JPS61138840A - Air-fuel ratio controller for gas engine - Google Patents

Air-fuel ratio controller for gas engine

Info

Publication number
JPS61138840A
JPS61138840A JP59261585A JP26158584A JPS61138840A JP S61138840 A JPS61138840 A JP S61138840A JP 59261585 A JP59261585 A JP 59261585A JP 26158584 A JP26158584 A JP 26158584A JP S61138840 A JPS61138840 A JP S61138840A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
gas
ratio control
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59261585A
Other languages
Japanese (ja)
Inventor
Fumio Nakano
文雄 中野
Katsumi Yamashita
山下 勝美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Diesel Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Diesel Engine Co Ltd filed Critical Yanmar Diesel Engine Co Ltd
Priority to JP59261585A priority Critical patent/JPS61138840A/en
Publication of JPS61138840A publication Critical patent/JPS61138840A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/021Control of components of the fuel supply system
    • F02D19/022Control of components of the fuel supply system to adjust the fuel pressure, temperature or composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/021Control of components of the fuel supply system
    • F02D19/023Control of components of the fuel supply system to adjust the fuel mass or volume flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/04Gas-air mixing apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Abstract

PURPOSE:To check a gas pressure variation in a bypass pipe as well as to improve a degree of control accuracy, by branching off the bypass pipe from a main feeding pipe line for gas fuel to a mixer and installing an air-fuel ratio control valve, while installing each pressure-regulating valve in the main feeding pipe line and the bypass pipe. CONSTITUTION:A bypass pipe 8 is branched off from a main feeding pipe line 6 for gas fuel to a mixer 4, and an air-fuel ratio control valve 10 is installed in this bypass pipe 8. And, a main pressure-regulating valve 7 is installed in the main feeding pipe line situated more at the upstream side or the downstream side than a spot where the bypass pipe 8 is branched off, while a bypass pressure-regulating valve 9 is installed in the bypass pipe 8. A control unit 16 opens or closes the air-fuel ratio control valve 10 to feed the additional gas supply calculated on the basis of each signal out of an oxygen sensor 13, a governor 14 and a suction pressure sensor 15. At this time, these pressure- regulating valves 7 and 9 also operate, keeping gas pressure inside the bypass pipe 8 almost constant, thus control accuracy in the air-fuel ratio control valve 10 is improved.

Description

【発明の詳細な説明】 く技術分野〉 本発明は、ガス機関の空燃比制御装置、詳しくは空燃比
制御弁が設けられるガス燃料の供給経路部分の構造に関
する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to an air-fuel ratio control device for a gas engine, and more particularly to a structure of a gas fuel supply path portion in which an air-fuel ratio control valve is provided.

〈従来技術〉 ガス機関の空燃比制御装置は一般に、第3図の構成図に
示すように、排気管30途中に介装した三元触媒120
と、この触媒120の入口側に取り付けた酸素センサ1
3oと、制御部であるマイクロコンピュータ16oと、
ガス燃料の供給管途中に設けた空燃比制御弁10o等を
備え、マイクロコンピュータ16oが酸素検出信号、ガ
バナ14゜からの回転検出信号、およびミキサ4oの吸
気圧センサ15oからの負荷検出信号に基づいて追加ガ
ス供給量を算出し、その命令に応答して空燃比制御弁1
0oが開閉動作することにより、吸入空気に対するガス
供給量の割合が調整されて前記触媒の入口における酸素
濃度が一定値に保たれるものである。
<Prior Art> Generally, an air-fuel ratio control device for a gas engine uses a three-way catalyst 120 interposed in the middle of an exhaust pipe 30, as shown in the block diagram of FIG.
And, the oxygen sensor 1 attached to the inlet side of this catalyst 120
3o, a microcomputer 16o which is a control section,
The microcomputer 16o is equipped with an air-fuel ratio control valve 10o installed in the middle of the gas fuel supply pipe, and the microcomputer 16o operates based on the oxygen detection signal, the rotation detection signal from the governor 14°, and the load detection signal from the intake pressure sensor 15o of the mixer 4o. calculates the additional gas supply amount, and in response to the command, air-fuel ratio control valve 1
By opening and closing 0o, the ratio of the gas supply amount to the intake air is adjusted, and the oxygen concentration at the inlet of the catalyst is maintained at a constant value.

