JP3848409B2 - ZnSe epitaxial substrate and manufacturing method thereof - Google Patents

ZnSe epitaxial substrate and manufacturing method thereof Download PDF

Info

Publication number
JP3848409B2
JP3848409B2 JP28153896A JP28153896A JP3848409B2 JP 3848409 B2 JP3848409 B2 JP 3848409B2 JP 28153896 A JP28153896 A JP 28153896A JP 28153896 A JP28153896 A JP 28153896A JP 3848409 B2 JP3848409 B2 JP 3848409B2
Authority
JP
Japan
Prior art keywords
thin film
znse
growth
heat treatment
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28153896A
Other languages
Japanese (ja)
Other versions
JPH10101498A (en
Inventor
徹 佐川
勇 西野
克夫 笛吹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP28153896A priority Critical patent/JP3848409B2/en
Publication of JPH10101498A publication Critical patent/JPH10101498A/en
Application granted granted Critical
Publication of JP3848409B2 publication Critical patent/JP3848409B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、青色発光素子として用いられる高キャリア密度のZnSe単結晶薄膜およびその製造方法に関する。
【0002】
【従来の技術】
ZnSe等のII-VI 族化合物半導体を主成分とする3元または4元混晶の半導体薄膜の液相成長方法では、成長溶媒としてSe、Te、TeSe、GaあるいはIn等が検討されていた。これらの中でSe、TeあるいはTeSe溶媒を用いて薄膜状あるいはバルク状の結晶が得られることから、青色発光素子あるいは素子基板の実用研究が行われている。しかしながら、従来の技術は以下の問題点を有していた。
【0003】
Seを用いる成長法では、蒸気圧が高く蒸発による損失が著しいため、成長温度を低くしたり、成長装置もSeの蒸発を抑えるために石英ガラス容器を封管処理して使用するのが一般的であり、Seの蒸気圧を耐圧以下としなければならないので成長条件が制約される。このため成長温度を850℃程度に制御しているが、この成長容器ではP層、N層の連続成長ができないので実用的でない。
【0004】
実用的な素子の作成には1017cm-3以上、望ましくは1018cm-3以上のキャリア密度が必要である。溶媒としてZnCl2 を使用した成長や、GaやInを使用した開管系(例えばスライドボート法など)での成長でも、作成される結晶のキャリア密度は1013〜1014cm-3程度であった。GaやInとZnとの合金で成長させたものでもそのキャリア密度は3×1016cm-3程度であった。
【0005】
このようなキャリア密度の結晶を得るために、一度成長させた結晶をZn融液中で熱処理をして、そのキャリア密度を高めるという手法が従来から行われている。
【0006】
一方LED等の電子デバイスを構成するにはp型、n型の不純物添加が任意に行えることが好ましい。しかしII-VI 族化合物半導体はp型化が困難なばかりでなく低抵抗のn型基板も容易には作成されない。
従来のII-VI 族間化合物半導体の低抵抗率のn型結晶の作成方法は、ノンドープもしくは実効的なドーピングがなされていないZnSe結晶をウェーハ状に整形し、真空に封じ切ったアンプル中で、たとえばZn溶液もしくはIII 族元素(Ga、In)を添加したZn溶液に浸漬して熱処理を行い、結晶中のIII 族元素を活性化、もしくは結晶表面からIII 族元素を拡散させていた。
【0007】
特開平6−293600には、不純物として0.5mol%以下のIII 族ないしVII 族元素を含む溶液からZnSe結晶を液相成長させる工程と、成長した結晶をZn溶液中に浸漬し、600℃以上の温度で熱処理することにより不純物を活性化する工程についての記述がある。ここでは、成長結晶を一度取り出して洗浄した後Znと共に石英アンプル内に真空封入し、結晶をZn溶液中で熱処理するという技術が開示されている。
【0008】
このような従来の技術においては、一度成長結晶を取り出し、再度石英管に真空封入する方法が用いられているため、次のような欠陥があった。
(1)一度成長結晶を取り出すので、工程数が増え製品のスループットが低下する。
(2)石英管に真空封入をするため工程が複雑になる。また一度使用した石英管は再使用できないため製造コストが増加する。
(3)成長結晶を取り出したときに結晶を汚染する危険があり、汚染物質がその後の熱処理工程においてドーパントとなり、結晶の電気特性の制御を困難にし、かつ製造歩留まりを低下させる。
【0009】
【発明が解決しようとする課題】
本発明の目的は、上記の欠陥を改良することにあり、液相成長法により成長させた単結晶薄膜を取り出さずに、結晶成長工程と熱処理工程とを連続して行うことにより作製される、高品質でキャリア密度の高いn型ZnSe単結晶薄膜およびその製造方法を確立することにある。
【0010】
【課題を解決するための手段】
