JPS6016218A - Combustion control device - Google Patents

Combustion control device

Info

Publication number
JPS6016218A
JPS6016218A JP58123931A JP12393183A JPS6016218A JP S6016218 A JPS6016218 A JP S6016218A JP 58123931 A JP58123931 A JP 58123931A JP 12393183 A JP12393183 A JP 12393183A JP S6016218 A JPS6016218 A JP S6016218A
Authority
JP
Japan
Prior art keywords
blower
output
gas
rotational frequency
sensitive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58123931A
Other languages
Japanese (ja)
Other versions
JPH0230408B2 (en
Inventor
Yoshiji Ishikawa
石川 佳司
Shuji Otsuka
修司 大塚
Junichi Maeda
純一 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP58123931A priority Critical patent/JPS6016218A/en
Priority to KR1019840002739A priority patent/KR900006880B1/en
Publication of JPS6016218A publication Critical patent/JPS6016218A/en
Publication of JPH0230408B2 publication Critical patent/JPH0230408B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/10Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using thermocouples
    • F23N5/102Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using thermocouples using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • F23N2233/08Ventilators at the air intake with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/10Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using thermocouples

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)

Abstract

PURPOSE:To keep the excess air ratio of primary air within good combustion range by a method wherein the rotational frequency of a blower to supply primary air to an entire combustion by primary air type burner is controlled in response to the output of a heat-sensitive element to detect the flame temperature of the burner. CONSTITUTION:A heat-sensitive element 13 such as thermocouple or the like is provided fronting on an entire combustion by primary air type burner 2 in order to control a blower 4 by changing its rotational frequency in response to the output of the heat- sensitive element 13. Concretely, a rotational frequency command circuit 14 to generate a rotational frequency command signal in response to the output of the heat-sensitive element 13, a rotational frequency detection circuit 16 to generate a signal responding to the actual rotational frequency of the blower 4 based upon the output of a pick-up coil for the detection of the rotation of the blower 4 and a differential amplification circuit 17, to which the signals from both the circuits 14 and 16 are inputted, are provided so as to put the transistor 18 into actuation in order to control the rotation of the driving motor 4a of the blower 4 based upon the output of the differential amplification circuit 17 in such a manner that the rotational frequency of the blower 4 is changed so as to bring the deviation between the signals from both the circuits 14 and 16 to zero.

Description

【発明の詳細な説明】 本発明は、全1次空気燃焼式バーナヶ用いた燃焼器にお
ける燃焼制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a combustion control device for a combustor using all primary air combustion type burners.

従来このb(燃焼器として、例えば特開昭57−192
741号公報により全1次空気燃焼式バーすに1次空気
を強制的に供給する送風機を設け、空気過剰率(供給空
気M/理論空気量)を1.0以上に設定して、燃焼炎中
の過剰の1次空気により火炎温度を低下させてNOx 
濃度を低下芒せるようにしたものは知られるが、この場
合空気過剰率の減少によれば火炎温度の上昇でNOX 
774度が増加すると共に逆大を生じ易くなり、又空気
過剰率が増加し過ぎると火炎温度が低下して炎のリフト
アップによる00濃度の増加や吹き消えを生じ易くなる
もので、良好な燃焼を得るには空気過剰率を一定範囲内
に設定する必要があり、従ってバーナへの供給ガス最を
増減制御する場合は、1次空気の供給量も増減させて空
気過剰率を一定の良好燃焼範囲内に収めるようにするこ
とが必要となる。
Conventionally, this b (as a combustor, for example, JP-A-57-192
According to Publication No. 741, a blower that forcibly supplies primary air to all primary air combustion type bars is installed, and the excess air ratio (supplied air M/theoretical air amount) is set to 1.0 or more to suppress the combustion flame. The excess primary air inside reduces the flame temperature and reduces NOx.
It is known that the concentration can be lowered, but in this case, if the excess air ratio is reduced, the flame temperature increases and NOx
As the temperature of 774 degrees increases, inversion tends to occur, and if the excess air ratio increases too much, the flame temperature decreases, increasing the 00 concentration and blowing out due to flame lift-up, which leads to good combustion. To obtain this, it is necessary to set the excess air ratio within a certain range. Therefore, when controlling the amount of gas supplied to the burner, the amount of primary air supplied must also be increased or decreased to maintain a constant excess air ratio for good combustion. It is necessary to keep it within the range.

