JPS646363B2 - - Google Patents

Info

Publication number
JPS646363B2
JPS646363B2 JP58114511A JP11451183A JPS646363B2 JP S646363 B2 JPS646363 B2 JP S646363B2 JP 58114511 A JP58114511 A JP 58114511A JP 11451183 A JP11451183 A JP 11451183A JP S646363 B2 JPS646363 B2 JP S646363B2
Authority
JP
Japan
Prior art keywords
combustion
air
gas
amount
throttle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58114511A
Other languages
Japanese (ja)
Other versions
JPS608618A (en
Inventor
Hideo Uematsu
Yoshio Yamamoto
Takeshi Natsumeda
Yoshuki Yokoajiro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58114511A priority Critical patent/JPS608618A/en
Publication of JPS608618A publication Critical patent/JPS608618A/en
Publication of JPS646363B2 publication Critical patent/JPS646363B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/025Regulating fuel supply conjointly with air supply using electrical or electromechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/02Measuring filling height in burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/02Air or combustion gas valves or dampers
    • F23N2235/06Air or combustion gas valves or dampers at the air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/20Controlling one or more bypass conduits

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、燃焼装置の燃焼量を可変制御する燃
焼制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a combustion control device that variably controls the combustion amount of a combustion device.

従来例の構成とその問題点 従来の燃焼制御装置を第1図に示す。Conventional configuration and its problems A conventional combustion control device is shown in FIG.

ガス絞り1、ガス差圧センサー1a、空気絞り
2、空気差圧センサー2aの上流側にはそれぞれ
ガス量制御弁3、燃焼用空気供給手段4が設けら
れ、前記二つの絞り部の下流側は合流して燃焼室
5へ導びかれている。6は外部負荷あるいは差圧
センサーの出力に応じてガス量制御弁3、又は、
燃焼用空気供給手段4を制御して負荷に応じて燃
焼量を可変制御する制御部である。
A gas amount control valve 3 and a combustion air supply means 4 are provided upstream of the gas throttle 1, gas differential pressure sensor 1a, air throttle 2, and air differential pressure sensor 2a, respectively, and the downstream side of the two throttle parts is They merge and are led to the combustion chamber 5. 6 is a gas amount control valve 3 or
This is a control unit that controls the combustion air supply means 4 to variably control the combustion amount according to the load.

第1図に於いて、Pgはガス量制御弁3の出口
側圧力、すなわち、ガス絞り1の上流側圧力であ
る。Paは燃焼用空気供給手段4の出口圧力すな
わち空気絞り2の上流側圧力である。Pnは燃料
ガスと燃焼用空気の合流点の圧力である。上記構
成に於いて、Pg、Pa、Pnの圧力を用いて燃料ガ
ス流量Qg、燃焼用空気流量Qaを表わすと、 Qg=K1gn、Qa=K2an となる。但し、K1、K2は比例定数である。
In FIG. 1, Pg is the pressure on the outlet side of the gas amount control valve 3, that is, the pressure on the upstream side of the gas throttle 1. Pa is the outlet pressure of the combustion air supply means 4, that is, the upstream pressure of the air throttle 2. P n is the pressure at the confluence of fuel gas and combustion air. In the above configuration, when the fuel gas flow rate Q g and the combustion air flow rate Q a are expressed using the pressures of P g , P a , and P n , Q g = K 1gn , Q a = K 2an . However, K 1 and K 2 are proportionality constants.

理論空気量Qapは、K3を定数としてQap=K3Qg
K3・K1gnで表わせる。よつて、空気比を
mで表わすと、m=Qa/Qap=(K2an)/
(K3・K1gn)となり、K4=K2/K3・K1
おくとm=K4√(an)(gn)となる。
The theoretical air amount Q ap is calculated as follows, with K 3 as a constant: Q ap = K 3 Q g =
It can be expressed as K 3・K 1gn . Therefore, if the air ratio is expressed as m, m=Q a /Q ap = (K 2an )/
(K 3 · K 1gn ), and if K 4 = K 2 /K 3 · K 1 , then m = K 4 √ ( an ) ( gn ).

