JPH0230408B2 - - Google Patents

Info

Publication number
JPH0230408B2
JPH0230408B2 JP58123931A JP12393183A JPH0230408B2 JP H0230408 B2 JPH0230408 B2 JP H0230408B2 JP 58123931 A JP58123931 A JP 58123931A JP 12393183 A JP12393183 A JP 12393183A JP H0230408 B2 JPH0230408 B2 JP H0230408B2
Authority
JP
Japan
Prior art keywords
rotation speed
blower
burner
gas
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58123931A
Other languages
Japanese (ja)
Other versions
JPS6016218A (en
Inventor
Yoshiji Ishikawa
Shuji Ootsuka
Junichi Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP58123931A priority Critical patent/JPS6016218A/en
Priority to KR1019840002739A priority patent/KR900006880B1/en
Publication of JPS6016218A publication Critical patent/JPS6016218A/en
Publication of JPH0230408B2 publication Critical patent/JPH0230408B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/10Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using thermocouples
    • F23N5/102Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using thermocouples using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • F23N2233/08Ventilators at the air intake with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/10Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using thermocouples

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)

Description

【発明の詳細な説明】 本発明は全1次空気燃焼式バーナを用いた燃焼
器に於ける燃焼制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a combustion control device in a combustor using an all-primary air combustion type burner.

従来この種燃焼器として、例えば特開昭57−
192741号公報により全1次空気燃焼式バーナに全
1次空気を強制的に供給する送風機を設け、空気
過剰率(供給空気量/理論空気量)を1.0以上に
設定して、燃焼炎中の過剰の1次空気により火炎
温度を低下させてNOx濃度を低下させるように
したものは知られるが、この場合空気過剰率の減
少によれば火炎温度の上昇でNOx濃度が増加す
ると共に逆火を生じ易くなり、又空気過剰率が増
加し過ぎると火炎温度が低下して炎のリフトアツ
プによるCO濃度の増加や吹き消えを生じ易くな
るもので、良好な燃焼を得るには、空気過剰率を
一定範囲内に設定する必要があり、従つてバーナ
への供給ガス量を増減制御する場合は、1次空気
の供給量も増減させて空気過剰率を一定の良好燃
焼範囲内に収めるようにすることが必要となる。
Conventionally, as this type of combustor, for example, JP-A-57-
According to Publication No. 192741, a blower is installed to forcefully supply all the primary air to the all-primary air combustion type burner, and the excess air ratio (supplied air amount/theoretical air amount) is set to 1.0 or more to reduce the amount of air in the combustion flame. It is known that excess primary air is used to lower the flame temperature and reduce the NOx concentration, but in this case, if the excess air ratio is reduced, the NOx concentration will increase due to the increase in flame temperature, and backfire will occur. In addition, if the excess air ratio increases too much, the flame temperature will drop and the CO concentration will increase due to flame lift-up, making it easier for the flame to blow out. In order to obtain good combustion, the excess air ratio must be kept constant. Therefore, when increasing or decreasing the amount of gas supplied to the burner, the amount of primary air supplied must also be increased or decreased to keep the excess air ratio within a certain good combustion range. Is required.

そのための手段として、送風機の回転数を供給
ガス量に応じて変化させるようにすることも考え
られるが、供給ガス量が同じでもガス成分に差が
あると理論供給量が変化するため、供給ガス量に
応じた送風機の回転数を変化させる方式では、ガ
ス種変更のみならず各ガス種について定められる
1ガス(不完全燃焼し易いガス)、2ガス(逆火
し易いガス)3ガス(吹き消えし易いガス)の3
種のテストガスにおけるガス成分の差によつて空
気過剰率が良好燃焼範囲から外れてしまうことが
ある。
One way to do this is to change the rotation speed of the blower according to the amount of gas supplied, but even if the amount of supplied gas is the same, if there is a difference in gas components, the theoretical supply amount will change. In the method of changing the rotation speed of the blower according to the amount of gas, not only the gas type can be changed, but also gases 1 (gas that tends to combust incompletely), 2 gas (gas that tends to backfire), and 3 gas (gas that is prone to backfire), which are specified for each gas type, can be changed. Gases that are easily extinguished) Part 3
Differences in gas composition in different test gases may cause the excess air ratio to deviate from the range of good combustion.