そのための手段として、送風機の回転数を供給ガス量に
応じて変化させるようにすることも考えられるが、供給
ガス量が同じでもガス成分に差があると理論空気量が変
化するため、供給ガス量に応じて送風機の回転数を変化
させる方式では、ガス種変更のみならず各ガス種につい
て定められる1ガス(不完全燃焼し易いガス)、2ガス
(逆火し易いガス)、3ガス(吹き消えし易いガス)の
3種のテストガスにおけるガス取分の差によって空気過
剰率が良好燃焼範囲から外れてしまうことがある。
One way to do this is to change the rotation speed of the blower according to the amount of supplied gas, but even if the amount of supplied gas is the same, if there is a difference in gas components, the theoretical air amount will change. In the method of changing the rotation speed of the blower according to the amount of gas, not only the gas type can be changed, but also gases 1 (gas that tends to combust incompletely), 2 gas (gas that easily flashbacks), and 3 gas (gas that is prone to flashback) are changed. The excess air ratio may deviate from the good combustion range due to the difference in gas fraction among the three test gases (gases that easily blow out).

本発明は、空気過剰率の変化により上記の如く火炎温度
が変化することに着目し、感熱素子を用いてその出力に
より送風機の回転数を増減制御することでガス供給最の
増減やガス成分の差異に係らず常に空気過剰率を良好燃
焼範囲内に保持し得るようにした装Tri k提供する
ことをその目的とするもので、以下本発明全図示の実施
例に付説明する。
The present invention focuses on the fact that the flame temperature changes as described above due to changes in the excess air ratio, and uses a heat-sensitive element to increase or decrease the rotational speed of the blower according to its output. The purpose of this invention is to provide a Trik system that can always maintain the excess air ratio within a good combustion range regardless of the difference, and will be described below with reference to fully illustrated embodiments of the present invention.

図面は全1次空気燃焼式バーナを組込んだ温風暖房器の
燃焼制御装置に本発明を適用した実施例を示し、(1)
は背面の吸込口(1a)と前面の温風吹出口(1b)と
を備える暖房器本体であって、該本体fil内に、全1
次空気燃焼式バーナ(2)全内蔵する燃焼筐(3)と、
送風機(4)とを収容し、該送風機(4)の回転により
該吸込口(1a)から菟内空q−と、更に該燃焼筐(3
)の上部の燃焼排気口(5a)力)ら該バーナ(2)の
燃焼熱気とを吸引踵両者を混合させて該吹出口(1b)
から室内に吹出させるようにした。
The drawings show an embodiment in which the present invention is applied to a combustion control device for a hot air heater incorporating a full primary air combustion type burner, (1)
is a heater main body equipped with a back suction port (1a) and a front hot air outlet (1b), in which a total of 1
Next, the air combustion type burner (2) is completely built into the combustion case (3),
A blower (4) is housed therein, and by the rotation of the blower (4), air inside the tube is drawn from the suction port (1a) and further into the combustion casing (3).
) The combustion hot air of the burner (2) is sucked through the combustion exhaust port (5a) at the top of the burner (2), and the heel is mixed with the air outlet (1b).
It was made to blow out into the room.

この場合、該燃焼筐(3)内には該送風(幾(4)の吸
引力が作用し、これが該ノく−ナt21の燃焼面(2a
) ’<る。
In this case, the suction force of the air blower (4) acts inside the combustion case (3), which causes the combustion surface (2a
)'<ru.

該バーナ(2)に連るガス供給路(5)には、上流側の
第1電磁弁(6)と、下流側の第2電磁弁(7)とその
中間のガスコック(8)とガスくす(9)と全介在させ
ると共に、該第2電磁弁(7)に並列の側路(I[l設
け、¥温に応じてこれが設定温度を下回ったときは該第
2電磁弁(7)全開弁させて該ノ(−す(2)への供給
ガス量をカロリー換算で例えば30007Vhに増加さ
せ、設定温度を上回ったときは該電磁弁(7)全開弁さ
せて該側路un介してのガス送気により供給ガス量を例
えば1s o ob+/hに減少させ、更に室温が上昇
したときは該第1電磁弁(6)を閉じて該バーナ(2)
の燃焼を停止させるようにした。
The gas supply path (5) leading to the burner (2) includes a first solenoid valve (6) on the upstream side, a second solenoid valve (7) on the downstream side, a gas cock (8) in the middle, and a gas valve. (9), and a side passage (I[l) is provided in parallel to the second solenoid valve (7), and when this falls below the set temperature depending on the temperature, the second solenoid valve (7) is fully opened. When the temperature exceeds the set temperature, the solenoid valve (7) is fully opened to increase the amount of gas supplied to the side passage (2) to, for example, 30,007 Vh in terms of calories. The amount of supplied gas is reduced to, for example, 1s o ob+/h by gas supply, and when the room temperature further rises, the first solenoid valve (6) is closed and the burner (2) is closed.
now stops burning.