制御部6はすでに簡単に説明したように外部負
荷に対応して燃焼量を変化させると同時に空気比
を制御する機能を有するものであり、空気比制御
の方法は常にPa=Pgとなるように、すなわち m=K4√(an)(gn) =K4√(gn)(gn)=K4(一定) となるようにするものである。ところが差圧セン
サには出力のばらつきによる一定誤差eが存在
し、現実には、Pa=PgとはならずにPa=Pg±e
となるために、空気比mの実際の値は m=K4√(an)(gn) =K4√(gn±)(gn) =K4√1±(gn)となる。
As already briefly explained, the control unit 6 has the function of changing the combustion amount in response to the external load and controlling the air ratio at the same time, and the air ratio control method always satisfies P a = P g . That is, m= K4√ ( an )( gn )= K4√ ( gn )( gn )= K4 (constant). However, differential pressure sensors have a certain error e due to variations in output, and in reality, P a = P g instead of P a = P g ±e
Therefore, the actual value of the air ratio m is m=K 4 √( an )( gn ) = K 4 √( gn ±)( gn ) = K 4 √1±( gn ).

すなわち空気比mは(Pg−Pn)の関数となる。In other words, the air ratio m is a function of (P g −P n ).

第2図は横軸に(Pg−Pn)すなわちガス流量
Qg縦軸に空気比mをとつてこの様子を図示した
ものである。燃料ガス流量、すなわち燃焼量は√
(Pg−Pn)に比例するため、第2図の左方が低燃
焼域を示すことになる。図から明らかの様に、一
定誤差±eに対して低燃焼域で空気比mの誤差が
急激に大きくなる。
In Figure 2, the horizontal axis is (P g −P n ), that is, the gas flow rate.
This situation is illustrated by plotting the air ratio m on the vertical axis of Q g . The fuel gas flow rate, i.e. the combustion amount, is √
Since it is proportional to (P g −P n ), the left side of FIG. 2 shows the low combustion region. As is clear from the figure, the error in the air ratio m suddenly increases in the low combustion range for a constant error ±e.

第3図は第2図と同じ軸を有する座標面にあら
いハツチングで示した燃焼良好な範囲と前述の空
気比mのばらつき範囲の両方を重ね合わせて表示
したものである。燃焼良好な範囲の下限値はバー
ナの燃焼特性にもよるが通常1.2〜1.4程度でほぼ
一定である。
FIG. 3 shows both the range of good combustion indicated by rough hatching and the range of variation in the air ratio m described above superimposed on a coordinate plane having the same axis as in FIG. 2. The lower limit of the range for good combustion depends on the combustion characteristics of the burner, but is usually approximately constant at about 1.2 to 1.4.

図から明らかのように、空気比mのばらつきの
限界値が低燃焼域で急激に広がるため空気比mを
高いところ、すなわちm=1+Aに設定する必要
がある。又、逆に空気比mをできるだけ小さく設
定すれば、低燃焼域で空気比mの誤差が急増大す
ることにより、燃焼良好な範囲の下限値から逸脱
してしまうので、それだけ、燃焼可変制御範囲を
狭まくする必要がある。
As is clear from the figure, the limit value of the variation in the air ratio m spreads rapidly in the low combustion range, so it is necessary to set the air ratio m at a high value, that is, m=1+A. On the other hand, if the air ratio m is set as small as possible, the error in the air ratio m will rapidly increase in the low combustion range, which will deviate from the lower limit of the good combustion range. need to be narrowed down.