本発明者等はかかる課題を解決するために鋭意研究したところ、スライドボート法でZnSe単結晶薄膜のZn融液熱処理を行うことが可能であることを見いだし、素子形成が可能な低抵抗n型ZnSeエピタキシャル基板を得ることができた。すなわち本発明は、高抵抗ZnSe単結晶基板上にスライドボート法を用いてIII 族系溶媒から液相成長させたn型ZnSe単結晶薄膜に、スライドボート法でZn融液熱処理を行い、結晶成長と熱処理とを同一のスライドボート上で連続して行うことにより得られる素子形成が可能な低抵抗n型ZnSeエピタキシャル基板およびその製造方法に関するものである。
【0011】
【発明の実施の形態】
Znは800℃から900℃の熱処理温度では蒸気圧が0.3ないし0.9気圧と高く、通常のスライドボート法の開管系で熱処理する場合には蒸発するので取扱いが非常に困難となる。
ところが特願平7−171513に記載されているように、スライドボートの溶液ホルダの開口部をB23 などの液体封止剤で封止するとその蒸発速度が低下し、上記温度でもZnSe結晶を熱処理することが可能となる。この熱処理は溶液ホルダの開口部を封止することを除けば通常の液相成長と同じ構成でできるので、成長用と同一のスライドボートで熱処理を行うことができる。
そのため、薄膜を液相成長させた後、ただちに熱処理を行うことができ、成長から熱処理の工程を連続して行うことができる。また、本発明では薄膜を液相成長により得るため、膜厚が10〜100μm程度の比較的厚い薄膜を得ることができる。
以下実施例および比較例により本発明を詳しく説明するが、本発明はこれに限定されるものではない。
【0012】
【実施例1】
図1は本実施例に用いられた液相成長用カーボン製スライドボートの横断面図であり、この図を参照して説明する。
スライドボートの材料にはPOCO社製DFP−3−2を使用した。Znは同和鉱業製6N亜鉛を使用し、液体封止用B2 3 には富山薬品工業製BOROGLASS−20を使用した。
【0013】
まず結晶成長用溶液ホルダ3内に、成長溶媒として純度6N(99.9999%)のInを20g、溶質としてZnSeを約0.85g入れ、これらの上部を覆うように液体封止剤(B2 3 )8を約5g供給した。
次いで、成長直前に行う基板表面処理であるメルトバックを行うメルトバック用溶液ホルダ2内に、メルトバック溶液9として純度6NのZn10gを入れ、その上部を覆うように液体封止剤(B2 3 )8を供給した。
次いで、熱処理用溶液ホルダ4内に熱処理用溶液11として純度6NのZnを20gと基板溶解防止用ZnSe約3.3mgを入れ、その上部を覆うように液体封止剤(B2 3 )8を供給した。
【0014】
一方、成長用単結晶基板7は、スライダー5に設けられたキャビティ(座ぐり部)6に、あらかじめ表面処理を施してセットした。
この場合、基板の前処理は次のような手順で行った。まず高圧溶融法で成長させたZnSe単結晶を面方位(100)に切断して所定寸法(5mm×5mm×厚み1mm)の基板を作製した。次いで粒度5μmのAl2 3 にて粗研磨した後、粒度1μmのダイヤモンドにて鏡面研磨を行った。次に、汚染層および加工変質層を除去するため、1%ブロムメタノール溶液により5分間エッチング処理を行い、さらに残留したブロム(臭素)を基板表面より除去するため、アセトン中で煮沸を行い、乾燥窒素雰囲気にて乾燥させたものを薄膜成長用の基板とした。
【0015】
上記のような成長準備を完了したスライドボート1を横型電気炉13内の炉心管12内に挿入し、炉心管内を窒素雰囲気に置換して3気圧まで加圧した。その後、昇温速度15℃/分にて905℃まで昇温させ、次いで905℃にて30分間の等温保持(以下、ソークという)を行い、結晶成長用溶液ホルダ3内に溶質濃度が約3.3%であるZnSe/In溶液を得た。
ソーク後、1℃/分にて900℃まで降温し、次いでスライダー5を移動することによってキャビティ6をメルトバック用溶液ホルダ2の底部に移し、基板7をメルトバック溶液9に接触させた。その状態で900℃の温度で5分間保持することによって基板7のメルトバックを行った。
【0016】
その後スライダー5によりキャビティ6を移動して成長用溶液ホルダ3の底部に移し、基板7を成長用溶液10に接触させた状態で炉温を900℃から850℃まで0.2℃/分の割合で降温させながら基板上にZnSeの単結晶薄膜を成長させた。
薄膜の成長が終了した時点でスライダー5を動かし、キャビティ6を熱処理用溶液ホルダ4の底部に移動させ、熱処理用溶液11に基板7上の成長薄膜を接触させて850℃で30時間保持して、成長薄膜のZn融液中での熱処理を行った。
【0017】
熱処理が終了した時点で、スライダー5を移動し、キャビティ6を各溶液ホルダから退避させた後、炉温を約4℃/分で室温まで降温した。
その後、スライドボート1を炉心管12より取り出し、得られたZnSe単結晶薄膜付き基板(以下、エピタキシャル基板という)について、表面に残留した熱処理用溶液(Zn)を取り除くために、GaとInの合金(合金組成:Ga0.83In0.17)融液中に300℃で30分間浸漬した。このようにして表面から溶液が除去されたエピタキシャル基板を、さらに0.5%ブロムメタノール溶液により1分間エッチング処理を行った後、アセトン中で煮沸を行い、乾燥窒素雰囲気にて乾燥させた。
このようにして得られたエピタキシャル基板上の薄膜について、室温でホール測定を行ったところ、そのキャリア密度とホール移動度はそれぞれ2×1017cm-3、260cm2 -1-1程度であった。また、薄膜の膜厚は約73μmであった。
【0018】
【実施例2】
結晶成長用ホルダ3内に成長溶媒として純度6NのInを18gと純度6NのZnを1.1g(溶媒組成:In0.9 Zn0.1 )、溶質としてZnSeを約0.22g入れ、これらの上部を覆うように液体封止剤(B2 3 )8を約5g供給した。
次いで、メルトバック用溶液ホルダ2を実施例1と同様に準備した。次いで熱処理用溶液ホルダ4を実施例1と同様に準備した。次いで、成長用単結晶基板7を実施例1と同様に準備した。基板の前処理は実施例1と同様な手順で行った。
【0019】
成長準備の完了したスライドボート1を、実施例1と同様に炉内にセットしてソークを行い、結晶成長用溶液ホルダ3内に溶質濃度が約0.85%であるZnSe/In溶液を得た。