本発明は、空気過剰率の変化により上記の如く
火炎温度が変化することに着目し、感熱素子を用
いてその出力により送風機の回転数を増減制御す
ることでガス供給量の増減やガス成分の差異に係
わらず常に空気過剰率を良好燃焼範囲内に保持し
得るようにした装置を提供することをその目的と
するもので、全一次空気燃焼式バーナと該バーナ
に一次空気を強制的に供給する送風機とを備え、
該バーナへの供給ガス量を増減制御するようにし
たものに於いて、該バーナに臨ませて熱電対その
他の感熱素子を設け、ガス成分又はガス量の異な
る複数のガスを送風機の回転数を変化させて燃焼
させるとき、それぞれ該感熱素子に得られる出力
のうち、出力変化率の小さい点を結んだ特性線に
従つて回転数指令信号を発生する回転数指令信号
回路と、送風機の実際の回転数に応じた信号を発
生する回転数検知回路と、両回路から信号を入力
する差動増幅回路とを備え、該差動増幅バーナか
らの出力信号により両回路からの変差が零になる
ように前記送風機の回転数を増減させる事を特徴
とする。
The present invention focuses on the fact that the flame temperature changes as described above due to changes in the excess air ratio, and uses a heat-sensitive element to control the rotational speed of the blower according to its output, thereby increasing or decreasing the amount of gas supplied and controlling the gas components. The purpose is to provide a device that can always maintain the excess air ratio within a good combustion range regardless of the difference, and includes a total primary air combustion type burner and a device that forcibly supplies primary air to the burner. Equipped with a blower to
In a device in which the amount of gas supplied to the burner is controlled to increase or decrease, a thermocouple or other heat-sensitive element is provided facing the burner, and a plurality of gases having different gas components or amounts are controlled to control the rotational speed of the blower. A rotation speed command signal circuit generates a rotation speed command signal according to a characteristic line connecting points with a small output change rate among the outputs obtained from each heat-sensitive element when changing the output and combusting it. It is equipped with a rotation speed detection circuit that generates a signal according to the rotation speed and a differential amplifier circuit that inputs signals from both circuits, and the output signal from the differential amplification burner makes the difference from both circuits zero. The present invention is characterized in that the number of rotations of the blower is increased or decreased so that the number of rotations of the blower is increased or decreased.

以下本発明を図示の実施例に付き説明する。 The present invention will be explained below with reference to the illustrated embodiments.