したがつて、このような状態に於いては、低燃
焼域以外の領域では、常に余分の燃焼用空気を供
給することになり、排気ガスによつて外部に持ち
去られる熱量が増大し、熱効率の低下を招いてい
た。また、余剰の燃焼用空気を供給するというこ
とで送風機等の燃焼用空気供給手段が大形化し、
更に燃焼騒音の増大にもつながるという不具合が
あつた。
Therefore, under such conditions, extra combustion air is always supplied in areas other than the low combustion range, which increases the amount of heat carried away by the exhaust gas and reduces thermal efficiency. It was causing a decline. In addition, supplying surplus combustion air means that combustion air supply means such as blowers become larger.
Another problem was that it led to an increase in combustion noise.

発明の目的 本発明は、このような従来の問題点を解消する
もので、その目的とするところは、特に低燃焼域
で、空気比ばらつきの下限曲線が下方に急拡大す
ることを防いで、広い燃焼範囲にわたつて、空気
比を低い値に設定すると共に耐風性能の向上等を
はかつたものである。
Purpose of the Invention The present invention solves these conventional problems, and its purpose is to prevent the lower limit curve of air ratio variation from rapidly expanding downward, especially in the low combustion range. The air ratio is set to a low value over a wide combustion range, and wind resistance is improved.

発明の構成 この目的を達成する為に本発明は、ガス側通路
にはガス量調節手段とガス絞りを配設し、空気側
通路には燃焼用空気を供給する送風機と空気絞り
を配設して、それぞれの下流側をベンチユリー管
形状混合部で合流してバーナに導びき、かつ前記
空気絞りの上流側と前記ベンチユリー管形状混合
部のスロート部との間に可変絞り機構を設けたバ
イパス通路を具備し、更にガス絞り及び空気絞り
の各々の上流側の圧力差を検出する差圧検出手段
と前記送風機と前記可変絞り機構を制御する制御
部を設けたものである。
Structure of the Invention In order to achieve this object, the present invention provides a gas amount adjusting means and a gas throttle in the gas side passage, and a blower for supplying combustion air and an air throttle in the air side passage. and a bypass passage in which the downstream sides of the respective air constrictors join together at a ventilate tube-shaped mixing section and are guided to the burner, and a variable throttle mechanism is provided between the upstream side of the air restriction and the throat section of the ventillary tube-shaped mixing section. The apparatus further includes differential pressure detection means for detecting a pressure difference on the upstream side of each of the gas throttle and the air throttle, and a control section for controlling the blower and the variable throttle mechanism.

この構成によつて、燃焼量があらかじめ定めら
れた所定値以上の領域では、前記バーナの負荷に
対応して燃焼量が変化しても空気比は一定(但し
差圧検出手段の誤差は零と仮定して)に制御さ
れ、また所定値未満の領域では空気比を変化させ
て制御することができる。
With this configuration, in a region where the combustion amount is equal to or higher than a predetermined value, the air ratio remains constant even if the combustion amount changes in response to the burner load (however, the error of the differential pressure detection means is zero). ), and in a region below a predetermined value, the air ratio can be controlled by changing the air ratio.

したがつて、燃焼量が所定値以下の領域におい
て空気比を増大させ、空気比バラツキの下限曲線
が下方に急拡大するのを防ぐことができる為、空
気比を全体的に低く設定しても、空気比が燃焼良
好な範囲の下限曲線より下方にでることがなくな
るという作用をもたせることができる。
Therefore, the air ratio can be increased in the region where the combustion amount is below a predetermined value, and the lower limit curve of the air ratio variation can be prevented from rapidly expanding downward, so even if the air ratio is set low overall. , it is possible to have the effect that the air ratio does not go below the lower limit curve of the good combustion range.

実施例の説明 以下本発明の一実施例を第4図〜第7図を用い
て説明する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 4 to 7.