ソーク後、実施例1と同様に基板7のメルトバックを行った。その後、実施例1と同様に基板上にZnSeの単結晶薄膜を成長させた。
薄膜の成長が終了した時点で、実施例1と同様に成長薄膜のZn融液中での熱処理を行った。
【0020】
熱処理が終了した時点で、実施例1と同様に炉温を室温まで降温した。その後、得られたエピタキシャル基板について、実施例1と同様に表面処理を行った。
得られたエピタキシャル基板上の薄膜について、室温でホール測定を行ったところ、そのキャリア密度とホール移動度はそれぞれ2×1018cm-3、290cm2 -1-1程度であった。また、薄膜の膜厚は約66μmであった。
【0021】
【比較例1】
結晶成長用溶液ホルダ3を実施例1と同様に準備した。次いで、メルトバック用溶液ホルダ2を実施例1と同様に準備した。次いで、成長用単結晶基板7を実施例1と同様に準備した。基板の前処理は実施例1と同様な手順で行った。
成長準備の完了したスライドボート1を、実施例1と同様に炉内にセットしてソークを行った。
ソーク後、実施例1と同様に基板7のメルトバックを行った。その後、実施例1と同様に基板上のZnSeの単結晶薄膜を成長させた。
薄膜の成長が終了した時点でスライダー5を移動し、キャビティ6を各溶液ホルダから待避させた後、炉温を約4℃/分で室温まで降温した。すなわち、成長薄膜についてZn融液熱処理を行わなかった。
その後、得られたエピタキシャル基板について、実施例1と同様に表面処理を行った。
得られたエピタキシャル基板上の薄膜について、室温でホール測定を行ったところ、そのキャリア密度とホール移動度はそれぞれ5×1015cm-3、100cm2 -1-1程度であった。また、薄膜の膜厚は約78μmであった。
【0022】
【比較例2】
結晶成長用溶液ホルダ3を実施例2と同様に準備した。次いで、メルトバック用溶液ホルダ2を実施例2と同様に準備した。次いで、成長用単結晶基板7を実施例2と同様に準備した。基板の前処理は実施例2と同様な手順で行った。
成長準備の完了したスライドボート1を、実施例2と同様に炉内にセットしてソークを行った。
ソーク後、実施例2と同様に基板7のメルトバックを行った。その後、実施例2と同様に基板上にZnSeの単結晶薄膜を成長させた。
上記薄膜の成長が終了した時点でスライダー5を移動し、キャビティ6を各溶液ホルダから待避させた後、炉温を約4℃/分で室温まで降温した。すなわち、成長薄膜についてZn融液熱処理を行わなかった。
その後、得られたエピタキシャル基板について、実施例2と同様に表面処理を行った。
得られたエピタキシャル基板上の薄膜について、室温でホール測定を行ったところ、そのキャリア密度とホール移動度はそれぞれ1×1016cm-3、250cm2 -1-1程度であった。また、薄膜の膜厚は約70μmであった。
【0023】
【比較例3】
図2は本比較例に用いられた熱処理用石英アンプル横断面図であって、この図を参照して説明する。
ZnSeエピタキシャル基板を比較例2の手法で用意した。このエピタキシャル基板15を純度6NのZn10gと基板溶解防止用ZnSe約1.6mgと共に内径8.5mm長さ8cmの石英アンプル14中に10-6Torrの真空度で封入した。
【0024】
真空封入に先だって、石英アンプル14の内壁を次のような手順で洗浄した。まず最初に中性洗剤で10分間超音波洗浄をしてから、純水で10分間超音波洗浄を行った。その後、アセトン中で煮沸をして脱脂を行い、王水中に12時間浸漬することで石英基板に残った金属成分を取り除いた。最後に50%のフッ酸で5分間石英表面のエッチング処理を行った。
真空封入の完了した石英アンプル14を炉内に図2(a)のように配置し、850℃で30時間保持して、成長薄膜のZn融液中での熱処理を行った。なお、石英アンプル14の内部には石英アンプル14と同様に洗浄された石英製の仕切り板16が取り付けられており、熱処理中にエピタキシャル基板15がZn融液17上に浮き上がることのないように工夫されている。
【0025】
熱処理の終了後、石英アンプル14を炉ごと180度転回し、図2(b)の状態にして、エピタキシャル基板15からZn融液17を分離した。
その後、炉温を約4℃/分で室温まで降温して、Zn融液熱処理の行われたエピキタキシャル基板を得た。
得られたエピタキシャル基板について、表面に残留した熱処理用溶液(Zn)を取り除くために、GaとInの合金(合金組成:Ga0.83In0.17)融液中に300℃で30分間浸漬した。このようにして表面から溶媒が除去されたエピタキシャル基板を、さらに0.5%ブロムメタノール溶液により1分間エッチング処理を行った後、アセトン中で煮沸を行い、乾燥窒素雰囲気にて乾燥させた。
このようにして得られたエピタキシャル基板上の薄膜について、室温でホール測定を行ったところ、そのキャリア密度とホール移動度はそれぞれ2×1018cm-3、280cm2 -1-1程度であった。また、薄膜の膜厚は約62μmであった。
【0026】
【発明の効果】
実施例1の結果得られた薄膜のキャリア密度は2×1017cm-3であり、比較例1の結果得られた薄膜のキャリア密度4×1015cm-3に比較して約2桁高い値となっている。また、実施例2の結果得られた薄膜のキャリア密度は2×1018cm-3であり、比較例2の結果得られた薄膜のキャリア密度1×1016cm-3に比較してやはり約2桁高い値となっている。実施例1および2の高いキャリア密度(1017〜1018cm-3)が得られた薄膜は10-2Ω/cm程度の低い抵抗率を示し、これらを用いて実用的な素子の形成が可能であると思われる。一方で、比較例2の薄膜にZn融液熱処理を行った比較例3の場合でも、得られた薄膜のキャリア密度は2×1018cm-3となっているが、表1に示したように実施例2の場合に比べて工程数が増加し、最終的に高キャリア密度の薄膜を得るまでに時間がかかった。従って、本発明による製造法によれば、少ない工程数で高いキャリア密度のエピタキシャル基板を提供でき、経済的効果が大きい。
【0027】
【表1】

