JPH033847B2 - - Google Patents

Info

Publication number
JPH033847B2
JPH033847B2 JP57107224A JP10722482A JPH033847B2 JP H033847 B2 JPH033847 B2 JP H033847B2 JP 57107224 A JP57107224 A JP 57107224A JP 10722482 A JP10722482 A JP 10722482A JP H033847 B2 JPH033847 B2 JP H033847B2
Authority
JP
Japan
Prior art keywords
air
gas
pressure
differential pressure
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57107224A
Other languages
Japanese (ja)
Other versions
JPS58224225A (en
Inventor
Yoshuki Yokoajiro
Hideo Uematsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57107224A priority Critical patent/JPS58224225A/en
Publication of JPS58224225A publication Critical patent/JPS58224225A/en
Publication of JPH033847B2 publication Critical patent/JPH033847B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/08Regulating fuel supply conjointly with another medium, e.g. boiler water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/02Measuring filling height in burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/18Measuring temperature feedwater temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • F23N2233/08Ventilators at the air intake with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/02Air or combustion gas valves or dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/16Fuel valves variable flow or proportional valves

Description

【発明の詳細な説明】 本発明は、負荷に応じて燃焼量を自動的に連続
可変すると共に、燃焼用空気量とガス量の比(以
後空燃比と言う)をほぼ一定に保ち燃焼の安定性
と高効率を保つための、特に家庭用機器に用いら
れる高負荷ガス燃焼制御装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention automatically and continuously varies the amount of combustion depending on the load, and also maintains the ratio of the amount of combustion air to the amount of gas (hereinafter referred to as the air-fuel ratio) almost constant to stabilize combustion. The present invention relates to high-load gas combustion control devices used particularly in household appliances to maintain performance and high efficiency.

従来のこの種の高負荷燃焼器の燃焼制御装置と
して第1図に示す均圧弁方式(あるいはゼロガバ
ナ方式)がよく知られている。すなわち、送風機
1により送られた燃焼用空気は空気側絞り2を経
て混合部3へ、ガスは均圧弁4を通りガス側絞り
5を経て混合部3へ入り空気とガスが混合されバ
ーナ6で燃焼する。
As a conventional combustion control device for this type of high-load combustor, the pressure equalization valve system (or zero governor system) shown in FIG. 1 is well known. That is, the combustion air sent by the blower 1 passes through the air-side throttle 2 and enters the mixing section 3, and the gas passes through the pressure equalization valve 4, passes through the gas-side throttle 5, enters the mixing section 3, and the air and gas are mixed, and then the burner 6 Burn.

均圧弁の背圧室7には空気側絞り2の上流の圧
力が導かれており、均圧弁4は均圧弁出口のガス
圧力を背圧室の圧力と等しくなる様に自動調節す
る。ここで、空気側絞りの上流の圧力をPA、空
気量をQA、ガス側絞りの上流の圧力をPG、ガス
量をQG、混合部の圧力をPMとすると、空燃比
QA/QGは、 …式1 の関係がある。
The pressure upstream of the air-side throttle 2 is introduced into the back pressure chamber 7 of the pressure equalizing valve, and the pressure equalizing valve 4 automatically adjusts the gas pressure at the outlet of the pressure equalizing valve to be equal to the pressure in the back pressure chamber. Here, if the pressure upstream of the air side restriction is P A , the air amount is Q A , the pressure upstream of the gas side restriction is P G , the gas amount is Q G , and the pressure in the mixing section is P M , then the air-fuel ratio
Q A /Q G is ...There is a relationship as shown in Equation 1.

均圧弁が理想的にPG=PAに調節できれば上式
より となりQAを変化させても空燃比は常に一定とな
るが、しかし均圧弁はダイフラム8でPAとPG
差圧を受けて弁9を機械的に動かすものであるか
ら、ダイアフラムの剛性、変位に伴うダイアフラ
ムの有効面積変化などにより必ず圧力設定誤差△
PGが生じる。
If the pressure equalizing valve can ideally adjust P G = P A , then from the above equation Therefore, even if Q A is changed, the air-fuel ratio will always remain constant.However, since the pressure equalizing valve receives the differential pressure between P A and P G at the diaphragm 8 and moves the valve 9 mechanically, the rigidity of the diaphragm , there will always be a pressure setting error △ due to changes in the effective area of the diaphragm due to displacement, etc.
P G occurs.