第4図において、1のガス側通路にガス量調節
手段2とガス絞り3を設け、4の空気側通路には
送風機5と、空気絞り6が設けられている。ガス
と燃焼用空気はベンチユリー管形状混合部7で合
流した後混合ガス通路8を通過してバーナ9に導
びかれる。10はガス絞り3と空気絞り6の上流
側の圧力差を検出する差圧センサ等の差圧検出手
段(以下差圧検出手段を差圧センサと呼ぶ)、1
1は差圧センサ検出回路、12は空気絞り6の上
流とベンチユリー管形状混合部7のスロート部と
を連通するバイパス通路、13はバイパス通路1
2に配設されている可変絞り機構である。そして
14は2次空気通路、15は最大燃焼量から所定
の燃焼量の領域では、可変絞り機構13を全閉に
保持した状態で送風機5を可変制御し、また、所
定の燃焼量未満の領域では、所定の燃焼量に対応
した一定の空気量に保持するように送風機5を制
御し、かつ可変絞り機構13を可変制御する構成
とした制御部である。16は温度設定器、17は
温度検出回路である。
In FIG. 4, a gas amount adjusting means 2 and a gas throttle 3 are provided in the gas side passage 1, and a blower 5 and an air throttle 6 are provided in the air side passage 4. After the gas and the combustion air are combined in a ventilate tube-shaped mixing section 7, they pass through a mixed gas passage 8 and are led to a burner 9. 10 is differential pressure detection means such as a differential pressure sensor that detects the pressure difference on the upstream side of the gas throttle 3 and the air throttle 6 (hereinafter the differential pressure detection means will be referred to as a differential pressure sensor);
1 is a differential pressure sensor detection circuit, 12 is a bypass passage that communicates the upstream of the air throttle 6 and the throat part of the ventilate tube-shaped mixing section 7, and 13 is a bypass passage 1.
This is a variable diaphragm mechanism located at 2. Reference numeral 14 denotes a secondary air passage, and 15 variably controls the blower 5 with the variable throttle mechanism 13 kept fully closed in the range from the maximum combustion amount to a predetermined combustion amount, and in the region below the predetermined combustion amount. Here, the control section is configured to control the blower 5 to maintain a constant air amount corresponding to a predetermined combustion amount, and to variably control the variable throttle mechanism 13. 16 is a temperature setting device, and 17 is a temperature detection circuit.

上記構成において、いま最大定格燃焼量の状態
にあるものとする。このような状態にあるとき、
温度設定器16で出湯温度が低くなるように設定
しなおすと、すなわち、負荷が減少するように作
動させると、温度設定器16と温度検出回路17
の偏差信号が制御部15で処理されて送風機5を
空気量が減少するように制御する。したがつて、
空気量が減少すると、差圧検出手段10に差圧が
発生し、この差圧出力は差圧センサ検出回路11
で処理されて差圧出力が零になるようにガス量調
節手段2をガス量が減少するように制御する。ま
た、このような状態から逆に負荷を増大させると
空気量とガス量は増大するように制御される。す
なわち、負荷が変動しても空気量に追ずいしてガ
ス量が変化するので、空気比mはほぼ一定値に保
たれる。この状態では、まだあらかじめ定めてお
いた所定の燃焼量(例えば最大定格燃焼量の1/3
の値)まで減少していない。
In the above configuration, it is assumed that the maximum rated combustion amount is currently reached. When in such a state,
When the temperature setting device 16 is reset to lower the hot water temperature, that is, when the load is reduced, the temperature setting device 16 and the temperature detection circuit 17
The deviation signal is processed by the control unit 15 to control the blower 5 so that the amount of air decreases. Therefore,
When the amount of air decreases, a differential pressure is generated in the differential pressure detection means 10, and this differential pressure output is sent to the differential pressure sensor detection circuit 11.
The gas amount adjusting means 2 is controlled to decrease the gas amount so that the differential pressure output becomes zero. Further, if the load is increased from such a state, the air amount and gas amount are controlled to increase. That is, even if the load fluctuates, the gas amount changes to follow the air amount, so the air ratio m is maintained at a substantially constant value. In this state, the predetermined combustion amount (for example, 1/3 of the maximum rated combustion amount) is still being reached.
value).