Figure 0003848409

【図面の簡単な説明】
【図1】本発明の実施例に用いられた液相成長用カーボン製スライドボートの横断面図である。
【図2】本発明の比較例3に用いられた熱処理用石英アンプルの横断面図である。
【符号の説明】
1 スライドボート
2 メルトバック用溶液ホルダ
3 成長用溶液ホルダ
4 熱処理用溶液ホルダ
5 スライダー
6 キャビティ
7 成長用単結晶基板
8 液体封止剤
9 メルトバック溶液
10 成長用溶液
11 熱処理用溶液
12 炉心管
13 炉
14 石英アンプル
15 ZnSeエピタキシャル基板
16 石英製仕切り板
17 熱処理用Zn融液[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high carrier density ZnSe single crystal thin film used as a blue light emitting device and a method for producing the same.
[0002]
[Prior art]
In a liquid phase growth method of a ternary or quaternary mixed crystal semiconductor thin film mainly composed of a II-VI group compound semiconductor such as ZnSe, Se, Te, TeSe, Ga, In, or the like has been studied as a growth solvent. Among these, a thin film or bulk crystal can be obtained using Se, Te or TeSe solvent, and therefore, practical research on blue light emitting elements or element substrates has been conducted. However, the conventional technology has the following problems.
[0003]
In the growth method using Se, since the vapor pressure is high and the loss due to evaporation is significant, it is common to use a quartz glass container with a sealed tube treatment in order to lower the growth temperature and also to suppress the evaporation of Se. Since the vapor pressure of Se must be equal to or lower than the withstand pressure, the growth conditions are restricted. For this reason, the growth temperature is controlled to about 850 ° C., but this growth vessel is not practical because P and N layers cannot be continuously grown.
[0004]
For the production of a practical device, a carrier density of 10 17 cm −3 or more, desirably 10 18 cm −3 or more is required. Even in growth using ZnCl 2 as a solvent or growth in an open tube system using Ga or In (for example, a slide boat method), the carrier density of the produced crystal is about 10 13 to 10 14 cm −3. It was. Even when grown with an alloy of Ga, In and Zn, the carrier density was about 3 × 10 16 cm −3 .
[0005]
In order to obtain a crystal having such a carrier density, a technique has been conventionally performed in which a crystal once grown is heat-treated in a Zn melt to increase the carrier density.
[0006]
On the other hand, it is preferable that p-type and n-type impurities can be arbitrarily added to constitute an electronic device such as an LED. However, II-VI group compound semiconductors are not only difficult to be p-type, but low resistance n-type substrates are not easily produced.
A conventional method for producing a low resistivity n-type crystal of an II-VI intermetallic compound semiconductor is to form a ZnSe crystal that has not been doped or effectively doped into a wafer shape and sealed in a vacuum ampule. For example, it is immersed in a Zn solution or a Zn solution to which a group III element (Ga, In) is added, and heat treatment is performed to activate the group III element in the crystal or to diffuse the group III element from the crystal surface.
[0007]
Japanese Patent Laid-Open No. 6-293600 discloses a step of liquid-phase growth of ZnSe crystals from a solution containing a group III to group VII element of 0.5 mol% or less as an impurity, and the grown crystals are immersed in a Zn solution, at 600 ° C. or higher. There is a description of a process for activating impurities by performing a heat treatment at a temperature of. Here, a technique is disclosed in which a grown crystal is once taken out and washed, and then vacuum-sealed in a quartz ampoule together with Zn, and the crystal is heat-treated in a Zn solution.
[0008]
In such a conventional technique, since a method in which a grown crystal is once taken out and vacuum-sealed in a quartz tube is used, there are the following defects.
(1) Since the grown crystal is taken out once, the number of processes increases and the product throughput decreases.
(2) Since the quartz tube is vacuum-sealed, the process becomes complicated. Also, once used, the quartz tube cannot be reused, increasing the manufacturing cost.
(3) There is a risk of contaminating the crystal when the grown crystal is taken out, and the contaminant becomes a dopant in the subsequent heat treatment step, making it difficult to control the electrical characteristics of the crystal and reducing the production yield.
[0009]
[Problems to be solved by the invention]
An object of the present invention is to improve the above-described defects, and is produced by continuously performing a crystal growth step and a heat treatment step without taking out a single crystal thin film grown by a liquid phase growth method. The object is to establish a high-quality and high carrier density n-type ZnSe single crystal thin film and a method for manufacturing the same.
[0010]
[Means for Solving the Problems]
