液相結晶成長装置において、 溶媒、ソース結晶およびシード結晶を収容し、上部の側
面に結晶成長工程後、残ったソース結晶を成長結晶と接
する溶液から分離するための側室部を設けた結晶成長容
器を有する液相結晶成長装置。
3. A liquid phase crystal growth apparatus for forming a temperature difference above and below a solvent, disposing a source crystal in a high temperature part of the solvent, and performing crystal growth in a low temperature part of the solvent, comprising: A liquid crystal growth apparatus having a crystal growth container that accommodates and has a side chamber for separating a remaining source crystal from a solution in contact with a grown crystal after a crystal growth step on an upper side surface.
JP7025793A 1993-03-29 1993-03-29 Liquid crystal growth method and liquid crystal growth apparatus Expired - Lifetime JP2706210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7025793A JP2706210B2 (en) 1993-03-29 1993-03-29 Liquid crystal growth method and liquid crystal growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7025793A JP2706210B2 (en) 1993-03-29 1993-03-29 Liquid crystal growth method and liquid crystal growth apparatus

Publications (2)

Publication Number Publication Date
JPH08208367A JPH08208367A (en) 1996-08-13
JP2706210B2 true JP2706210B2 (en) 1998-01-28

Family

ID=13426321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7025793A Expired - Lifetime JP2706210B2 (en) 1993-03-29 1993-03-29 Liquid crystal growth method and liquid crystal growth apparatus

Country Status (1)

Country Link
JP (1) JP2706210B2 (en)

Also Published As

Publication number Publication date
JPH08208367A (en) 1996-08-13

Similar Documents

Publication Publication Date Title
JP2001160540A (en) Producing device for semiconductor device, liquid phase growing method, liquid phase growing device and solar battery
JP3109659B2 (en) Crystal growth method and apparatus
JP3343615B2 (en) Bulk crystal growth method
JP2706210B2 (en) Liquid crystal growth method and liquid crystal growth apparatus
JP2644424B2 (en) Liquid crystal growth method and liquid crystal growth apparatus
JP2746497B2 (en) Method for manufacturing semiconductor device
JP2641387B2 (en) Compound semiconductor crystal growth method and crystal growth apparatus
JP2574122B2 (en) Compound semiconductor crystal growth method and crystal growth apparatus
JP2844430B2 (en) Single crystal growth method
JPH07291778A (en) Solution crystal growing method and device therefor
JPH08208365A (en) Device and method for solution growth of crystal
JP2706218B2 (en) Solution crystal growth method and solution crystal growth apparatus
JP2700123B2 (en) Liquid phase epitaxy growth method and apparatus for HgCdTe
JP3848409B2 (en) ZnSe epitaxial substrate and manufacturing method thereof
JP2525931B2 (en) Crystal growth method and crystal growth apparatus for ZnSe
JPH09124398A (en) Crystal growth of compound semiconductor and apparatus therefor
JP2000290095A (en) Method for growing compound semiconductor crystal
JPH06279178A (en) Production of semiconductor device and device therefor
JPH0543400A (en) Production of gaas single crystal
JPH0688877B2 (en) ZnSe crystal growth method
JPH07291779A (en) Method for growing crystal from solution and apparatus for growing crystal from solution
JPH07291775A (en) Apparatus for growing crystal from solution and method for growing crystal from solution
JPH05109629A (en) Polycrystalline silicon thin film and its manufacturing method as well as thin-film transistor using thin film
JPH08208366A (en) Method for solution growth of crystal and apparatus for solution growth of crystal
JPH0352241A (en) Liquid-phase epitaxy

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970909