図面は全1次空気燃焼式バーナを組込んだ温風
暖房器の燃焼制御装置に本発明を適用した実施例
を示し、1は背面の吸込口1aと前面温風吹出口
1bとを備える暖房器本体であつて、該本体1内
に、全1次空気燃焼式バーナ2を内臓する燃焼筐
3と、送風機4とを収容し、該送風機4の回転に
より該吸込口1aから室内空気と、更に該燃焼筐
3の上部の燃焼排気口3aから該バーナ2の燃焼
熱気とを吸引し、両者を混合させて該吹出口1b
から室内に吹出させるようにした。この場合、該
燃焼筐3内には該送風機4の吸引力が作用し、こ
れが該バーナ2の燃焼面2aを介してその内部に
作用し、混合管2bから1次空気が強制的に該バ
ーナ2内に吸引され、かくて1次空気量は該送風
機4の回転数に応じて増減される。該バーナ2に
連なるガス供給路5には、上流側の第1電磁弁6
と、下流側の第2電磁弁7とその中間のガスコツ
ク8とガバナ9とを介在させると共に、該第2電
磁弁7に並列の側路10を設け、室温に応じてこ
れが設定温度を下回つたときは、該第2電磁弁7
を開弁させて該バーナ2への供給ガス量をカロリ
ー換算で例えば3000kcal/hに増加させ、設定温
度を上回つたときは該第2電磁弁7を閉弁させて
該側路10を介してのガス送気により供給ガス量
を例えば1500kcal/hに減少させ、更に室温が上
昇した時は該第1電磁弁6を閉じて該バーナ2の
燃焼を停止させるようにした。図面で11,12
は酸欠安全装置用の検知バーナと火炎検知素子を
示す。ここで本発明により、前記全1次空気燃焼
式バーナ2に臨させて熱電対その他の感熱素子1
3を設け、前記送風機4の回転数を該感熱素子1
3の出力に応じ所定の比例特性に従つて増減制御
すべく以下の如く構成した。即ち、該感熱素子1
3の出力に応じ例えば第3図にa線で示す特性線
に従つた回転数指令信号を発生する回転数指令信
号回路14と、送風機4の回転検知用ピツクアツ
プコイル15から出力により該送風機4の実際の
回転数に応じた信号を発生する回転数検知回路1
6と、該両回路14,16からの信号を入力する
差動増幅回路17とを設け、該差動増幅回路17
の出力により該送風機4の駆動モータ4aの回転
制御用のパワトランジスタ18を作動させて、該
両回路14,16からの信号の偏差が零になるよ
うに該送風機4の回転数を増減させ、かくて該感
熱素子13の出力の変化によれば該送風機4の回
転数が上記特性線aに沿つて増減制御されるよう
にした。次ぎにその作動を説明するが、その前に
先ず13Aガスの3種のテストガスを用い、各ガ
スの供給ガス量を3000Kcal/hと1500Kcal/h
とに設定し、夫々の場合について送風機4の回転
数をバーナ2の良好燃焼範囲(空気過剰率で1.02
〜略1.5の範囲)内で変化させつつ感熱素子13
の出力を測定した実験結果について説明する。尚
テストガスの成分は、1ガスCH485%−C3H815
%、2ガスがH230%−CH455%−C3H815%、3
ガスがCH498%−N22%であり、理論空気量(空
気量/ガス量)は1ガス11.7、2ガスが9.553、
3ガスが9.364である。その結果は第3図に示す
通りであり、h1、h2、h3は3000Kcal/h時の1
ガス、2ガス、3ガスの夫々の変化特性、l1、l2
l3は1500Kcal/h時の1ガス、2ガス、3ガスの
夫々の変化特性を示す。同図から明らかなよう
に、理論空気量の差異により良好燃焼させるに必
要な回転数は1ガス、2ガス、3ガスの順に高く
なり、3000Kcal/h時の回転数を3ガスの回転
数範囲に設定した場合、1ガスを用いると空気過
剰率が良好燃焼範囲の下限を下回つて逆火を生じ
易くなり、又これを1ガスの回転数範囲に設定す
ると、3ガス使用時に空気過剰率が良好燃焼範囲
の上限を上回つて吹消えを生じ易くなり、かかる
制御方式では回転数を適切に制御出来ないことが
分かる。
The drawings show an embodiment in which the present invention is applied to a combustion control device for a hot air heater incorporating an all-primary air combustion type burner, and 1 is a heater equipped with a rear suction port 1a and a front hot air outlet 1b. The main body 1 houses a combustion case 3 containing a full primary air combustion type burner 2 and a blower 4, and the rotation of the blower 4 draws indoor air from the suction port 1a, and further The combustion hot air of the burner 2 is sucked in from the combustion exhaust port 3a at the upper part of the combustion housing 3, and the two are mixed to form the air outlet 1b.
It was made to blow out into the room. In this case, the suction force of the blower 4 acts on the inside of the combustion case 3, which acts on the inside of the burner 2 through the combustion surface 2a, forcing the primary air from the mixing pipe 2b into the burner. Thus, the amount of primary air is increased or decreased depending on the rotation speed of the blower 4. A first electromagnetic valve 6 on the upstream side is connected to the gas supply path 5 connected to the burner 2.
A second solenoid valve 7 on the downstream side, a gas tank 8 and a governor 9 are interposed therebetween, and a side passage 10 is provided in parallel to the second solenoid valve 7 so that the temperature drops below the set temperature depending on the room temperature. When the second solenoid valve 7
The valve is opened to increase the amount of gas supplied to the burner 2 to, for example, 3000 kcal/h in terms of calories, and when the temperature exceeds the set temperature, the second solenoid valve 7 is closed and the gas is supplied to the burner 2 via the side passage 10. The amount of supplied gas was reduced to, for example, 1500 kcal/h by the gas supply, and when the room temperature further rose, the first electromagnetic valve 6 was closed to stop combustion in the burner 2. 11, 12 in the drawing
shows the detection burner and flame detection element for the oxygen deficiency safety device. Here, according to the present invention, a thermocouple or other heat-sensitive element 1 is provided facing the all-primary air combustion type burner 2.
3 is provided, and the rotation speed of the blower 4 is set to the temperature of the heat-sensitive element 1.
In order to control the increase and decrease according to a predetermined proportional characteristic according to the output of No. 3, the following configuration was adopted. That is, the heat sensitive element 1
3, the rotation speed command signal circuit 14 generates a rotation speed command signal according to the characteristic line indicated by the line a in FIG. Rotation speed detection circuit 1 that generates a signal according to the actual rotation speed
6, and a differential amplifier circuit 17 that inputs signals from both circuits 14 and 16, and the differential amplifier circuit 17
The power transistor 18 for controlling the rotation of the drive motor 4a of the blower 4 is operated by the output of the blower 4, and the rotation speed of the blower 4 is increased or decreased so that the deviation of the signals from both the circuits 14 and 16 becomes zero. Thus, according to the change in the output of the heat-sensitive element 13, the rotational speed of the blower 4 is controlled to increase or decrease along the characteristic line a. Next, we will explain its operation, but first, we will use three types of test gases, 13A gas, and measure the amount of each gas supplied at 3000Kcal/h and 1500Kcal/h.
In each case, the rotation speed of the blower 4 was set to within the good combustion range of the burner 2 (1.02 with an excess air ratio).
~approximately 1.5)
We will explain the experimental results of measuring the output of . The composition of the test gas is 1 gas CH 4 85% - C 3 H 8 15
%, 2 gas is H 2 30% - CH 4 55% - C 3 H 8 15%, 3
The gas is CH 4 98% - N 2 2%, the theoretical air amount (air amount / gas amount) is 11.7 for 1 gas, 9.553 for 2 gases,
3 gases is 9.364. The results are shown in Figure 3, where h 1 , h 2 , and h 3 are 1 at 3000Kcal/h.
Change characteristics of gas, 2 gases, and 3 gases, l 1 , l 2 ,
l 3 shows the change characteristics of 1 gas, 2 gas, and 3 gas at 1500 Kcal/h. As is clear from the figure, the number of rotations required for good combustion increases in the order of 1 gas, 2 gas, and 3 gas due to the difference in theoretical air amount, and the rotation speed at 3000 Kcal/h is within the rotation speed range of 3 gases. When set to 1 gas, the excess air ratio falls below the lower limit of the good combustion range and flashback is likely to occur.If this is set to the rotation speed range of 1 gas, the excess air ratio becomes lower when 3 gases are used. exceeds the upper limit of the good combustion range, blowing out is likely to occur, and it can be seen that the rotation speed cannot be controlled appropriately with this control method.