すなわち、PG=PA+△PGであるので となる。すなわち誤差△PGによる空燃比の誤差
はPA−PMの絶対値が小さくなるほど大きくなる。
したがつて一定の空燃比誤差の範囲で燃焼量調節
比を大きくするためには、PA−PMを大きくする
か又は、均圧弁のダイアフラムを大きくして△
PGを小さくしなければならない。
In other words, since P G = P A + △P G becomes. That is, the error in the air-fuel ratio due to the error ΔP G becomes larger as the absolute value of P A −P M becomes smaller.
Therefore, in order to increase the combustion amount control ratio within a certain air-fuel ratio error range, either increase P A - P M or increase the diaphragm of the pressure equalizing valve to increase △.
PG must be made small.

このため、燃焼量調節比を1/5ないし1/10
に取ろうとすれば、きわめて大きな送風機や均圧
弁が必要となり、機器が大型になり、また燃焼量
調節比を大きくするために空気側絞りの発生差圧
(PA−PM)を大きくすると、ガス供給圧力の低い
特に都市ガス等の家庭用ガス燃料では使えない。
またガス供給圧力が低下した場合や、強風等によ
り機器の内部静圧が上昇した場合など、均圧弁が
全開になつても必要がガス量が供給できなくな
り、したがつて空燃比が大幅に変動して燃焼が不
安定になるなど家庭用燃焼装置への適用は難しか
つた。
For this reason, the combustion amount adjustment ratio should be adjusted to 1/5 to 1/10.
If you try to achieve this, you will need an extremely large blower and pressure equalizing valve, which will make the equipment larger, and if you increase the differential pressure (P A − P M ) generated at the air side restriction in order to increase the combustion amount control ratio, It cannot be used with household gas fuels such as city gas, which have low gas supply pressure.
In addition, when the gas supply pressure decreases or when the internal static pressure of equipment increases due to strong winds, etc., the required amount of gas cannot be supplied even if the pressure equalization valve is fully opened, and the air-fuel ratio fluctuates significantly. However, it was difficult to apply it to household combustion equipment, as the combustion became unstable.

本発明はそのような従来の欠点を除去するもの
で、送風機や弁装置を大型化することなく、燃焼
量調節比が大きく、かつ空燃比安定性の良い燃焼
制御装置を提供することを目的とする。
The present invention eliminates such conventional drawbacks, and aims to provide a combustion control device with a large combustion amount control ratio and good air-fuel ratio stability without increasing the size of the blower or valve device. do.

この目的を達成するために本発明は、ガス比例
弁で燃焼量を調節し混合部の上流にそれぞれ設け
られた空気側絞りとガス側絞りのそれぞれの上流
の間の圧力差を差圧検出器で検出し、その圧力差
が零となる様に空気量可変機構を制御するもので
ある。
In order to achieve this objective, the present invention regulates the combustion amount with a gas proportional valve, and detects the pressure difference between the air-side throttle and the gas-side throttle, which are respectively provided upstream of the mixing section, using a differential pressure detector. The air amount variable mechanism is controlled so that the pressure difference becomes zero.

この構成によつて、差圧検出器は直接ガス弁を
動かす必要もなく電気信号を発生するのみで良
く、さらに制御回路に積分要素をもたせれば定常
的に差圧が零の状態で安定させることも可能にな
る。したがつて差圧検出器は小さなダイアフラム
でその目的を果せ、かつ絞りの両端の発生圧力も
小さくできるので、送風機も小さなもので良い。
また実際に供給されたガス量に応じた空気量が供
給されるので、ガス供給圧力等が低下した時でも
空燃比は一定に保たれる。
With this configuration, the differential pressure detector does not need to directly move the gas valve and only needs to generate an electrical signal, and if the control circuit includes an integral element, the differential pressure can be constantly stabilized at zero. It also becomes possible. Therefore, the differential pressure detector can achieve its purpose with a small diaphragm, and the pressure generated at both ends of the throttle can be reduced, so the blower can also be small.
Furthermore, since the amount of air is supplied in accordance with the amount of gas actually supplied, the air-fuel ratio is kept constant even when the gas supply pressure or the like decreases.

以下、本発明の実施例を図面を用いて詳しく説
明する。尚、図中、第1図と同一部品については
同一番号を付している。
Embodiments of the present invention will be described in detail below with reference to the drawings. In the figure, parts that are the same as those in FIG. 1 are given the same numbers.

第2図は本発明の1実施例の構成を示すブロツ
ク図である。
FIG. 2 is a block diagram showing the configuration of one embodiment of the present invention.