The present inventors have intensively studied to solve such problems, and found that it is possible to perform Zn melt heat treatment of a ZnSe single crystal thin film by a slide boat method, and a low resistance n-type capable of forming an element. A ZnSe epitaxial substrate could be obtained. In other words, the present invention performs crystal growth by performing Zn melt heat treatment on an n-type ZnSe single crystal thin film grown on a high resistance ZnSe single crystal substrate from a group III solvent using a slide boat method by a slide boat method. The present invention relates to a low resistance n-type ZnSe epitaxial substrate capable of forming an element obtained by continuously performing heat treatment and heat treatment on the same slide boat, and a method for manufacturing the same.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Zn has a high vapor pressure of 0.3 to 0.9 at a heat treatment temperature of 800 ° C. to 900 ° C., and it is very difficult to handle because it evaporates when heat-treated in an open tube system of a normal slide boat method. .
However, as described in Japanese Patent Application No. 7-171513, when the opening portion of the solution holder of the slide boat is sealed with a liquid sealant such as B 2 O 3 , the evaporation rate is reduced. Can be heat-treated. Since this heat treatment can be performed in the same configuration as the normal liquid phase growth except that the opening of the solution holder is sealed, the heat treatment can be performed by the same slide boat for growth.
Therefore, the heat treatment can be performed immediately after the thin film is grown in the liquid phase, and the steps of the heat treatment from the growth can be performed continuously. In the present invention, since a thin film is obtained by liquid phase growth, a relatively thick thin film having a thickness of about 10 to 100 μm can be obtained.
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
[0012]
[Example 1]
FIG. 1 is a cross-sectional view of a liquid-phase growth carbon slide boat used in the present embodiment, which will be described with reference to this figure.
As a material for the slide boat, DFP-3-2 manufactured by POCO was used. For Zn, 6N zinc manufactured by Dowa Mining Co., Ltd. was used, and for the liquid sealing B 2 O 3 , BOROGLASS-20 manufactured by Toyama Pharmaceutical Co., Ltd. was used.
[0013]
First, 20 g of 6N (99.9999%) In as a growth solvent and about 0.85 g of ZnSe as a solute are placed in the crystal growth solution holder 3, and a liquid sealant (B 2 is formed so as to cover the upper part thereof. About 5 g of O 3 ) 8 was supplied.
Next, in a meltback solution holder 2 for performing meltback, which is substrate surface treatment performed immediately before the growth, 10 g of Zn having a purity of 6N is put as the meltback solution 9, and a liquid sealant (B 2 O is applied so as to cover the upper part thereof. 3 ) 8 was supplied.
Next, 20 g of 6N purity Zn and about 3.3 mg of ZnSe for substrate dissolution prevention are placed in the heat treatment solution holder 4 as the heat treatment solution 11, and a liquid sealant (B 2 O 3 ) 8 is formed so as to cover the top. Supplied.
[0014]
On the other hand, the single crystal substrate for growth 7 was set by subjecting a cavity (facing part) 6 provided in the slider 5 to surface treatment in advance.
In this case, the pretreatment of the substrate was performed according to the following procedure. First, a ZnSe single crystal grown by a high pressure melting method was cut into a plane orientation (100) to prepare a substrate having a predetermined dimension (5 mm × 5 mm × thickness 1 mm). Next, after rough polishing with Al 2 O 3 having a particle size of 5 μm, mirror polishing was performed with diamond having a particle size of 1 μm. Next, in order to remove the contamination layer and the work-affected layer, etching is performed for 5 minutes with a 1% bromomethanol solution, and in order to remove residual bromine (bromine) from the substrate surface, boiling is performed in acetone and drying is performed. A substrate dried in a nitrogen atmosphere was used as a substrate for thin film growth.
[0015]
The slide boat 1 having completed the growth preparation as described above was inserted into the core tube 12 in the horizontal electric furnace 13, and the inside of the core tube was replaced with a nitrogen atmosphere and pressurized to 3 atm. Thereafter, the temperature is raised to 905 ° C. at a rate of temperature rise of 15 ° C./min, and then kept isothermally at 905 ° C. for 30 minutes (hereinafter referred to as soak), so that the solute concentration is about 3 in the crystal growth solution holder 3. A ZnSe / In solution of .3% was obtained.
After the soak, the temperature was lowered to 900 ° C. at 1 ° C./min, and then the slider 6 was moved to move the cavity 6 to the bottom of the meltback solution holder 2 and bring the substrate 7 into contact with the meltback solution 9. In this state, the substrate 7 was melt-backed by holding at 900 ° C. for 5 minutes.
[0016]