これに対し、良好燃焼範囲に於ける感熱素子1
3の出力範囲は各ガスで余り差がなく、送風機4
の回転数を感熱素子13の出力に応じ、例えば出
力が一定の基準値になるようにフイードバツク制
御で増減させ、即ち第3図で例えば25mVの出力
基準線bより出力が減少したときは回転数を下げ
て常に出力が25mVになるように回転数を増減制
御すれば、テストガスの種類が供給ガスの変化に
係わらずバーナ2を良好に燃焼させることが出来
るが、この方式は供給ガス量を増加したときのフ
イードバツク制御による回転数のオーバーシユー
トで吹き消えを生じ易く、オーバーシユートを小
さくするために工夫が必要となる。即ち、回転数
の変化に対する出力の変化率は回転数が増加する
程大きくなり、上限値近傍では回転数の少許の増
加によつて吹き消えを生じ、この傾向は供給ガス
量が増すと顕著となり、しかも3000Kcal/h時
は1500Kcal/h時に比し全体的に出力が増加し
て、1500Kcal/h時において出力変化率の比較
的小さな出力領域に基準値を設定しても、
3000Kcal/h時には基準値は出力変化率の大き
い領域に入つてしまい、回転数がオーバーシユー
トすると吹き消えを生じてしまうのである。
In contrast, heat-sensitive element 1 in the good combustion range
There is not much difference in the output range of blower 4 for each gas.
The rotation speed is increased or decreased by feedback control according to the output of the heat-sensitive element 13, for example, so that the output becomes a constant reference value, that is, when the output decreases from the output reference line b of, for example, 25 mV in FIG. If the rotation speed is controlled to increase or decrease so that the output is always 25mV by lowering the When the rotation speed increases, overshoot of the rotation speed due to feedback control tends to cause blowout, and it is necessary to take measures to reduce the overshoot. In other words, the rate of change in output with respect to a change in rotational speed increases as the rotational speed increases, and near the upper limit, a small increase in rotational speed causes blowout, and this tendency becomes more pronounced as the amount of supplied gas increases. , Moreover, the overall output increases at 3000Kcal/h compared to 1500Kcal/h, and even if the reference value is set in the output range where the output change rate is relatively small at 1500Kcal/h,
At 3000Kcal/h, the reference value falls into a region where the rate of change in output is large, and when the rotational speed overshoots, a blowout occurs.