なお、この状態では可変絞り機構13は制御部
15により全閉の状態に保持されている。
In this state, the variable diaphragm mechanism 13 is held in a fully closed state by the control section 15.

次にこのような状態から更に負荷を小さくして
いき、所定の燃焼量未満の領域(例えば最大定格
燃焼量の1/3の値から最小燃焼量の値の範囲)で
は、制御部15内に内蔵されている送風機5の送
り出す空気量(最大定格燃焼量の1/3の値に於け
る空気量)が一定に保持する回路が作動すると同
時に、温度設定器16と温度検出回路17の偏差
信号で可変絞り機構13が可変制御されるように
なる。
Next, the load is further reduced from this state, and in the range below the predetermined combustion amount (for example, from 1/3 of the maximum rated combustion amount to the minimum combustion amount), the control unit 15 At the same time that the circuit that maintains the amount of air sent out by the built-in blower 5 (the amount of air at 1/3 of the maximum rated combustion amount) is activated, the deviation signal of the temperature setting device 16 and temperature detection circuit 17 is activated. The variable aperture mechanism 13 is then variably controlled.

以上の動作を分り易くする為に差圧センサ1
0、差圧センサ検出回路11等の制御系の誤差が
仮に零として考えた場合の空燃比の変化を示した
ものが第5図であり、また燃焼量(ガス量QG
と空気比mの関係を示したものが第6図である。
そして、バーナ9の燃焼特性から定まる燃焼良好
な範囲内に、今度は差圧センサ10等に制御系誤
差がともなう実際の場合について、すなわち制御
系ばらつきを考慮しての空気比mの変化状況を示
したものが第7図である。なお第5図〜第7図に
おいてa,b,cは各々最大定格燃焼量、所定の
燃焼量、最小の燃焼量を示す。また第7図のイ及
びロはそれぞれ燃焼良好な範囲の上限及び下限を
表わす。
To make the above operation easier to understand, differential pressure sensor 1
Figure 5 shows the changes in the air-fuel ratio assuming that the error in the control system such as the differential pressure sensor detection circuit 11 is zero, and the combustion amount (gas amount Q G )
FIG. 6 shows the relationship between the air ratio m and the air ratio m.
Next, we will consider the actual case where control system errors occur in the differential pressure sensor 10, etc. within the range of good combustion determined by the combustion characteristics of the burner 9, that is, the change situation of the air ratio m taking into account control system variations. What is shown is FIG. Note that in FIGS. 5 to 7, a, b, and c indicate the maximum rated combustion amount, the predetermined combustion amount, and the minimum combustion amount, respectively. Further, A and B in FIG. 7 represent the upper and lower limits of the good combustion range, respectively.

上記構成において、第7図から明らかのように
最大定格燃焼量に於ける空気比mを定めれば、こ
れとバーナ9の燃焼性から燃焼量可変範囲は従来
例ではa点とb点の範囲になる。しかし、本発明
の一実施例のようにb点以下c点まで空気量をb
点と同じ値に固定してガス量のみ可変することで
空気比mを増大させ、かつバーナ9の燃焼良好な
範囲の下限にかからないようにすることで、燃焼
量可変範囲をb点からc点まで拡張できるもので
ある。
In the above configuration, if the air ratio m at the maximum rated combustion rate is determined as is clear from FIG. become. However, as in one embodiment of the present invention, the air amount is reduced from point b to point c.
By fixing it to the same value as point and varying only the gas amount, the air ratio m is increased, and by making sure that it does not reach the lower limit of the good combustion range of burner 9, the combustion amount variable range can be changed from point b to point c. It can be expanded to.