図面でα1)(12は酸欠安全装置用の検知)く−すと
火炎検知緊子を示す。
In the drawing, α1) (12 is the detection for the oxygen deficiency safety device) gas and flame detection clamp are shown.

ここで本発明によれば、前記全1次空気燃焼式バーナ(
2)に臨ませて熱電対その他の感熱素子(131を設け
、前記送風機(4)の回転数を該感熱素子(131■出
力に応じて増減制御するもので、更に図示■ものでは回
転数を感熱素子α3)の出力に応じ所定の比例特性に従
って増減制御すべく以下の如く構成した。即ち、該忌熱
素子鰯■出力に応じ例えば第3図にa線で示す比例特性
に従った回転数指令信号を発生する回転数指令回路(l
aと、送K fi (41の回転検知用ピックアップコ
イル09力)らの出力により該送風機(4)の実際の回
転数に応の出力により該送風機(4)の駆動モータ(4
りの回転制御用のパワトランジスタ4181”e作動さ
せて、該両回路圓(IQからの信号の偏差が零になるよ
うW眩逆1釧4)の回転数を増減させ、か<−c該re
According to the present invention, the all primary air combustion type burner (
2) A thermocouple or other heat-sensitive element (131) is provided, and the number of revolutions of the blower (4) is controlled to increase or decrease according to the output of the heat-sensitive element (131). In order to control the increase and decrease according to a predetermined proportional characteristic according to the output of the heat sensitive element α3), it is configured as follows.That is, according to the output of the heat sensitive element α3), the rotation speed according to the proportional characteristic shown by the line a in FIG. Rotation speed command circuit (l
The drive motor (4) of the blower (4) is controlled by the output corresponding to the actual rotational speed of the blower (4) by the outputs of the a, the blower K fi (rotation detection pickup coil 09 force of 41), etc.
The power transistor 4181''e for rotation control is activated to increase or decrease the rotation speed of both circuit circles (W glare 1 and 4 so that the deviation of the signal from IQ becomes zero), or <-c. re
.

熱素子03)の出力の変化によれば該送風機(4)の回
転数が上記比例特性線&に沿って増減制御されるように
した。
According to a change in the output of the thermal element 03), the rotation speed of the blower (4) is controlled to increase or decrease along the proportional characteristic line &.

次にその作動を説明するが、その前に先ず13Aガスの
5種のテストガスを用い、各ガスの供給ガス量を600
0日/hと1500kI癲/hとに設定し、夫々の場合
について送風機(4)の回転数ヲノ(−す(2)の良好
燃焼範囲(空気過剰率で略1.02〜略1.5の範囲)
内で変化させつつ感熱素子(13)の出力を測定した実
験結果について説明する。尚、テストガスの成分は、1
ガスがOH,as%−(]、H815%、2ガスが87
30%−0H455%−〇、H815%、6ガスが0H
498%−N22%であり、理論空気@(空気IT/ガ
ス量)は、1ガスが11.72.2ガスが9.553.
5ガスが9.564である。
Next, we will explain its operation, but first, we will use five types of test gases, 13A gas, and adjust the supply gas amount of each gas to 600.
0 day/h and 1,500 kI/h, and in each case, the rotation speed of the blower (4) was within the good combustion range of (2) (approximately 1.02 to approximately 1.5 in terms of excess air ratio). range)
The results of an experiment in which the output of the heat-sensitive element (13) was measured while varying the temperature will be explained. In addition, the components of the test gas are 1
Gas is OH, as%-(], H815%, 2 gases are 87
30%-0H455%-〇, H815%, 6 gases are 0H
498% - N22%, and the theoretical air @ (air IT/gas amount) is 1 gas is 11.72.2 gas is 9.553.
5 gas is 9.564.