これに対し、本願の如く回転数を出力に比例さ
せて増減制御するようにすれば、その特性を、そ
の特性線aが各ガスの3000Kcal/h時の変化特
性線h1、h2、h3とに夫々出力変化率の比較的小さ
な出力領域で交わるように設定することも可能と
なつて、確実な制御を行うことが可能となる。
On the other hand, if the rotation speed is controlled to increase or decrease in proportion to the output as in the present application, the characteristic line a will be the change characteristic line h 1 , h 2 , h when each gas is 3000 Kcal/h. 3 can be set to intersect with each other in an output range where the rate of output change is relatively small, making it possible to perform reliable control.

これを更に詳述するに、例えば1ガスで供給ガ
ス量や1500Kcal/hのとき、感熱素子13の出
力と送風機4の回転数とは線aと線l1との交点x1
の値となり、この状態から供給ガス量を
3000Kcal/hに増加すると、出力の増加により
線aに沿つて回転数が増加し、線aと線h1との交
点y1の値になつたところで出力が安定し、y1の値
で燃焼が継続される。逆に、供給ガス量を
3000Kcal/hから1500Kcal/hに減少させると、
出力の減少により回転数y1の値から線aに沿つて
減少されてx1で安定する。そして、この場合x1
y1は共にh1、l1の出力変化率の比較的小さな領域
に存在するため、オーバーシユートによつて吹き
消えや逆火等を生じることが無い。2ガス、3ガ
スでも同様であり、2ガスでは供給ガス量の変化
により線aに沿つてこれとl2及びh2の各交点x2
y2の間で、又3ガスでは線aに沿つてこれとl3
びh3各交点x3、y3の間で出力及び回転数が変化す
る。
To explain this in more detail, for example, when the amount of supplied gas is 1500 Kcal/h, the output of the heat sensitive element 13 and the rotation speed of the blower 4 are the intersection of the line a and the line l 1 x 1
From this state, the supply gas amount can be determined as follows.
When it increases to 3000Kcal/h, the rotation speed increases along line a due to the increase in output, and when it reaches the value of y 1 at the intersection of line a and line h 1 , the output stabilizes and combustion starts at the value of y 1 . will continue. Conversely, if the amount of gas supplied
When reducing from 3000Kcal/h to 1500Kcal/h,
Due to the decrease in power, the rotational speed is reduced along line a from the value of y 1 and stabilizes at x 1 . And in this case x 1 ,
Since both y 1 exist in a region where the output change rate of h 1 and l 1 is relatively small, overshoot does not cause blowout or backfire. The same is true for 2 gases and 3 gases, and in the case of 2 gases, due to changes in the amount of gas supplied, along line a, each intersection x 2 of this with l 2 and h 2 ,
The output and rotational speed change between y 2 and between this and l 3 and h 3 intersection points x 3 and y 3 along line a for three gases.