図において、1は燃焼用空気を供給する送風機
でここでは送風機の回転数を制御することにより
風量可変機構を構成している。2は空気通路に設
けられた空気側絞りでありその両端に空気量に応
じた差圧を発生する。5はガス通路に設けられた
ガス側絞りでありその両端にガス量に応じた差圧
を発生する。3は空気通路とガス通路の合流する
混合部で、ガスと燃焼用空気とか混合されバーナ
6に混合ガスを導く、11は熱交換器でそのパイ
プに通された水を加熱する。12はサーミスタで
熱交換器出口の出湯温度に応じた電気信号を発生
する。13はガス比例弁であり電磁コイルに流す
電流に応じてコイル中に置かれた可動鉄芯がガス
弁の開度を連続的に調節する。14は温度設定器
であり可変抵抗器を手動回動することにより出湯
温度を設定する。15は出湯温制御回路であり、
サーミスタ12と温度設定器14との信号の差を
増幅しガス比例弁13の電磁コイルの電流を加減
して出湯温度が設定温度と等しくなる様にガス量
を自動調節する。16は空気側絞り2の上流とガ
ス側絞り5の上流との圧力差を検出する差圧検出
器であり、差圧に比例した電気信号を発生する。
17は空燃比制御回路であり差圧検出器16の信
号を受けてその差圧が正(PA>PG)になれば回
転数制御回路19により送風機1の回転数を減少
させ、差圧が負(PA<PG)になれば反対に送風
機の回転数を増大させる様に働く。さらに空燃比
制御回路は、積分要素18を有し差圧の定常偏差
を零にする様に働く。
In the figure, reference numeral 1 denotes a blower that supplies combustion air, and here a variable air volume mechanism is constructed by controlling the rotational speed of the blower. Reference numeral 2 denotes an air-side throttle provided in the air passage, which generates a pressure difference between both ends of the throttle in accordance with the amount of air. Reference numeral 5 denotes a gas-side throttle provided in the gas passage, which generates a pressure difference between both ends of the throttle in accordance with the amount of gas. 3 is a mixing part where the air passage and the gas passage meet, where gas and combustion air are mixed and the mixed gas is introduced to the burner 6. 11 is a heat exchanger which heats the water passed through the pipe. 12 is a thermistor that generates an electric signal according to the hot water temperature at the outlet of the heat exchanger. 13 is a gas proportional valve, and a movable iron core placed in the coil continuously adjusts the opening degree of the gas valve according to the current flowing through the electromagnetic coil. Reference numeral 14 denotes a temperature setting device, and the hot water temperature is set by manually rotating a variable resistor. 15 is a hot water temperature control circuit;
The difference between the signals between the thermistor 12 and the temperature setting device 14 is amplified and the current of the electromagnetic coil of the gas proportional valve 13 is adjusted to automatically adjust the gas amount so that the hot water temperature becomes equal to the set temperature. A differential pressure detector 16 detects the pressure difference between the upstream side of the air-side throttle 2 and the upstream side of the gas-side throttle 5, and generates an electric signal proportional to the differential pressure.
17 is an air-fuel ratio control circuit which receives a signal from the differential pressure detector 16, and when the differential pressure becomes positive (P A > P G ), the rotation speed control circuit 19 decreases the rotation speed of the blower 1 to reduce the differential pressure. When becomes negative (P A < P G ), it works to increase the rotation speed of the blower. Further, the air-fuel ratio control circuit has an integral element 18 and functions to reduce the steady-state deviation of the differential pressure to zero.

ここで従来例で述べた式3と同様の関係が成り
立ち、ガス比例弁で調節されたガス量に比例した
空気量が供給される。ここでは、空燃比制御回路
の積分要素により、式3に於ける△PGに相当す
る誤差分が限りなく零に近づけられるので定格時
の空気側及びガス側絞りの発生差圧を小さく選ん
でも、燃焼量調節比を大きくできる。
Here, a relationship similar to Equation 3 described in the conventional example is established, and an air amount proportional to the gas amount adjusted by the gas proportional valve is supplied. Here, the error corresponding to △P G in Equation 3 can be brought as close to zero as possible by the integral element of the air-fuel ratio control circuit, so even if the differential pressure generated between the air side and gas side throttles at the rated time is selected to be small. , the combustion amount adjustment ratio can be increased.