Thereafter, the cavity 6 is moved by the slider 5 and transferred to the bottom of the growth solution holder 3, and the furnace temperature is set to 0.2 ° C./min from 900 ° C. to 850 ° C. with the substrate 7 in contact with the growth solution 10. A single crystal thin film of ZnSe was grown on the substrate while lowering the temperature.
When the growth of the thin film is completed, the slider 5 is moved, the cavity 6 is moved to the bottom of the heat treatment solution holder 4, the growth thin film on the substrate 7 is brought into contact with the heat treatment solution 11 and held at 850 ° C. for 30 hours. Then, the grown thin film was heat-treated in the Zn melt.
[0017]
When the heat treatment was completed, the slider 5 was moved to retract the cavity 6 from each solution holder, and then the furnace temperature was lowered to room temperature at about 4 ° C./min.
Thereafter, the slide boat 1 is taken out of the core tube 12, and an alloy of Ga and In is used to remove the heat treatment solution (Zn) remaining on the surface of the obtained substrate with a ZnSe single crystal thin film (hereinafter referred to as an epitaxial substrate). (Alloy composition: Ga 0.83 In 0.17 ) It was immersed in the melt at 300 ° C. for 30 minutes. The epitaxial substrate from which the solution was removed from the surface in this way was further etched for 1 minute with a 0.5% bromomethanol solution, then boiled in acetone and dried in a dry nitrogen atmosphere.
When the thin film on the epitaxial substrate thus obtained was subjected to hole measurement at room temperature, its carrier density and hole mobility were about 2 × 10 17 cm −3 and 260 cm 2 V −1 S −1 , respectively. there were. The film thickness of the thin film was about 73 μm.
[0018]
[Example 2]
In a crystal growth holder 3, 18 g of 6N pure as a growth solvent and 1.1 g of 6N pure Zn (solvent composition: In 0.9 Zn 0.1 ) and about 0.22 g of ZnSe as a solute are covered. Thus, about 5 g of liquid sealing agent (B 2 O 3 ) 8 was supplied.
Next, a melt-back solution holder 2 was prepared in the same manner as in Example 1. Next, a solution holder 4 for heat treatment was prepared in the same manner as in Example 1. Next, a growth single crystal substrate 7 was prepared in the same manner as in Example 1. The pretreatment of the substrate was performed in the same procedure as in Example 1.
[0019]
The slide boat 1 that has been prepared for growth is set in a furnace and soaked in the same manner as in Example 1 to obtain a ZnSe / In solution having a solute concentration of about 0.85% in the crystal growth solution holder 3. It was.
After the soak, the substrate 7 was melted back in the same manner as in Example 1. Thereafter, a single crystal thin film of ZnSe was grown on the substrate in the same manner as in Example 1.
When the growth of the thin film was completed, the grown thin film was heat-treated in the Zn melt as in Example 1.
[0020]
When the heat treatment was completed, the furnace temperature was lowered to room temperature in the same manner as in Example 1. Thereafter, the obtained epitaxial substrate was subjected to a surface treatment in the same manner as in Example 1.
When the thin film on the obtained epitaxial substrate was subjected to hole measurement at room temperature, its carrier density and hole mobility were about 2 × 10 18 cm −3 and 290 cm 2 V −1 S −1 , respectively. The film thickness of the thin film was about 66 μm.
[0021]
[Comparative Example 1]
A solution holder 3 for crystal growth was prepared in the same manner as in Example 1. Next, a melt-back solution holder 2 was prepared in the same manner as in Example 1. Next, a growth single crystal substrate 7 was prepared in the same manner as in Example 1. The pretreatment of the substrate was performed in the same procedure as in Example 1.
The slide boat 1 for which growth preparation was completed was set in a furnace in the same manner as in Example 1 and soaked.
After the soak, the substrate 7 was melted back in the same manner as in Example 1. Thereafter, a single crystal thin film of ZnSe on the substrate was grown in the same manner as in Example 1.
When the growth of the thin film was completed, the slider 5 was moved to retract the cavity 6 from each solution holder, and then the furnace temperature was lowered to room temperature at about 4 ° C./min. That is, the Zn melt heat treatment was not performed on the grown thin film.
Thereafter, the obtained epitaxial substrate was subjected to a surface treatment in the same manner as in Example 1.
When the thin film on the obtained epitaxial substrate was subjected to hole measurement at room temperature, its carrier density and hole mobility were about 5 × 10 15 cm −3 and 100 cm 2 V −1 S −1 , respectively. The film thickness of the thin film was about 78 μm.
[0022]
[Comparative Example 2]
A crystal growth solution holder 3 was prepared in the same manner as in Example 2. Next, a melt-back solution holder 2 was prepared in the same manner as in Example 2. Next, a growth single crystal substrate 7 was prepared in the same manner as in Example 2. The pretreatment of the substrate was performed in the same procedure as in Example 2.