尚、前述のものは、送風機4により吸込口1a
から室内空気と、更該燃焼筐3の上部の燃焼排気
口3aから該バーナ2の燃焼熱気とを吸引し、両
者を混合させて該吹出口1aから室内に吸出させ
るようにしたものにつき説明したが、第4図、第
5図に示す如く温風吹出用の送風機19を設け、
燃焼用空気を室外から取入れた後、室外に排気さ
せる強制給排気する専用の送風機4を前述と同様
に制御しても同様の結果が得られるものであるこ
と申すまでもない。更に上記実施例では暖房器の
温風循環用送風機4をバーナ2に1次空気を強制
的に供給する燃焼用送風機に兼用したが、燃焼用
の送風機を別個に設けてその回転数を上記の如く
感熱素子の出力に応じて増減制御するようにして
も良く、更には暖房器に限らず第1次空気式バー
ナを用いる他の燃焼器にも本発明を適用出来る。
In addition, in the above-mentioned case, the suction port 1a is opened by the blower 4.
The indoor air and combustion hot air of the burner 2 are sucked through the combustion exhaust port 3a at the top of the combustion housing 3, and the mixture is mixed and sucked into the room through the air outlet 1a. However, as shown in FIGS. 4 and 5, a blower 19 for blowing hot air is installed,
Needless to say, the same result can be obtained by controlling the dedicated blower 4 for forced air supply and exhaust to the outside after taking in combustion air from outside. Furthermore, in the above embodiment, the hot air circulation blower 4 of the heater is also used as a combustion blower that forcibly supplies primary air to the burner 2, but a combustion blower is provided separately and its rotation speed is adjusted to the above-mentioned speed. The increase or decrease may be controlled according to the output of the heat-sensitive element, as shown in FIG.

このように本発明によるときは、ガス成分又は
ガス量の異なるガスを送風機の回転数を変化させ
て燃焼させるとき、それぞれ該感熱素子に得られ
る出力のうち、出力変化率の小さい点を結んだ特
性線に従つて回転数指令信号を発生する回転数指
令信号回路と、送風機の実際の回転数に応じた信
号を発生する回転数検知回路と、両回路からの信
号を入力する差動増幅回路とを備え、該差動増幅
回路からの出力信号により両回路からの偏差が零
になるように前記送風機の回転数を増減させるよ
うにしたので、ガス成分の差異や供給ガス量の変
化に係わらず1次空気の空気過剰率を常に良好燃
焼範囲内に維持して、該バーナの適切な燃焼制御
を行い得られ、しかも供給ガス量を変化させると
きに、速かに送風機の回転数を所望の回転数に収
束させることが出来て、風量の増加又は減少させ
過ぎによる吹き消えや逆火等の発生を可及的に防
ぐことが出来るの効果がある。
In this way, according to the present invention, when gases with different gas components or gas amounts are combusted by changing the rotational speed of the blower, the points with the smallest rate of change in the output obtained from the respective heat-sensitive elements are connected. A rotation speed command signal circuit that generates a rotation speed command signal according to the characteristic line, a rotation speed detection circuit that generates a signal according to the actual rotation speed of the blower, and a differential amplifier circuit that inputs signals from both circuits. The number of revolutions of the blower is increased or decreased according to the output signal from the differential amplifier circuit so that the deviation from both circuits becomes zero, so that regardless of differences in gas components or changes in the amount of gas supplied, The excess air ratio of the primary air can always be maintained within a good combustion range to perform appropriate combustion control of the burner, and when changing the supply gas amount, the blower rotation speed can be quickly adjusted to the desired speed. The rotational speed can be converged to , which has the effect of preventing the occurrence of blow-out, backfire, etc. due to excessive increase or decrease in air volume.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置を適用した燃焼器の1例の
截断面図、第2図は第1図の−線截断正面図
に回路構成を付加した線図、第3図は感熱素子の
出力と送風機の回転数との変化特性を示す線図、
第4図は他の実施例の截断側面図、第5図はこれ
の−線截断正面図に回路構成を付加した線図
である。 2……全1次空気燃焼式バーナ、4……送風
機、13……感熱素子。
Fig. 1 is a cross-sectional view of an example of a combustor to which the present invention is applied, Fig. 2 is a cross-sectional front view taken along the - line in Fig. 1 with a circuit configuration added, and Fig. 3 is the output of the heat-sensitive element. A diagram showing the change characteristics between and the rotation speed of the blower,
FIG. 4 is a cross-sectional side view of another embodiment, and FIG. 5 is a diagram in which a circuit configuration is added to the front view cut along the - line. 2...All primary air combustion type burner, 4...Blower, 13...Heat-sensitive element.