ここでは、ガスと燃焼用空気とを混合部で予め
混合してバーナに供給する全一次方式を例にとつ
ているが、混合部とバーナとが一体となり燃焼用
空気を多段に分けてガスと混合する型式でもほぼ
同様に実施できる。また、空気量可変機構が空気
通路に設けたダンパで構成されるものであつても
かまわない。
Here, we take as an example an all-primary system in which gas and combustion air are mixed in advance in a mixing section and supplied to the burner, but the mixing section and burner are integrated and the combustion air is divided into multiple stages and converted into gas. It can be carried out in almost the same way even in a mixed type. Further, the air amount variable mechanism may be configured by a damper provided in the air passage.

第3図は本発明の一実施例の差圧検出器の詳細
構造を示す樅断面図である。上面ケース21と下
面ケース22とダイアフラム23とで圧力室A2
4と圧力室B25とが形成され、圧力導入孔A2
6及び圧力導入孔B27からそれぞれ空気側絞り
上流圧力及びガス側絞り上流圧力が導かれる。ダ
イアフラムは受圧板A28と受圧板B29とでは
さまれ中央部で固定ピン30によつて固定されか
つ圧力室A,B間がシールされている。上面ケー
ス21には同筒状で非磁性体のコアガイド31が
一体で設けられ、固定ピン30に当接したコア3
2をガイドするとともに、差動トランス部の外気
とのシールを果している。コアガイド31の外側
には差動トランスのコイル33が固定される。ダ
イアフラム部及びコアーの重量は、下面ケース2
2とネジ結合された調節ネジ34とスプリング受
け35と受圧板B29との間のスプリング36に
よつて支えられ、圧力差が零のときに、コアが差
動トランスの中点になる様に、すなわち差動トラ
ンスの出力信号が零となる様に調節される。
FIG. 3 is a sectional view showing the detailed structure of a differential pressure detector according to an embodiment of the present invention. The upper case 21, the lower case 22, and the diaphragm 23 form a pressure chamber A2.
4 and a pressure chamber B25 are formed, and the pressure introduction hole A2
6 and pressure introduction hole B27, the air side throttle upstream pressure and the gas side throttle upstream pressure are respectively introduced. The diaphragm is sandwiched between a pressure receiving plate A28 and a pressure receiving plate B29 and fixed at the center by a fixing pin 30, and the pressure chambers A and B are sealed. A cylindrical core guide 31 made of non-magnetic material is integrally provided on the upper case 21, and the core 3 in contact with the fixing pin 30
2 and also serves as a seal between the differential transformer and the outside air. A coil 33 of a differential transformer is fixed to the outside of the core guide 31. The weight of the diaphragm part and core is lower case 2.
The core is supported by the spring 36 between the adjusting screw 34, the spring receiver 35, and the pressure receiving plate B29, which are threadedly connected to the 2, and the core is at the midpoint of the differential transformer when the pressure difference is zero. In other words, the output signal of the differential transformer is adjusted to zero.

圧力室A,Bの間に差圧が発生するとダイアフ
ラムが変位し、その変位量に応じた電気信号が差
動トランス33の2次コイルから出力される訳で
あるが、前述の様に空燃比制御回路により、その
圧力差が常に零となる様フイードバツク制御され
るためダイアフラムの変位量は小さくてすむた
め、ダイアフラムの剛性、変位による有効面積の
変位等の影響を受けにくい。さらに、差圧検出器
に要求される性能は、差圧零時の出力のみが安定
しておれば良く差圧に対する出力信号の直線性、
ゲインの変化等は高精度である必要はない。差動
トランスの零点出力位置はコイル33とコア32
との機械的位置関係によりほぼ決まるもので、励
磁電流及び周波数の変動、コイル抵抗の変動等に
よつてほとんど影響を受けない。したがつて、差
圧検出器は、小さなダイアフラムと簡単な構造の
差動トランスとの組み合わせで構成できる。
When a pressure difference occurs between pressure chambers A and B, the diaphragm is displaced, and an electric signal corresponding to the amount of displacement is output from the secondary coil of the differential transformer 33.As mentioned above, the air-fuel ratio Since the control circuit performs feedback control so that the pressure difference is always zero, the amount of displacement of the diaphragm can be small, so it is less affected by the rigidity of the diaphragm and the effective area due to displacement. Furthermore, the performance required of a differential pressure detector is that only the output when the differential pressure is zero is stable, and the linearity of the output signal with respect to the differential pressure,
Changes in gain, etc. do not need to be highly accurate. The zero point output position of the differential transformer is the coil 33 and core 32.
It is almost determined by the mechanical positional relationship with the coil, and is almost unaffected by fluctuations in the excitation current and frequency, fluctuations in the coil resistance, etc. Therefore, the differential pressure detector can be constructed by combining a small diaphragm and a differential transformer with a simple structure.