次に本発明の他の実施例を第8図〜第10図を
用いて説明する。分り易くする為に差圧センサ1
0等の制御系誤差を零と仮定して図示した第8
図、第9図において前記実施例と相違する点は所
定の燃焼量をb1とb2の2つに分け、かつ所定の燃
焼量b2から最小燃焼量cまで、空気比mを一定に
したまま制御できる構成にしたことである。すな
わち、b2で可変絞り機構13が全開になると、c
点まで全開のまま保持し、温度設定器16と温度
検出回路の偏差信号が今度は送風機5を制御する
ように制御部15を構成したものである。
Next, another embodiment of the present invention will be described using FIGS. 8 to 10. For clarity, differential pressure sensor 1
The eighth figure is illustrated assuming that the control system error such as 0 is zero.
9, the difference from the above embodiment is that the predetermined combustion amount is divided into two, b 1 and b 2 , and the air ratio m is kept constant from the predetermined combustion amount b 2 to the minimum combustion amount c. The structure was designed so that it could be controlled without changing the position. That is, when the variable diaphragm mechanism 13 is fully opened at b 2 , c
The control unit 15 is configured so that the air blower 5 is held fully open until the point is reached, and the deviation signal from the temperature setting device 16 and the temperature detection circuit controls the blower 5 in turn.

この構成によれば、更に低燃焼量付近において
バーナの燃焼性から定まる燃焼良好な範囲の上限
が水平で、空気比mがこの付近で一定値であるこ
とを要求される場合の制御手段としてきわめて効
果的である。この関係を差圧センサ10等の制御
系誤差がともなう実際の場合について示したもの
が第10図である。
According to this configuration, the upper limit of the range of good combustion determined by the combustibility of the burner is horizontal in the vicinity of a low combustion amount, and it is extremely useful as a control means when the air ratio m is required to be a constant value in this vicinity. Effective. FIG. 10 shows this relationship in an actual case where errors occur in the control system of the differential pressure sensor 10 and the like.

なお、第10図におけるハ及びニはそれぞれ燃
焼良好な範囲の上限及び下限を表わす。
Note that C and D in FIG. 10 represent the upper and lower limits of the range of good combustion, respectively.

発明の効果 以上の説明から明らかのように、本発明のガス
燃焼制御装置によれば次の効果が得られる。
Effects of the Invention As is clear from the above description, the gas combustion control device of the present invention provides the following effects.

(1) ガス量調節手段とガス絞りの間の圧力と送風
機と空気絞りの間の圧力との差を検出する差圧
検出手段を配設し、それぞれの下流側をベンチ
ユリー管形状混合物で合流してバーナに導びく
と共に空気絞り上流側と前記ベンチユリー管形
状混合部のスロート部を、その間に可変絞り機
構を有するバイパス通路で連通し、かつ前記送
風機及び前記可変絞り機構を制御する制御部を
備えたことで、燃焼量が所定値以上の領域では
負荷変動に応じて空気量が変ると差圧検出手段
でガス量調節手段を差圧が零(または所定値)
になるように作動するので空気比を一定に制御
することができる。また燃焼量が所定値未満に
なると送風機の送り出す空気量が一定値にな
り、かつ負荷変動に応じて可変絞り機構が作動
するように構成したので、空気比を許される範
囲内で低く設定して燃焼量可変範囲を拡大する
ことができる。したがつて熱効率の高いしかも
燃焼騒音の低い燃焼装置の実現を可能にするも
のである。
(1) A differential pressure detection means is installed to detect the difference between the pressure between the gas amount adjustment means and the gas throttle, and the pressure between the blower and the air throttle, and the downstream sides of each are joined by a ventilate tube-shaped mixture. and a control section that communicates the air throttle upstream side with the throat section of the ventilated tube-shaped mixing section through a bypass passage having a variable throttle mechanism therebetween, and controls the blower and the variable throttle mechanism. Therefore, in a region where the combustion amount is greater than a predetermined value, when the air amount changes in response to load fluctuations, the differential pressure detection means adjusts the gas amount adjustment means until the differential pressure reaches zero (or a predetermined value).
Since it operates so that the air ratio becomes constant, the air ratio can be controlled at a constant level. In addition, when the combustion amount falls below a predetermined value, the amount of air sent out by the blower becomes a constant value, and the variable throttle mechanism is activated in response to load fluctuations, so the air ratio can be set as low as possible. The combustion amount variable range can be expanded. Therefore, it is possible to realize a combustion device with high thermal efficiency and low combustion noise.