Claims (1)

【特許請求の範囲】[Claims] 1 全一次空気燃焼式バーナと該バーナに一次空
気を強制的に供給する送風機とを備え、該バーナ
への供給ガス量を増減制御するようにしたものに
於いて、該バーナに臨ませて熱電対その他の感熱
素子を設け、ガス成分又はガス量の異なるガスを
送風機の回転数を変化させて燃焼させるとき、そ
れぞれ該感熱素子に得られる出力のうち、出力変
化率の小さい点を結んだ特性線に従つて回転数指
令信号を発生する回転数指令信号回路と、送風機
の実際の回転数に応じた信号を発生する回転数検
知回路と、両回路からの信号を入力する差動増幅
回路とを備え、該差動増幅回路からの出力信号に
より両回路からの偏差が零になるように前記送風
機の回転数を増減させる事を特徴とする燃焼制御
装置。
1. In a burner equipped with an all-primary air combustion type burner and a blower that forcibly supplies primary air to the burner, and in which the amount of gas supplied to the burner is controlled to increase or decrease, a thermoelectric generator is installed facing the burner. When a heat-sensitive element is provided and gases with different gas components or amounts are combusted by changing the rotation speed of the blower, the characteristic is determined by connecting the points with the smallest output change rate among the outputs obtained from each heat-sensitive element. A rotation speed command signal circuit that generates a rotation speed command signal according to the line, a rotation speed detection circuit that generates a signal according to the actual rotation speed of the blower, and a differential amplifier circuit that inputs signals from both circuits. A combustion control device comprising: an output signal from the differential amplifier circuit to increase/decrease the rotational speed of the blower so that the deviation from both circuits becomes zero.
JP58123931A 1983-07-07 1983-07-07 Combustion control device Granted JPS6016218A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58123931A JPS6016218A (en) 1983-07-07 1983-07-07 Combustion control device
KR1019840002739A KR900006880B1 (en) 1983-07-07 1984-05-19 Combustion control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58123931A JPS6016218A (en) 1983-07-07 1983-07-07 Combustion control device

Publications (2)

Publication Number Publication Date
JPS6016218A JPS6016218A (en) 1985-01-28
JPH0230408B2 true JPH0230408B2 (en) 1990-07-06

Family

ID=14872888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58123931A Granted JPS6016218A (en) 1983-07-07 1983-07-07 Combustion control device

Country Status (2)

Country Link
JP (1) JPS6016218A (en)
KR (1) KR900006880B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136743U (en) * 1986-02-15 1987-08-28
JP2532351Y2 (en) * 1991-12-03 1997-04-16 信越ポリマー株式会社 Solenoid type cutting device
JP2642271B2 (en) * 1992-02-14 1997-08-20 リンナイ株式会社 Combustion equipment
CN111810984B (en) * 2020-07-10 2022-07-26 浙江浙能技术研究院有限公司 Optimization control method for capacity-increasing transformation of primary air fan adaptive steam turbine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55753Y2 (en) * 1974-12-03 1980-01-10
JPS5485435U (en) * 1977-11-29 1979-06-16

Also Published As

Publication number Publication date
JPS6016218A (en) 1985-01-28
KR900006880B1 (en) 1990-09-24
KR850001402A (en) 1985-03-18

Similar Documents

Publication Publication Date Title
JP2004522129A (en) Method and apparatus for setting air ratio
US4315729A (en) Gas burner
JPH0230408B2 (en)
US4428726A (en) Burner apparatus
KR910002880Y1 (en) Combustion sefaty device for gas apparatus
JPH08233261A (en) Unburnt gas concentration-detecting device for combustion device
JP3117579B2 (en) Combustion safety device
JP4067254B2 (en) Combustion device
JPS60169013A (en) Burning control device
JP3117583B2 (en) Combustion safety device
JPH0212453Y2 (en)
JPS59231318A (en) Safety device in indoor-installation type burner
JP2644415B2 (en) Forced air combustion device
JP3117585B2 (en) Combustion safety device
JPS5815689B2 (en) gas combustion equipment
JPS60162122A (en) Controller for blower for forced-feed air type burner
JPH08605Y2 (en) Forced exhaust type combustor
JPH09236256A (en) Controller for pre-mixing type burner
KR880004145Y1 (en) Combustion control device
JPH06265142A (en) Combustion apparatus
KR910002882Y1 (en) Combustion control device
JP3117582B2 (en) Combustion safety device
JP3087200B2 (en) Combustion safety device
JP2642274B2 (en) Forced air combustion equipment
JPH0571846B2 (en)