以上の構成により、バーナの負荷となる水の流
量や入口水温が変動しても、自動的にガス量を調
節して、出湯温度を安定に保つとともに、空燃比
を安定に保つことができる。
With the above configuration, even if the flow rate and inlet water temperature of the water that loads the burner fluctuate, the gas amount can be automatically adjusted to keep the outlet hot water temperature stable and the air-fuel ratio stable.

さらに、ガス供給圧力が低下した場合、あるい
は強風等の影響で内部の静圧が上昇した場合には
ガス比例弁13の弁が全開になつても必要なだけ
のガス量が供給できない。この時でも送風機は差
圧が零となる様回転数制御され、実際に供給され
たガス量に応じた空気量を供給するため、空燃比
は安定であり、燃焼は安定に保たれる。
Furthermore, if the gas supply pressure decreases or if the internal static pressure increases due to strong winds or the like, the required amount of gas cannot be supplied even if the gas proportional valve 13 is fully opened. Even at this time, the rotation speed of the blower is controlled so that the differential pressure is zero, and the amount of air is supplied according to the amount of gas actually supplied, so the air-fuel ratio is stable and the combustion is kept stable.

以上のように本発明のガス燃焼制御装置によれ
ば、空気ガス混合部の上流にそれぞれ空気側絞り
とガス側絞りとを設け、空気側絞りの上流とガス
側絞りの上流との差圧を差圧検出器で検出し、そ
の信号により積分要素を介して、差圧を零とする
様に風量可変機構を制御しているため、燃焼量調
節比大きくしても高精度に空燃比を安定化でき、
空気側及びガス側絞りの発生圧力を小さくできる
ので送風機も小型になり、またガス供給圧の低い
家庭用ガス燃料でも使用可能となる。また、差圧
検出器は、差圧零時のみ安定に検出できれば良い
ので、小さなダイアフラムと差動トランスとを使
つた簡単な構成で実現でき、機器の小型化、低コ
スト化がはかれる。さらに、燃焼量をガス比例弁
で調節し、前述の差圧検出器の信号に応じて風量
可変機構を制御して、空燃比を一定に保つ様構成
したので、ガス供給圧力が低下した場合や、強風
等の影響で内部の静圧が高くなつた場合でも常に
空燃比は一定に保たれ燃焼が不安定になることは
ない等の効果が得られる。
As described above, according to the gas combustion control device of the present invention, an air-side restriction and a gas-side restriction are provided upstream of the air-gas mixing section, and the differential pressure between the upstream of the air-side restriction and the upstream of the gas-side restriction is controlled. The differential pressure is detected by the differential pressure detector, and the variable air volume mechanism is controlled by the signal via the integral element to bring the differential pressure to zero, so the air-fuel ratio is stabilized with high precision even when the combustion amount adjustment ratio is increased. can be converted into
Since the pressure generated by the air and gas side throttles can be reduced, the blower can also be made smaller, and it can also be used with household gas fuel, which has a low gas supply pressure. Furthermore, since the differential pressure detector only needs to be able to stably detect when the differential pressure is zero, it can be realized with a simple configuration using a small diaphragm and a differential transformer, thereby reducing the size and cost of the device. Furthermore, the combustion amount is adjusted by a gas proportional valve, and the variable air volume mechanism is controlled according to the signal from the differential pressure detector mentioned above to keep the air-fuel ratio constant. Even if the internal static pressure increases due to the influence of strong winds, etc., the air-fuel ratio is always kept constant and combustion does not become unstable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のガス燃焼制御装置を示す構成
図、第2図は本発明の一実施例のガス燃焼制御装
置の構成を示すブロツク図、第3図は本発明の一
実施例の差圧検出器の構成を示す樅断面図であ
る。 1……送風機、2……空気側絞り、3……混合
部、5……ガス側絞り、13……ガス比例弁、1
9……回転数制御回路、16……差圧検出器、1
1……熱交換器、12……サーミスタ、14……
温度設定器、15……出湯温制御回路、17……
空燃比制御回路、18……積分要素、23……ダ
イアフラム、33……差動トランスコイル、32
……コア。
Fig. 1 is a block diagram showing a conventional gas combustion control device, Fig. 2 is a block diagram showing the structure of a gas combustion control device according to an embodiment of the present invention, and Fig. 3 is a differential pressure diagram of an embodiment of the present invention. It is a fir cross-sectional view showing the configuration of a detector. 1...Blower, 2...Air side throttle, 3...Mixing section, 5...Gas side throttle, 13...Gas proportional valve, 1
9... Rotation speed control circuit, 16... Differential pressure detector, 1
1... Heat exchanger, 12... Thermistor, 14...
Temperature setting device, 15... Hot water temperature control circuit, 17...
Air-fuel ratio control circuit, 18... Integral element, 23... Diaphragm, 33... Differential transformer coil, 32
……core.