(2) そして、低燃焼量の領域においては差圧検出
手段の一定誤差の正負に拘らず、空気比が増大
するように制御されるので燃焼機器の耐風性能
が向上できるという利点があり、 (3) 更に、制御部を可変絞り機構全開保持状態に
して負荷変動に応じて送風機を作動する構成に
することで、空気比が一定になるような制御も
可能になり、したがつてバーナの燃焼特性(燃
焼良好な範囲)が複雑な場合においてもその空
気比を燃焼特性にあわせて制御することができ
るという効果をも有するものである。
(2) In the region of low combustion amount, the air ratio is controlled to increase regardless of whether the fixed error of the differential pressure detection means is positive or negative, so there is an advantage that the wind resistance performance of the combustion equipment can be improved. 3) In addition, by configuring the control unit to keep the variable throttle mechanism fully open and operate the blower in response to load fluctuations, it is possible to control the air ratio to be constant, thereby controlling the burner combustion. This also has the effect that even when the characteristics (range of good combustion) are complex, the air ratio can be controlled in accordance with the combustion characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の燃焼制御装置の構成図、第2図
および第3図は同動作説明図、第4図は本発明の
ガス燃焼制御装置の一実施例を示す構成図、第5
図及び第6図は同差圧検出手段等の制御系に誤差
がない場合の制御特性図、第7図は同差圧検出手
段等の制御系に誤差がともなう実際の場合の制御
特性とバーナの燃焼特性との関係を示す図、第8
図及び第9図は本発明の第2実施例において差圧
検出手段等の制御系に誤差がない場合の制御特性
図、第10図は誤差がともなう実際の場合におけ
る制御特性とバーナの燃焼特性との関係を示す図
である。 1……ガス側通路、2……ガス量調節手段、3
……ガス絞り、4……空気側通路、5……送風
機、6……空気絞り、7……ベンチユリー管形状
混合部、9……バーナ、10……差圧検出手段、
12……バイパス通路、13……可変絞り機構、
15……制御部。
FIG. 1 is a configuration diagram of a conventional combustion control device, FIGS. 2 and 3 are explanatory diagrams of the same operation, FIG. 4 is a configuration diagram showing an embodiment of the gas combustion control device of the present invention, and FIG.
6 and 6 are control characteristics diagrams when there is no error in the control system such as the differential pressure detection means, and FIG. Figure 8 shows the relationship between the combustion characteristics of
9 and 9 are control characteristic diagrams when there is no error in the control system such as the differential pressure detection means in the second embodiment of the present invention, and FIG. 10 is a control characteristic and burner combustion characteristic in an actual case where there is an error. FIG. 1...Gas side passage, 2...Gas amount adjustment means, 3
...Gas throttle, 4...Air side passage, 5...Blower, 6...Air throttle, 7...Venture tube shape mixing section, 9...Burner, 10...Differential pressure detection means,
12... Bypass passage, 13... Variable throttle mechanism,
15...Control unit.