The slide boat 1 for which growth preparation was completed was set in a furnace in the same manner as in Example 2 and soaked.
After the soak, the substrate 7 was melted back in the same manner as in Example 2. Thereafter, a single crystal thin film of ZnSe was grown on the substrate in the same manner as in Example 2.
When the growth of the thin film was completed, the slider 5 was moved to retract the cavity 6 from each solution holder, and then the furnace temperature was lowered to room temperature at about 4 ° C./min. That is, the Zn melt heat treatment was not performed on the grown thin film.
Thereafter, the obtained epitaxial substrate was subjected to a surface treatment in the same manner as in Example 2.
When the thin film on the obtained epitaxial substrate was subjected to hole measurement at room temperature, the carrier density and hole mobility were about 1 × 10 16 cm −3 and 250 cm 2 V −1 S −1 , respectively. The film thickness of the thin film was about 70 μm.
[0023]
[Comparative Example 3]
FIG. 2 is a transverse cross-sectional view of the heat treatment quartz ampoule used in this comparative example, and will be described with reference to this figure.
A ZnSe epitaxial substrate was prepared by the method of Comparative Example 2. The epitaxial substrate 15 was enclosed in a quartz ampule 14 having an inner diameter of 8.5 mm and a length of 8 cm together with 10 g of Zn having a purity of 6N and about 1.6 mg of ZnSe for preventing dissolution of the substrate at a vacuum degree of 10 −6 Torr.
[0024]
Prior to vacuum sealing, the inner wall of the quartz ampule 14 was cleaned by the following procedure. First, ultrasonic cleaning was performed for 10 minutes with a neutral detergent, and then ultrasonic cleaning was performed for 10 minutes with pure water. Then, it boiled in acetone, degreased, and immersed in aqua regia for 12 hours, the metal component which remained on the quartz substrate was removed. Finally, the quartz surface was etched with 50% hydrofluoric acid for 5 minutes.
As shown in FIG. 2A, the quartz ampule 14 having been vacuum-sealed was placed in a furnace as shown in FIG. 2A and held at 850 ° C. for 30 hours to perform heat treatment in the Zn melt of the grown thin film. In addition, a quartz partition plate 16 that is cleaned in the same manner as the quartz ampule 14 is attached inside the quartz ampule 14 so that the epitaxial substrate 15 does not float on the Zn melt 17 during the heat treatment. Has been.
[0025]
After completion of the heat treatment, the quartz ampule 14 was rotated 180 degrees together with the furnace, and the Zn melt 17 was separated from the epitaxial substrate 15 as shown in FIG.
Thereafter, the furnace temperature was decreased to room temperature at about 4 ° C./min to obtain an epitaxial substrate subjected to the Zn melt heat treatment.
The obtained epitaxial substrate was immersed in an alloy of Ga and In (alloy composition: Ga 0.83 In 0.17 ) at 300 ° C. for 30 minutes in order to remove the heat treatment solution (Zn) remaining on the surface. The epitaxial substrate from which the solvent was removed from the surface in this way was further etched with a 0.5% bromomethanol solution for 1 minute, then boiled in acetone and dried in a dry nitrogen atmosphere.
When the thin film on the epitaxial substrate thus obtained was subjected to hole measurement at room temperature, its carrier density and hole mobility were about 2 × 10 18 cm −3 and 280 cm 2 V −1 S −1 , respectively. there were. The film thickness of the thin film was about 62 μm.
[0026]
【The invention's effect】
The carrier density of the thin film obtained as a result of Example 1 is 2 × 10 17 cm −3, which is about two orders of magnitude higher than the carrier density of the thin film obtained as a result of Comparative Example 1 of 4 × 10 15 cm −3. It is a value. In addition, the carrier density of the thin film obtained as a result of Example 2 is 2 × 10 18 cm −3, which is also approximately compared with the carrier density of the thin film obtained as a result of Comparative Example 2 of 1 × 10 16 cm −3. The value is two digits higher. The thin films obtained with the high carrier density (10 17 to 10 18 cm −3 ) of Examples 1 and 2 have a low resistivity of about 10 −2 Ω / cm, and they can be used to form practical elements. It seems possible. On the other hand, the carrier density of the obtained thin film was 2 × 10 18 cm −3 even in Comparative Example 3 in which the Zn melt heat treatment was performed on the thin film of Comparative Example 2, but as shown in Table 1. Compared to the case of Example 2, the number of processes increased, and it took time to finally obtain a thin film having a high carrier density. Therefore, according to the manufacturing method of the present invention, an epitaxial substrate having a high carrier density can be provided with a small number of steps, and the economic effect is great.
[0027]
[Table 1]
Figure 0003848409