Claims (1)

【特許請求の範囲】[Claims] 1 燃焼用空気を供給する送風機と、ガスと燃焼
用空気とを混合する混合部と、バーナと、混合部
の上流の空気通路及びガス通路にそれぞれ空気側
りとガス側りと、さらにガス通路に電気信号
に応じてガス供給量を連続可変するガス比例弁
と、電気信号に応じて空気量を連続可変する空気
量可変機構と、空気側りの上流とガス側りの
上流との圧力差に応じた電気信号を出力する差圧
検出器とを有し、前記差圧検出器の信号によりそ
の差圧が零となる様に前記空気量可変機構を制御
する燃焼制御装置。
1. A blower that supplies combustion air, a mixing part that mixes gas and combustion air, a burner, an air passage and a gas passage upstream of the mixing part, respectively, and an air side and a gas side, and a gas passage. A gas proportional valve that continuously varies the gas supply amount in response to an electrical signal, an air volume variable mechanism that continuously varies the air volume in response to an electrical signal, and a pressure difference between the upstream side of the air side and the upstream side of the gas side. and a differential pressure detector that outputs an electric signal according to the pressure difference, and controls the air amount variable mechanism so that the differential pressure becomes zero based on the signal from the differential pressure detector.
JP57107224A 1982-06-21 1982-06-21 Combustion control device Granted JPS58224225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57107224A JPS58224225A (en) 1982-06-21 1982-06-21 Combustion control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57107224A JPS58224225A (en) 1982-06-21 1982-06-21 Combustion control device

Publications (2)

Publication Number Publication Date
JPS58224225A JPS58224225A (en) 1983-12-26
JPH033847B2 true JPH033847B2 (en) 1991-01-21

Family

ID=14453632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57107224A Granted JPS58224225A (en) 1982-06-21 1982-06-21 Combustion control device

Country Status (1)

Country Link
JP (1) JPS58224225A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021117730A1 (en) 2019-12-09 2021-06-17 国際先端技術総合研究所株式会社 Aerial vehicle and tower including charging port

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE212703T1 (en) * 1997-03-05 2002-02-15 Siemens Building Tech Ag CONTROL AND REGULATORY DEVICE FOR A GAS BURNER
US7744366B2 (en) * 2005-10-17 2010-06-29 Thomas & Betts International, Inc. System and method for improving the thermal efficiency of a heating system
DE102011117736A1 (en) * 2011-11-07 2013-05-08 Honeywell Technologies Sarl Method for operating a gas burner
US9528712B2 (en) * 2012-11-05 2016-12-27 Pat Caruso Modulating burner system
CN112075422B (en) * 2020-10-22 2021-11-02 湖南惠民生物科技有限公司 Preparation method and production equipment for pesticide preparation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021117730A1 (en) 2019-12-09 2021-06-17 国際先端技術総合研究所株式会社 Aerial vehicle and tower including charging port

Also Published As

Publication number Publication date
JPS58224225A (en) 1983-12-26

Similar Documents

Publication Publication Date Title
US9791172B2 (en) Dual sensor combustion system
US5388607A (en) Control system for supplying a gas flow to a gas consumption
US6579087B1 (en) Regulating device for gas burners
JPH033847B2 (en)
JPH033848B2 (en)
JPS649528B2 (en)
JPS5885016A (en) Combustion control device
JPS5843655B2 (en) combustion device
JPH0158412B2 (en)
JPS649526B2 (en)
JPH02256856A (en) Heating device for external combustion engine
JPH0231287B2 (en)
JPH0229931B2 (en)
JPS6314366B2 (en)
JPS59219622A (en) Gas combustion controller
JPS649525B2 (en)
JPS646363B2 (en)
JPS6080018A (en) Gas burning control device
JPH0236857B2 (en)
JPH033852B2 (en)
JPS6026219A (en) Gas combustion controller
JPS649529B2 (en)
JPS60164115A (en) Gas burning control device
JPH0221483B2 (en)
JPS59125322A (en) Gas combustion controlling device