Claims (1)

【特許請求の範囲】 1 ガス側通路にはガス量調節手段とガス絞りを
配設し、空気側通路には燃焼用空気を供給する送
風機と空気絞りを配設して、それぞれの下流側を
ベンチユリー管形状混合部で合流してバーナに導
びき、かつ前記空気絞りの上流側と前記ベンチユ
リー管形状混合部のスロート部との間に可変絞り
機構を挿設したバイパス通路、及び、前記ガス量
調節手段とガス絞りの間の圧力と、前記送風機と
空気絞りの間の圧力との圧力差を検出する差圧検
出手段を具備し、更に燃焼量があらかじめ定めら
れた所定値以上の領域では、前記可変絞り機構を
全閉状態に保持して前記燃焼用空気を制御し、ま
た所定値未満の領域では、前記燃焼用空気を一定
値に保持して、前記可変絞り機構を制御する制御
部とから構成するガス燃焼制御装置。 2 可変絞り機構を電磁力で動作するように構成
した特許請求の範囲第1項記載のガス燃焼制御装
置。
[Scope of Claims] 1. A gas amount adjusting means and a gas throttle are disposed in the gas side passage, and a blower and an air throttle for supplying combustion air are disposed in the air side passage, and the downstream side of each is disposed. a bypass passage which joins at a ventilate tube shape mixing section and leads to the burner, and has a variable throttle mechanism inserted between the upstream side of the air restriction and the throat section of the ventuille tube shape mixing section; and the gas amount. A differential pressure detection means is provided for detecting a pressure difference between the pressure between the adjustment means and the gas throttle and the pressure between the blower and the air throttle, and further, in a region where the combustion amount is equal to or higher than a predetermined value, a control unit that controls the combustion air by maintaining the variable throttle mechanism in a fully closed state, and controls the variable throttle mechanism by maintaining the combustion air at a constant value in a region below a predetermined value; A gas combustion control device consisting of: 2. The gas combustion control device according to claim 1, wherein the variable throttle mechanism is configured to operate by electromagnetic force.
JP58114511A 1983-06-24 1983-06-24 Gas combustion controller Granted JPS608618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58114511A JPS608618A (en) 1983-06-24 1983-06-24 Gas combustion controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58114511A JPS608618A (en) 1983-06-24 1983-06-24 Gas combustion controller

Publications (2)

Publication Number Publication Date
JPS608618A JPS608618A (en) 1985-01-17
JPS646363B2 true JPS646363B2 (en) 1989-02-03

Family

ID=14639582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58114511A Granted JPS608618A (en) 1983-06-24 1983-06-24 Gas combustion controller

Country Status (1)

Country Link
JP (1) JPS608618A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030026048A (en) * 2001-09-24 2003-03-31 주식회사 테크네트 Apparatus for making heat of which quantity of heat can be controlled by air pressure controlling
JP5451138B2 (en) * 2009-03-27 2014-03-26 大阪瓦斯株式会社 Gas combustion equipment

Also Published As

Publication number Publication date
JPS608618A (en) 1985-01-17

Similar Documents

Publication Publication Date Title
JPS646363B2 (en)
JPS5843655B2 (en) combustion device
JPH033847B2 (en)
JPS60122818A (en) Device for controlling combustion of gas
JPH033848B2 (en)
JPS6026219A (en) Gas combustion controller
JPS6091132A (en) Controller of gas combustion
JPS6410734B2 (en)
JPS5815689B2 (en) gas combustion equipment
JPH11159756A (en) Water injection control device for oil fired dln combustor
JPH0231287B2 (en)
JPH0230408B2 (en)
JPH0599429A (en) Heater device
JPS58178117A (en) Proportioning controller for gas combustion
JPS59219622A (en) Gas combustion controller
JPS5926849B2 (en) Forced supply/exhaust type combustion control device
JPS60169013A (en) Burning control device
JPS5969612A (en) Gas combustion control device
JPS61138840A (en) Air-fuel ratio controller for gas engine
JPS61231321A (en) Combustion control unit of radioactive waste incinerator
JPH0427444B2 (en)
JPS58190618A (en) Combustion device
JPS61268943A (en) Gas instantaneous type hot water supplier
JPH0449478Y2 (en)
JP2935304B2 (en) Control device for bypass gas flow