その結果は第5図に示す通りであり、hII hII 
”4は5000hl/h時の1ガス、2ガス、5ガスの
夫々の変化特性、t8.t2.tsは1500kr21
/h Rの1ガス、2ガス、5ガスの夫々の変化特性を
示す。
The results are shown in Figure 5, hII hII
"4 is the change characteristics of 1 gas, 2 gas, and 5 gas at 5000 hl/h, t8.t2.ts is 1500kr21
/h Shows the change characteristics of R for 1 gas, 2 gas, and 5 gas.

仝図から明らかなように、理論空気量の差異によシ良好
燃焼させるに必要な回転数は1ガス、2ガス、5ガスの
順に高くなl) 、 5000kcd/h時には1ガス
の回転数範囲と5ガスの回転数範囲との′41複部分が
殆んど無く、回転数を供給ガス量に応じて制御したので
は、例えば3000日4時の回転数を6ガスの回転数範
囲内に設定した場合、1ガスを用いると空気過剰率が良
好燃焼範囲の下限を下回って逆火音生じ易くなり、又こ
れ全1ガスの回転数範囲に設定すると、6ガ各使用時に
空気過剰率が良好燃焼範囲の上限を上回って吹き消えを
生じ易くなり、かかる制御方式では回転数ケ適切に制御
出来ないことが分る。
As is clear from the figure, the number of revolutions required for good combustion increases in the order of 1 gas, 2 gas, and 5 gas due to the difference in theoretical air amount. At 5000kcd/h, the number of revolutions required for good combustion is in the range of 1 gas. If the rotation speed is controlled according to the amount of supplied gas, for example, the rotation speed at 4 o'clock on the 3000th day will be within the rotation speed range of 6 gases. If this is set, if 1 gas is used, the excess air ratio will fall below the lower limit of the good combustion range, making flashback noise likely to occur, and if this is set to the rotational speed range of 1 gas, the excess air ratio will be lower when each 6 gas is used. It can be seen that when the upper limit of the good combustion range is exceeded, blowout tends to occur, and the rotation speed cannot be controlled appropriately with such a control method.

これに対し、良好燃焼範囲における感熱素子Q3の出力
範囲は各ガスで余り差が無く、送風機(4)の回転数を
感熱素子峙の出力に応じ、例えば出力が一定の基準値に
なるようにフィードバック制御で増減させ、即ち第6図
で例えば25mVの出力基準a+bより出力が増加した
ときは回転数會上げ、畝線すより出力が減少したときは
回転数を下げて常に出力が25 mVになるように回転
数を増減制御すれば、テストガスの種類や供給ガス量の
変化に係らずバーナ(2)全良好に燃焼させることが出
来るが、この方式は併給ガス量全増加したときのフィー
トノくツク制御による回転数のオーバシュートで吹き消
えを生じ易く、オーバシュートを小さくするための工夫
が必要となる。即ち、回転数の変化に対する出力の変化
率は回転数が増加する程大きくなシ、上限値近傍では回
転数の少許の増加によって吹き消えを生じ、この傾向は
供給ガス量が増すと顕著となり、而も3000日、へ詩
は1500日/h時に比し全体的に出力が増加して、1
5001cal/h時において出力変化率の比較的小さ
な出力領域に基準値全設定しても、3000日/h時に
は基準値は出力率化率の大きな領域に入ってしまい、回
転数がオーバシュートすると吹き消え金主じてしまうの
である。
On the other hand, the output range of the heat-sensitive element Q3 in the good combustion range is not much different for each gas. It is increased or decreased by feedback control, that is, when the output increases from the output standard a+b of 25 mV in Fig. 6, the rotation speed is increased, and when the output decreases from the ridge line, the rotation speed is lowered so that the output is always 25 mV. If the rotational speed is controlled to increase or decrease so that Blow-out is likely to occur due to overshoot in the rotational speed due to overshoot control, and it is necessary to devise ways to reduce the overshoot. That is, the rate of change in output with respect to a change in rotational speed increases as the rotational speed increases, and near the upper limit, a slight increase in rotational speed causes blowout, and this tendency becomes more noticeable as the amount of supplied gas increases. However, on the 3000th day, the overall output increased compared to the 1500th day/hour, and the
Even if all the reference values are set in the output range where the output change rate is relatively small at 5001 cal/h, the reference value will enter the range where the output change rate is large at 3000 days/h, and if the rotation speed overshoots, it will blow up. The money disappears and becomes the owner of the money.

これに対し、上記実権例の如く回転数を出力に比例させ
て増減制御するようにすれば、その比例特性を、その特
性緋色が各ガスの300 ad/h時の変化特性線hl
 l h、、 h、と15001ol/h時の変化特性
線Zl r 72 r ’3とに夫々出方変化率の比較
的小さな出力領域で交わるに設定して、確実な制御を行
うことか可能となる。
On the other hand, if the rotational speed is controlled to increase or decrease in proportion to the output as in the above practical example, the proportional characteristic can be expressed as the change characteristic line hl at 300 ad/h for each gas.
It is possible to perform reliable control by setting the change characteristic line Zl r 72 r '3 at 15001 ol/h to intersect with each other in an output region where the output change rate is relatively small. Become.

これを更に詳述するに、例えば1ガスで供給ガス」が1
500hl/hのとき、感熱素子へりの出力と送風機(
4)の回転数とは線aと線t1との交点x1の値となシ
、この状態から供給ガス量t−3ooo日/hに増加す
ると、出力の増加にょシ線aに沿って回転数が増加し、
線aと線h1との交点Y、の値になったところで出方が
安定し、Y、の値で燃焼が継続される。逆に、供給ガス
量を3000日/hがら1500日/hに減少させると
、出方の減少にょシ回転数はYlの値がら線aに沿って
減少されてX、で安定する。そして、この場合x1、Y
lは共にhl、4の出力変化率の比較的小さな領域に存
在するため、オーバシュートによって吹き消えや逆火等
を生ずることが無い。
To explain this in more detail, for example, if 1 gas is supplied 1 gas is 1 gas.
At 500 hl/h, the output of the heat sensitive element edge and the blower (
The rotation speed in 4) is the value at the intersection x1 of the line a and the line t1.If the supplied gas amount increases from this state to t-3ooo days/h, the output will increase and the rotation speed will change along the line a. increases,
When the value of the intersection point Y between the line a and the line h1 is reached, the output becomes stable and combustion continues at the value Y. Conversely, when the amount of supplied gas is decreased from 3000 days/h to 1500 days/h, the output rotation speed decreases along the line a from the value of Yl and becomes stable at X. And in this case x1, Y
Since both hl and 4 exist in a relatively small range of output change rates, overshoot does not cause blowout or backfire.

2ガス、3ガスでも同様であり、2ガスでは供給ガス思
の変化により線aに沿ってこれと1を及び塙の各交点”
21 Y2の間で、又3ガスでVi線aに沿ってこれと
t3及びh3の各交点X3+Y3の間で出力及び回転数
が変化する。
The same is true for 2 gases and 3 gases, and in the case of 2 gases, due to the change in the supply gas, each intersection of this and 1 and Hanawa along line a.
The output and rotational speed change between 21 Y2 and each intersection X3+Y3 of t3 and h3 along the Vi line a for the three gases.

尚、上記実施例では暖房器の温風循環用送風機+41’
t バーナ121に1次空気を強制的に供給する燃焼用
送風機に兼用したが、燃焼用の送風機を別個に設けてそ
の回転数を上記の如く感熱素子の出力に応じて増減制御
するようにしても良く、更には暖房器に限らず全1次空
気燃焼式バーナ全用いる他の燃焼器にも本発明を適用出
来る。
In addition, in the above embodiment, the heater's warm air circulation blower +41'
Although the combustion blower was also used to forcefully supply primary air to the burner 121, a combustion blower was provided separately and its rotational speed was controlled to increase or decrease according to the output of the heat-sensitive element as described above. Furthermore, the present invention can be applied not only to heaters but also to other combustors that use all primary air combustion type burners.

この様に本発明によるときは、全1次空気燃焼式バーナ
に1次空気を供給する送風機の回転数を、該バーナに臨
ませた感熱素子のuj力に応じて増減制御するもので、
ガス成分の差異や供給ガス量の変化に係らず1次空気の
空気過剰率を常に良好燃焼範囲内に維持して、該バーナ
の適切な燃焼制御を行い得られる効果を有する。
As described above, according to the present invention, the rotational speed of the blower that supplies primary air to all primary air combustion type burners is controlled to increase or decrease according to the uj force of the heat-sensitive element facing the burner.
Regardless of differences in gas components or changes in the amount of supplied gas, the excess air ratio of the primary air can always be maintained within a good combustion range, and the burner can be appropriately controlled for combustion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置を適用した燃焼器の1例の裁断側面
線図、第2図は第1図の■−■線截断正面図に回路構成
を付加した線図、第6図は感熱素子の出力と送風機の回
転数との変イし特性ケ示す晦図である。 (2)・・・全1次空気燃焼弐ノく−ナ(4)・・・送
 風 機 (131・・・感熱素子 外2名 手続補正書 昭和 5Iす 2+414 日 特許庁や7814.。 1、事件の表示 昭和58年特許願第123931号 2、発明の名称 ブ、::つ説1lrlJ価装置 3、補正をする者 事件との8!I係 特許出廓1人 す ン す イ 株式会社 4、代 理 人 5、補正命令 のH付(目釦) 昭和 年 月 日 明細書の発明のil’ tlil 7J: nQ ”J
J並びVC図ITI+ (1) Il’1中l説1!l
]の+l!g 、目面 と、 補正の内容 1、四組1書ε1)10頁第5行の[尚」のθ(にf 
ti+J述のものは、送風機(4)により吐j/、■(
IaJ力・ら室内空気と、更に該燃焼筐(3)の−l二
部の燃焼1Jul気1−1 (5A)から該バーナ(2
)の燃焼熱気とゲ吸引し、両t7ケ混合芒tて該吹出口
(1a)から室内VCC出出1セようにしたものにつき
説明し1こが1εi−t、 4図、!−1451、]v
c、ボすごとく温風吹出ハ4の送J虱機Cl1l舎、1
〉け、燃焼用空気全室外から取入オ″L1ζ後、ヤ1;
外婬]11〆、1百せる強1ljl給排気する専用の送
風!:Q 141 ’v: niノ;11□と回t′1
<に!Ifli tli シても同様の結果が?IIら
ノ1.るものであること申す筐でもない。更に」欠加入
する。 2 明細−44”、 11頁第3図の「ボす線図」のθ
〈に「、第4図は他の笑施例の擢< 1’if Ij・
り聞醇++ 1.’4 %第5図はこれの■−V線正[
口1図に11J1路析戊ケL]加しfc線図」全加入す
る。 五図面に別添の錫4図、第5図全加入する。
Figure 1 is a cross-sectional side view of an example of a combustor to which the present invention is applied, Figure 2 is a cross-sectional front view taken along the line ■-■ in Figure 1, with a circuit configuration added, and Figure 6 is a thermosensitive FIG. 6 is a diagram showing the characteristics of changes in the output of the element and the rotational speed of the blower. (2)... Total primary air combustion unit (4)... Blower (131... 2 persons other than heat sensitive element procedural amendments Showa 5Isu 2+414 Japan Patent Office and 7814.. 1 , Indication of the case 1982 Patent Application No. 123931 2, Title of the invention: 1 theory 1 lrl J value device 3, person making the amendment 8! 4. Agent 5. Amendment order with H (eye button) Il' tlil of the invention in the specification dated 1925-2017 7J: nQ ”J
J arrangement VC diagram ITI+ (1) Il'1 middle theory 1! l
]'s +l! g, the eye surface, and the contents of the correction 1, set 4, book 1 ε1) page 10, line 5, θ (to f
ti+J mentioned is discharged by blower (4) j/,■(
IaJ force, indoor air, and further combustion of two parts of the combustion case (3) 1Jul air 1-1 (5A) to the burner (2
), the combustion hot air is sucked in, and the indoor VCC is output from the air outlet (1a) with both t7 mixed awns. -1451,]v
c. The blower blows out hot air 4, Cl1l building, 1
〉After taking in all the combustion air from outside the room,
Exclusive air blower that supplies and exhausts 11〆, 100+ 1ljl! :Q 141 'v: niノ;11□ and times t'1
< to! Is the same result even if I use Ifli tli? II et al. 1. This is not a box that claims to be a thing. In addition, the missing member will be added. 2 Specification-44”, θ of “Boss diagram” in Figure 3, page 11
〈〈, Figure 4 is a comparison of other examples <1'if Ij・
Listening + + 1. '4% Figure 5 shows this ■-V line positive [
11J1 route analysis 戊 KE L] Add fc diagram to the 1 diagram. The attached Figures 4 and 5 are all attached to the 5th drawing.

Claims (1)

【特許請求の範囲】 1、 全1次空気燃焼式バーナと該バーナに1次空気を
強i1i目的に供給する送風機とを備え、該バーナへの
供給ガスffi’に増減制御するようにしたものにおい
て、該バーナに臨ませて熱電対その他の感熱素子を設け
、該送風機の回転数を該感熱素子の用カに応じて増減制
御するようにしたことを特徴とする燃焼制御装置。 2 該回転@を該出力に応じて所定の比例特性に従って
増減制御するようにしたことを特徴とする特許請求の範
囲第1項記載の燃焼制御装置。
[Claims] 1. An all-primary air combustion type burner and a blower for supplying primary air to the burner for strong i1i purposes, and are configured to increase or decrease the gas ffi' supplied to the burner. A combustion control device characterized in that a thermocouple or other heat-sensitive element is provided facing the burner, and the rotational speed of the blower is controlled to increase or decrease depending on the power of the heat-sensitive element. 2. The combustion control device according to claim 1, wherein the rotation is controlled to increase or decrease according to a predetermined proportional characteristic according to the output.
JP58123931A 1983-07-07 1983-07-07 Combustion control device Granted JPS6016218A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58123931A JPS6016218A (en) 1983-07-07 1983-07-07 Combustion control device
KR1019840002739A KR900006880B1 (en) 1983-07-07 1984-05-19 Combustion control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58123931A JPS6016218A (en) 1983-07-07 1983-07-07 Combustion control device

Publications (2)

Publication Number Publication Date
JPS6016218A true JPS6016218A (en) 1985-01-28
JPH0230408B2 JPH0230408B2 (en) 1990-07-06

Family

ID=14872888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58123931A Granted JPS6016218A (en) 1983-07-07 1983-07-07 Combustion control device

Country Status (2)

Country Link
JP (1) JPS6016218A (en)
KR (1) KR900006880B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136743U (en) * 1986-02-15 1987-08-28
JPH0549298U (en) * 1991-12-03 1993-06-29 第二しなのポリマー株式会社 Solenoid type cutting device
JPH05223246A (en) * 1992-02-14 1993-08-31 Rinnai Corp Burner
CN111810984A (en) * 2020-07-10 2020-10-23 浙江浙能技术研究院有限公司 Optimization control method for capacity-increasing transformation of primary air fan adaptive steam turbine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5172235U (en) * 1974-12-03 1976-06-07
JPS5485435U (en) * 1977-11-29 1979-06-16

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5172235U (en) * 1974-12-03 1976-06-07
JPS5485435U (en) * 1977-11-29 1979-06-16

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136743U (en) * 1986-02-15 1987-08-28
JPH0549298U (en) * 1991-12-03 1993-06-29 第二しなのポリマー株式会社 Solenoid type cutting device
JP2532351Y2 (en) * 1991-12-03 1997-04-16 信越ポリマー株式会社 Solenoid type cutting device
JPH05223246A (en) * 1992-02-14 1993-08-31 Rinnai Corp Burner
CN111810984A (en) * 2020-07-10 2020-10-23 浙江浙能技术研究院有限公司 Optimization control method for capacity-increasing transformation of primary air fan adaptive steam turbine

Also Published As

Publication number Publication date
KR850001402A (en) 1985-03-18
JPH0230408B2 (en) 1990-07-06
KR900006880B1 (en) 1990-09-24

Similar Documents

Publication Publication Date Title
US4708636A (en) Flow sensor furnace control
JPS6016218A (en) Combustion control device
US4573912A (en) Space heater
JPS60169013A (en) Burning control device
JP4067254B2 (en) Combustion device
JPS60169051A (en) Hot air type space heater
JPS6096857A (en) Controller for warm air fan of warm air heater
JPS6112168B2 (en)
JPS5815689B2 (en) gas combustion equipment
JPH0271048A (en) Controller for hot water supplying apparatus
KR880004145Y1 (en) Combustion control device
JPH08605Y2 (en) Forced exhaust type combustor
JPH0571846B2 (en)
JP2700359B2 (en) Combustion equipment
JP3471107B2 (en) Control method of combustion device with proportional valve
JPH07107444B2 (en) Combustion device
JPH0271045A (en) Controller for hot water supplying apparatus
JPH01102249A (en) Combustion type space heater
JPS6230672Y2 (en)
JPS6215634Y2 (en)
JPH0262780B2 (en)
JP2642274B2 (en) Forced air combustion equipment
KR920006977B1 (en) Temperature controller
JPS61225549A (en) Gas combustion type hot air flow space heater
KR880003967Y1 (en) Fan heater