ところで、従来のこの種空燃比制御装置において、空燃
比制御弁10oは、ガス燃料の主供給管60から分岐し
たバイパス供給管8oに装着されており、前記バイパス
供給管8oが分岐する個所より上流側で主供給管60に
調圧弁70が設けられ、この調圧弁7oによりミキサ4
oでのガス圧と吸入空気圧との差圧が一定に保たれるよ
うにしているが、実際には運転条件によりガス供給量が
増減すると、このガス供給量の増減に応して差圧が少な
から1”変動1゛る。このように差圧が変動すると、当
然ガス流量が変化し、バイパス供給管80での流mも変
化するから、空燃比制御弁IOoか一定の開度てあって
もそのガス流Mが変化することに〜′す、そのだわ、空
燃比制御弁10oによる調整mが所要値からずれて制御
性能が悪化する不都合を生しる。
By the way, in this type of conventional air-fuel ratio control device, the air-fuel ratio control valve 10o is installed in a bypass supply pipe 8o branched from the main gas fuel supply pipe 60, and is located upstream from the point where the bypass supply pipe 8o branches. A pressure regulating valve 70 is provided in the main supply pipe 60 on the side, and the mixer 4
The pressure difference between the gas pressure at 0 and the intake air pressure is kept constant, but in reality, if the gas supply amount increases or decreases depending on the operating conditions, the differential pressure will change depending on the increase or decrease in the gas supply amount. There is a slight fluctuation of 1". When the differential pressure fluctuates in this way, the gas flow rate naturally changes, and the flow m in the bypass supply pipe 80 also changes, so the air-fuel ratio control valve IOo must be kept at a constant opening. However, as the gas flow M changes, the adjustment m by the air-fuel ratio control valve 10o deviates from the required value, resulting in a disadvantage that the control performance deteriorates.

また、従来のガス機関は各機種とも、そのガス圧が調圧
弁70によって、ある一定の圧力に設定されるでいるが
、調圧弁7oによって調整された同一のガス圧がバイパ
ス供給管8oにも作用するので、このバイパス供給管8
oには、所定の設定圧のもとて所要量のガス供給量を追
加供給しうる空燃比制御弁10oを設ける必要がある。
In addition, in all conventional gas engines, the gas pressure is set to a certain constant pressure by the pressure regulating valve 70, but the same gas pressure regulated by the pressure regulating valve 7o is also applied to the bypass supply pipe 8o. This bypass supply pipe 8
It is necessary to provide an air-fuel ratio control valve 10o that can additionally supply the required amount of gas at a predetermined set pressure.

即ち、ガス供給量が少ない小型のガス機関では、所定の
設定圧のもとて少量のガス供給量を追加供給すればよい
から、小型の空燃比制御弁を使用すればよいか、ガス供
給量が大である大型のガス機関では、所定の設定圧のも
とて大量のガス供給量を追加供給しなければならないか
ら、容量の大きな大型の空燃比制御弁を用いなければな
らない。このように、従来の空燃比制御装置では、バイ
パス供給管を通じて追加すべきガス供給量に応した容量
、能力の空燃比制御弁10oを用いなければならず、ガ
ス機関の種類毎に異なる容量の空燃比制御弁を用意する
必要があって、製造上不利で、コスト高を招く欠点があ
った。
In other words, in a small gas engine with a small gas supply amount, it is only necessary to supply a small amount of additional gas at a predetermined set pressure, so it is better to use a small air-fuel ratio control valve or to adjust the gas supply amount. In a large gas engine with a large capacity, a large amount of gas must be additionally supplied at a predetermined set pressure, so a large air-fuel ratio control valve with a large capacity must be used. In this way, in the conventional air-fuel ratio control device, it is necessary to use the air-fuel ratio control valve 10o with a capacity and capacity corresponding to the amount of gas to be added through the bypass supply pipe, and the air-fuel ratio control valve 10o has a different capacity depending on the type of gas engine. It is necessary to prepare an air-fuel ratio control valve, which is disadvantageous in manufacturing and increases costs.

さらに、前述したように、空燃比制御弁としては、所定
の設定圧のもとてバイパス供給管を通して追加すべきガ
ス供給量に応じた容量、能力のものを用いなければなら
ないが、空燃比制御弁100の種類は限定されているか
ら、追加ガス供給量と空燃比制御弁10oの容量、能力
とが常に精確に一致するとは限らず、空燃比制御弁の容
量、能力が追加ガス供給量と精確に適合していない場合
は、空燃比制御弁に上る調整量が所要値からずれること
となり、この点からも制御性能が低下する欠点がある。
Furthermore, as mentioned above, the air-fuel ratio control valve must have a capacity and capacity that corresponds to the amount of gas to be added through the bypass supply pipe under a predetermined set pressure. Since the types of valves 100 are limited, the amount of additional gas supplied and the capacity and capacity of the air-fuel ratio control valve 10o do not always match exactly. If the adjustment is not accurate, the amount of adjustment applied to the air-fuel ratio control valve will deviate from the required value, which also has the disadvantage of reducing control performance.

〈発明の目的〉 本発明は、上述の問題点に鑑みてなされたものであ−て
、バイパス供給管路でのガス圧変動を可及的減少させ、
該管路での空燃比制御弁によるガス供給量の追加供給を
所期通り行なわせ、制御性能を良好にするとともに、単
一種の空燃比制御弁を多機種のガス機関に共用化するこ
とができるようにして、コストの低減化を図ることを目
的とする。
<Object of the Invention> The present invention has been made in view of the above-mentioned problems, and aims to reduce gas pressure fluctuations in the bypass supply pipe as much as possible,
The additional supply of gas by the air-fuel ratio control valve in the pipeline can be performed as planned, improving control performance, and making it possible to share a single type of air-fuel ratio control valve with multiple types of gas engines. The purpose is to reduce costs by making it possible to

〈発明の構成〉 本発明は、上記目的を達成するために、ミキサへのガス
燃料の主供給管路からバイパス供給管路を分岐させ、こ
のバイパス供給管路に空燃比制御弁を装着したカス機関
の空燃比制御装置において、前記バイパス供給管路が分
岐する個所より上流側もしくは下流側の主供給管路に主
調圧弁を設けるとともに、バイパス供給管路にバイパス
調圧弁を設置プたものである。
<Configuration of the Invention> In order to achieve the above object, the present invention provides a case in which a bypass supply pipe is branched from a main supply pipe of gas fuel to a mixer, and an air-fuel ratio control valve is attached to this bypass supply pipe. In the air-fuel ratio control device for an engine, a main pressure regulating valve is provided in the main supply pipe on the upstream or downstream side of the point where the bypass supply pipe branches, and a bypass pressure regulating valve is installed in the bypass supply pipe. .

〈実施例〉 以下、本発明を図面に示す実施例に基づいて詳細に説明
するe第1図は本発明の空燃比制御装置の構成図で、同
図中、符号1は機関の燃焼室、2は吸気管、3は排気管
であり、吸気管2の上流部にはミキサ4とスロットル弁
5とが配設されている。前記ミキサ4ヘガス燃料を供給
する主供給管6には主調圧弁7が装着され、該主調圧弁
7の下流側で、主供給管6からバイパス供給管8が分岐
しており、主供給管6は前記ミキサ4に直結しているが
、バイパス供給管8には上流側から順にバイパス調圧弁
9と空燃比制御弁10とが装着され、バイパス供給管8
はこれらバイパス調圧弁9および空燃比制御弁10を介
してミキサ4に接続している。11は空燃比制御弁10
のアクチュエータである。
<Example> Hereinafter, the present invention will be described in detail based on an example shown in the drawings.e Fig. 1 is a configuration diagram of an air-fuel ratio control device of the present invention, and in the figure, reference numeral 1 indicates a combustion chamber of an engine; 2 is an intake pipe, 3 is an exhaust pipe, and an upstream portion of the intake pipe 2 is provided with a mixer 4 and a throttle valve 5. A main pressure regulating valve 7 is attached to the main supply pipe 6 that supplies gas fuel to the mixer 4, and a bypass supply pipe 8 branches from the main supply pipe 6 downstream of the main pressure regulating valve 7. Directly connected to the mixer 4, the bypass supply pipe 8 is equipped with a bypass pressure regulating valve 9 and an air-fuel ratio control valve 10 in order from the upstream side.
is connected to the mixer 4 via the bypass pressure regulating valve 9 and the air-fuel ratio control valve 10. 11 is an air-fuel ratio control valve 10
actuator.

図中、12は排気管途3中に介装した三元触媒、13は
該触媒12の上流側に取着した酸素センサ、14は前記
スロットル弁5に連動したガバナで、回転検出信号を出
力する。15は負荷検出手段としての吸気圧セッサ、1
6は制御部としてのマイクロコンピュータである。
In the figure, 12 is a three-way catalyst installed in the exhaust pipe 3, 13 is an oxygen sensor installed upstream of the catalyst 12, and 14 is a governor linked to the throttle valve 5, which outputs a rotation detection signal. do. 15 is an intake pressure sensor as a load detection means;
6 is a microcomputer as a control section.

上記の構成において、マイクロコンピュータ16か酸素
セノザ13からの酸素検出信号、ガバナ14からの回転
検出信号、およびミキサ4の吸気圧セッサ15からの負
荷検出信号を導入し、これら検出信号に基づいて追加す
べきガス供給量を算出し、その命令に応答して空燃比制
御弁10が開閉動作することにより、吸入空気に対する
ガス供給量の割合が調整されて前記触媒の入口における
酸素濃度か一定値に保たれる。
In the above configuration, an oxygen detection signal from the microcomputer 16 or the oxygen sensor 13, a rotation detection signal from the governor 14, and a load detection signal from the intake pressure sensor 15 of the mixer 4 are introduced, and additions are made based on these detection signals. By calculating the amount of gas to be supplied and opening and closing the air-fuel ratio control valve 10 in response to the command, the ratio of the amount of gas supplied to the intake air is adjusted, and the oxygen concentration at the inlet of the catalyst is kept at a constant value. It is maintained.

いま、負荷の増大等の運転条件の変化によりミキサ4−
\のガス供給量が増大すると、主供給管6のガス圧は若
干減少するか、バイパス供給管8内のカス圧は、バイパ
ス調圧弁9で再度調整されるから、はとんど変動しない
。そのため、空燃比制御弁10の開度に対するガス流量
の割合は一定に保たれ、該空燃比制御弁lOにおける流
量調整か所期通り精確に行なわれる。
Now, due to changes in operating conditions such as an increase in load, mixer 4-
When the gas supply amount increases, the gas pressure in the main supply pipe 6 decreases slightly, or the gas pressure in the bypass supply pipe 8 is readjusted by the bypass pressure regulating valve 9, so it hardly changes. Therefore, the ratio of the gas flow rate to the opening degree of the air-fuel ratio control valve 10 is kept constant, and the flow rate adjustment in the air-fuel ratio control valve IO is performed accurately and as planned.

また、空燃比制御弁10はバイパス調圧弁9の設定圧に
応したものを用いればよいから、例えばバイパス調圧弁
9の設定圧を主調圧弁7の設定圧より高圧に設定すれば
、空燃比制御弁10としては高圧で所要量のガス供給量
を制御しうるしのであればよく、小8mの空燃比制御弁
を使用することができる。
In addition, since the air-fuel ratio control valve 10 may be one that corresponds to the set pressure of the bypass pressure regulating valve 9, for example, if the set pressure of the bypass pressure regulating valve 9 is set higher than the setting pressure of the main pressure regulating valve 7, the air-fuel ratio can be controlled. The valve 10 may be any valve capable of controlling the required amount of gas supply at high pressure, and a small 8 m air-fuel ratio control valve may be used.

この実施例ではバイパス供給管8内のガス圧か主調圧弁
7とバイパス調圧弁9とて2段階的に調整され、空燃比
制御弁IOにまでガス供給源のガス圧の影響が及ばない
から、この実施例はガス供給源のガス圧が高い機種に適
する。
In this embodiment, the gas pressure in the bypass supply pipe 8 is adjusted in two stages by the main pressure regulating valve 7 and the bypass pressure regulating valve 9, and the air-fuel ratio control valve IO is not affected by the gas pressure of the gas supply source. This embodiment is suitable for models in which the gas pressure of the gas supply source is high.

第2図は本発明の他の実施例を示す構成図であって、こ
の実施例は、バイパス供給管81が分岐する個所の下流
側で主供給管61に主調圧弁71を設けたものである。
FIG. 2 is a configuration diagram showing another embodiment of the present invention, and in this embodiment, a main pressure regulating valve 71 is provided in the main supply pipe 61 on the downstream side of the point where the bypass supply pipe 81 branches. .

即ち、互いに分岐した主供給管61とバイパス供給管8
1とにそれぞれ主調圧弁71とバイパス調圧弁91とを
設けている。その他の構成部分は第1図に示した第1実
施例と同しで、同一の構成部分は第1図と同し符号を付
して示す。
That is, the main supply pipe 61 and the bypass supply pipe 8 branched from each other.
1 are provided with a main pressure regulating valve 71 and a bypass pressure regulating valve 91, respectively. The other components are the same as those in the first embodiment shown in FIG. 1, and the same components are designated by the same reference numerals as in FIG.

この実施例においても、バイパス供給管81内のガス圧
はバイパス調圧弁91で自動調整されるから、主供給管
61内のガス圧が変動しても、はとんと変動しない。そ
のため、空燃比制御弁lOの開度に対するガス流量の割
合は一定に保たれ、該空燃比制御弁10における流mr
a整が所期通り精確に行なわれる点は、第1実施例の場
合と同しである。
Also in this embodiment, the gas pressure in the bypass supply pipe 81 is automatically adjusted by the bypass pressure regulating valve 91, so even if the gas pressure in the main supply pipe 61 fluctuates, it does not fluctuate drastically. Therefore, the ratio of the gas flow rate to the opening degree of the air-fuel ratio control valve IO is kept constant, and the flow mr in the air-fuel ratio control valve 10 is kept constant.
The point that a-alignment is performed accurately as expected is the same as in the first embodiment.

バイパス調圧弁91にはガス供給源からのガス圧が直接
的に作用するので、この実施例はガス圧が比較的低いガ
ス機関に適する。
Since the gas pressure from the gas supply source directly acts on the bypass pressure regulating valve 91, this embodiment is suitable for a gas engine with relatively low gas pressure.

〈発明の効果〉 以上のように、本発明によれば、運転条件により主供給
管内のガス圧は若干変動しても、バイパス供給管のガス
圧は、バイパス調圧弁で調整されてほぼ一定に保たれる
から、空燃比制御弁におけるガス流量の調整が所期通り
精確に行なわれ、該空燃比制御弁による制御性能が向上
する。
<Effects of the Invention> As described above, according to the present invention, even if the gas pressure in the main supply pipe fluctuates slightly depending on operating conditions, the gas pressure in the bypass supply pipe is regulated by the bypass pressure regulating valve and remains almost constant. Therefore, the gas flow rate in the air-fuel ratio control valve is accurately adjusted as expected, and the control performance of the air-fuel ratio control valve is improved.

また、バイパス調圧弁の設定圧を適宜変更することによ
り、追加すべきガス供給量と空燃比制御弁の容量、能力
とを精確に適合させることができ、この点からも、空燃
比制御弁による制御性能が一段と向上する。
In addition, by appropriately changing the set pressure of the bypass pressure regulating valve, it is possible to accurately match the additional gas supply amount with the capacity and capacity of the air-fuel ratio control valve. Control performance is further improved.

さらに、バイパス供給管を通して追加するカス供給量が
多い大型の機種に対しては、バイパス調圧弁の設定圧を
高圧に設定することによりて、小容量の空燃比制御弁で
し多量の追加ガス供給量を制御させることができるゎ従
って、追加ガス供給量が多い大型の機種であっても、ま
た追加ガス供給量が少ない小型の機種てあっても、バイ
パス調圧弁の設定圧の設定を変更するごとにより、との
機種にも同し容量、能力の空燃比制御弁を使用すること
かでき、空燃比制御弁の共用化が司能となり、コストの
低減化を図ることができる。
Furthermore, for large models that require a large amount of gas to be supplied through the bypass supply pipe, by setting the set pressure of the bypass pressure regulating valve to a high pressure, a large amount of additional gas can be supplied using a small capacity air-fuel ratio control valve. The amount can be controlled. Therefore, even if you have a large model that supplies a large amount of additional gas, or a small model that supplies a small amount of additional gas, you can change the setting pressure of the bypass pressure regulating valve. Accordingly, the air-fuel ratio control valve of the same capacity and capacity can be used for both models, making it possible to share the air-fuel ratio control valve and reducing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の構成図、第2図は他の実施例
の構成図、第3図は従来の装置の構成図である。 4 ミキサ、661 主供給管、7,71 主調圧弁、
8,81 バイパス供給管、9.91  ノ・イパス調
圧弁、lO空燃比制御弁。
FIG. 1 is a block diagram of an embodiment of the present invention, FIG. 2 is a block diagram of another embodiment, and FIG. 3 is a block diagram of a conventional device. 4 mixer, 661 main supply pipe, 7, 71 main pressure regulating valve,
8,81 Bypass supply pipe, 9.91 No.Pass pressure regulating valve, lO air-fuel ratio control valve.

Claims (1)

【特許請求の範囲】[Claims] (1)ミキサへのガス燃料の主供給管路からバイパス供
給管路を分岐させ、このバイパス供給管路に空燃比制御
弁を装着したガス機関の空燃比制御装置において、前記
バイパス供給管路が分岐する個所より上流側もしくは下
流側の主供給管路に主調圧弁を設けるとともに、バイパ
ス供給管路にバイパス調圧弁を設けたことを特徴とする
ガス機関の空燃比制御装置。
(1) In an air-fuel ratio control device for a gas engine, in which a bypass supply pipe is branched from a main supply pipe for gas fuel to a mixer, and an air-fuel ratio control valve is attached to this bypass supply pipe, the bypass supply pipe is An air-fuel ratio control device for a gas engine, characterized in that a main pressure regulating valve is provided in a main supply pipe on the upstream or downstream side of a branch point, and a bypass pressure regulating valve is provided in a bypass supply pipe.
JP59261585A 1984-12-10 1984-12-10 Air-fuel ratio controller for gas engine Pending JPS61138840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59261585A JPS61138840A (en) 1984-12-10 1984-12-10 Air-fuel ratio controller for gas engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59261585A JPS61138840A (en) 1984-12-10 1984-12-10 Air-fuel ratio controller for gas engine

Publications (1)

Publication Number Publication Date
JPS61138840A true JPS61138840A (en) 1986-06-26

Family

ID=17363961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59261585A Pending JPS61138840A (en) 1984-12-10 1984-12-10 Air-fuel ratio controller for gas engine

Country Status (1)

Country Link
JP (1) JPS61138840A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5154053A (en) * 1990-04-26 1992-10-13 Nippondenso Co., Ltd. Air-fuel ratio control apparatus for engine
US5251438A (en) * 1990-04-26 1993-10-12 Nippondenso Co. Ltd. Air-fuel ratio control apparatus for engine
CN111089023A (en) * 2020-03-20 2020-05-01 山东赛马力动力科技有限公司 Air-fuel ratio measuring and controlling device of gas generator set

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4885917A (en) * 1971-11-12 1973-11-14

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4885917A (en) * 1971-11-12 1973-11-14

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5154053A (en) * 1990-04-26 1992-10-13 Nippondenso Co., Ltd. Air-fuel ratio control apparatus for engine
US5251438A (en) * 1990-04-26 1993-10-12 Nippondenso Co. Ltd. Air-fuel ratio control apparatus for engine
CN111089023A (en) * 2020-03-20 2020-05-01 山东赛马力动力科技有限公司 Air-fuel ratio measuring and controlling device of gas generator set

Similar Documents

Publication Publication Date Title
US4462376A (en) Method and apparatus for determining and controlling the exhaust gas recirculation rate in internal combustion engines
JPS6340259B2 (en)
WO2009094734A2 (en) Bleed airflow balancing control using simplified sensing
US4231220A (en) Secondary air control system for an internal combustion engine
US4233946A (en) Exhaust gas recirculation system
JPS648174B2 (en)
JPS61138840A (en) Air-fuel ratio controller for gas engine
JPS5845593B2 (en) Additional fluid control device for internal combustion engines
JPS6411807B2 (en)
US4434776A (en) EGR Control system
JP3277304B2 (en) Fuel supply device for internal combustion engine
US4137714A (en) Internal combustion engine secondary air supply control system
JP4420721B2 (en) Gas engine
JPS6231656Y2 (en)
JPS6042209Y2 (en) Exhaust recirculation control device
JPS60198348A (en) Engine controller
JPS6363743B2 (en)
JPS6139106Y2 (en)
JPS6123857A (en) Air-fuel ratio controlling method and system for lpg engine
JPS58113545A (en) Mixed-gas controller for alcohol reformed gas engine
JPH10238413A (en) Controller for exhaust gas recirculation
JPS5849393Y2 (en) Engine negative pressure signal control device
JPS63306252A (en) Multiple throttle unit for internal combustion engine
JPH0235866B2 (en) KAKYUKITSUKI ENJIN
JPS62131958A (en) Air-fuel ratio control device for carburettor of internal combustion engine