[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a carbon slide boat for liquid phase growth used in an example of the present invention.
FIG. 2 is a cross-sectional view of a heat treatment quartz ampoule used in Comparative Example 3 of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Slide boat 2 Solution holder for melt back 3 Solution holder for growth 4 Solution holder for heat treatment 5 Slider 6 Cavity 7 Single crystal substrate for growth 8 Liquid sealant 9 Melt back solution 10 Solution for growth 11 Solution for heat treatment 12 Core tube 13 Furnace 14 Quartz ampule 15 ZnSe epitaxial substrate 16 Quartz partition plate 17 Zn melt for heat treatment

Claims (5)

単結晶基板上に薄膜を液相成長させる工程と、該薄膜のキャリア密度を高めるため該薄膜をZn融液中で熱処理する工程とを含むZnSeエピタキシャル基板の製造方法において、前記液相成長工程に引き続き前記熱処理工程を同一の結晶成長装置内で連続して行うことを特徴とするZnSeエピタキシャル基板の製造方法。In a method for producing a ZnSe epitaxial substrate, comprising a step of liquid-phase growth of a thin film on a single crystal substrate and a step of heat-treating the thin film in a Zn melt to increase the carrier density of the thin film. A method of manufacturing a ZnSe epitaxial substrate, wherein the heat treatment step is continuously performed in the same crystal growth apparatus. 単結晶基板上に薄膜を液相成長させる工程と、該薄膜のキャリア密度を高めるため該薄膜をZnとZnSeとからなる熱処理用溶液中で熱処理する工程とを含むZnSeエピタキシャル基板の製造方法において、前記液相成長工程に引き続き前記熱処理工程を同一の結晶成長装置内で連続して行うことを特徴とするZnSeエピタキシャル基板の製造方法。In a method for producing a ZnSe epitaxial substrate, comprising a step of liquid-phase growth of a thin film on a single crystal substrate and a step of heat-treating the thin film in a heat treatment solution comprising Zn and ZnSe in order to increase the carrier density of the thin film. A method for producing a ZnSe epitaxial substrate, wherein the heat treatment step is continuously performed in the same crystal growth apparatus following the liquid phase growth step. 前記薄膜は、1017cm-3以上のキャリア密度を有しかつInを添加したZnSe単結晶薄膜である請求項1または2に記載のZnSeエピタキシャル基板の製造方法。The method for producing a ZnSe epitaxial substrate according to claim 1 or 2, wherein the thin film is a ZnSe single crystal thin film having a carrier density of 10 17 cm -3 or more and doped with In. 前記液相成長工程は単結晶基板上にIII族系溶媒を用いてZnSe単結晶薄膜を液相成長させる工程である請求項1〜3のいずれかに記載のZnSeエピタキシャル基板の製造方法。The method for producing a ZnSe epitaxial substrate according to any one of claims 1 to 3, wherein the liquid phase growth step is a step of liquid phase growth of a ZnSe single crystal thin film on a single crystal substrate using a group III solvent. 前記結晶成長装置は、少なくとも単結晶薄膜成長室とZn融液熱処理室で構成されたスライドボート型結晶成長装置である請求項1〜4のいずれかに記載のZnSeエピタキシャル基板の製造方法。The method for manufacturing a ZnSe epitaxial substrate according to any one of claims 1 to 4, wherein the crystal growth apparatus is a slide boat type crystal growth apparatus including at least a single crystal thin film growth chamber and a Zn melt heat treatment chamber.
JP28153896A 1996-10-02 1996-10-02 ZnSe epitaxial substrate and manufacturing method thereof Expired - Fee Related JP3848409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28153896A JP3848409B2 (en) 1996-10-02 1996-10-02 ZnSe epitaxial substrate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28153896A JP3848409B2 (en) 1996-10-02 1996-10-02 ZnSe epitaxial substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH10101498A JPH10101498A (en) 1998-04-21
JP3848409B2 true JP3848409B2 (en) 2006-11-22

Family

ID=17640576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28153896A Expired - Fee Related JP3848409B2 (en) 1996-10-02 1996-10-02 ZnSe epitaxial substrate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3848409B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4688115B2 (en) * 1999-11-29 2011-05-25 スタンレー電気株式会社 Method for forming film in liquid phase

Also Published As

Publication number Publication date
JPH10101498A (en) 1998-04-21

Similar Documents

Publication Publication Date Title
EP1088913A2 (en) Liquid-phase growth method, liquid-phase growth apparatus, and solar cell
US3205101A (en) Vacuum cleaning and vapor deposition of solvent material prior to effecting traveling solvent process
US6872248B2 (en) Liquid-phase growth process and liquid-phase growth apparatus
US5544616A (en) Crystallization from high temperature solutions of Si in Cu/Al solvent
US6599815B1 (en) Method and apparatus for forming a silicon wafer with a denuded zone
US5871580A (en) Method of growing a bulk crystal
JP3848409B2 (en) ZnSe epitaxial substrate and manufacturing method thereof
US6824609B2 (en) Liquid phase growth method and liquid phase growth apparatus
JPH0570288A (en) Method and appartatus for producing compound semiconductor single crystal
JPH0341433B2 (en)
Ottaviani et al. Some aspects of Ge epitaxial growth by solid solution
Astles et al. The use of in-situ wash melts in the LPE growth of (CdHg) Te
JP3379054B2 (en) Manufacturing method of semiconductor crystal
JPH06125148A (en) Low-resistance semiconductor crystal substrate and manufacture thereof
Irene et al. Observation of defects in mercury cadmium telluride crystals grown by chemical vapor transport
US5093284A (en) Process for homogenizing compound semiconductor single crystal in properties
JP3412853B2 (en) Semiconductor crystal manufacturing equipment
JP3735881B2 (en) Crystal manufacturing method
JPH06305900A (en) Heat processing of compound semiconductor
JP2003146791A (en) Method of manufacturing compound semiconductor single crystal
JPH0527500Y2 (en)
JPS6212692A (en) Method for growing single crystal semiconductor
Lessoff et al. Research on Gunn Effect Materials (III-V Compounds)
JPH08316249A (en) Ii-vi compound semiconductor substrate and its manufacture
JPH01304788A (en) Manufacture of znse crystal having low-resistance surface

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060825

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees