JPS58178117A - Proportioning controller for gas combustion - Google Patents

Proportioning controller for gas combustion

Info

Publication number
JPS58178117A
JPS58178117A JP57061463A JP6146382A JPS58178117A JP S58178117 A JPS58178117 A JP S58178117A JP 57061463 A JP57061463 A JP 57061463A JP 6146382 A JP6146382 A JP 6146382A JP S58178117 A JPS58178117 A JP S58178117A
Authority
JP
Japan
Prior art keywords
variable throttle
throttle mechanism
pressure
combustion
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57061463A
Other languages
Japanese (ja)
Other versions
JPS6331694B2 (en
Inventor
Hideo Uematsu
英夫 植松
Takashi Tanahashi
隆 棚橋
Yoshiyuki Yokoajiro
義幸 横網代
Tomohide Matsumoto
朋秀 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57061463A priority Critical patent/JPS58178117A/en
Publication of JPS58178117A publication Critical patent/JPS58178117A/en
Publication of JPS6331694B2 publication Critical patent/JPS6331694B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/08Regulating fuel supply conjointly with another medium, e.g. boiler water
    • F23N1/082Regulating fuel supply conjointly with another medium, e.g. boiler water using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/02Measuring filling height in burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/18Measuring temperature feedwater temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Combustion (AREA)
  • Feeding And Controlling Fuel (AREA)

Abstract

PURPOSE:To relieve a demand precision of a working pressure detector and to increase a combustion range TDR (rated maximum combustion flow rate/minimum combustion flow rate) under a condition that a detecting range output ratio is high, by controlling a gas pressure control valve with the aid of a pressure detector for detecting a difference in pressure between the upstream and the downstream of a variable throttle mechanism. CONSTITUTION:In case a combustion quantity is gradually choked from a rated maximum combustion condition, or, for example, when a hot water feed amount is reduced or if temperature of hot water is set to a low value, an electric signal from a temperature detector 7 or an electric signal from a temperature setting part 14 is compared for decision by a control operating part 15 to output it as a temperature deviation signal 16 to a variable throttle mechanism 4A. Thereafter, an operation is conducted so that the size of the flow path equivalent sectional area of the variable throttle mechanism 4A is gradually changed into a value opposing to the temperature deviation signal 16. Meanwhile, a value of a pressure detector 10 varies with a change in the value of the flow path equivalent sectional area to output an electric signal 17 which is processed as a control signal of a gas pressure control valve 3 by means of an electric control circuit 13.

Description

【発明の詳細な説明】 本発明は、ガス燃焼機器、とりわけガス給湯装置に於け
゛る燃焼出力範囲拡大の為の一手段に関する0 従来のガス給湯装置は第1因に示すように構成されてい
る。すなわち、ガス系統は、第1の電磁弁1、第2の電
磁弁2、ガス圧力制御弁3がシリーズに結合され、さら
にガス圧力制御弁3に固定ノズル4が結合され、制御さ
れた燃料ガスが、予混合バーナ5に供給されるように構
成されている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a means for expanding the combustion output range of gas combustion equipment, particularly gas water heaters. There is. That is, in the gas system, a first solenoid valve 1, a second solenoid valve 2, and a gas pressure control valve 3 are connected in series, and a fixed nozzle 4 is further connected to the gas pressure control valve 3 to control the controlled fuel gas. is supplied to the premix burner 5.

予涜合バーナ6の上部または下部には熱交換器6が配置
され、この熱交換器6で水を温水にすべく燃焼ガスのも
つ熱量を熱交換している。熱交換器6の出湯口には、温
度検知器7が取付けられており、その電気信号が、ファ
ン8用の電気制御回路(I)9に導ひかれている。
A heat exchanger 6 is disposed above or below the presynchronization burner 6, and the heat exchanger 6 exchanges heat of the combustion gas in order to turn water into hot water. A temperature detector 7 is attached to the outlet of the heat exchanger 6, and its electric signal is led to an electric control circuit (I) 9 for the fan 8.

10は、ファン8の送風管11のある個所と燃料ガス及
び空気との混合部12との差圧を検出する圧力検出器で
あり、この圧力検出器10からの電気信号が、ガス圧力
制御弁3用の電気制御回路fil)13に導びかれてい
る。
Reference numeral 10 denotes a pressure detector that detects the differential pressure between a location of the blower pipe 11 of the fan 8 and the fuel gas and air mixing section 12, and an electrical signal from this pressure detector 10 is transmitted to the gas pressure control valve. fil) 13.

上記構成に於いて、定格最大燃焼状態から順次燃焼量を
絞っていく場合を想定し第1図と第2図を使って説明す
る。
In the above configuration, a case where the combustion amount is sequentially reduced from the rated maximum combustion state will be explained using FIGS. 1 and 2.

すなわち、例えは出湯量を減少させると、温度検知器7
からファン8の送風量を減少させる或じな′電気信号が
、電気制御回路(■)9に入力され、ファン8の送風量
を減少させる。したがって、送風量の変化に対応した電
気信号が圧力検出器10に発生し、この電気信号は、即
、カス圧力制御弁3用の電気制御回路([)13でカス
圧力制御弁3の駆動用j電気16号に処理されて、送風
量に対応した燃焼ガスになるべくガス制御弁3を制御す
る。
In other words, for example, if the amount of hot water is decreased, the temperature sensor 7
A certain electrical signal for reducing the airflow rate of the fan 8 is inputted to the electric control circuit (■) 9, thereby reducing the airflow rate of the fan 8. Therefore, an electric signal corresponding to the change in the air flow rate is generated in the pressure detector 10, and this electric signal is immediately transmitted to the electric control circuit ([) 13 for the waste pressure control valve 3 to drive the waste pressure control valve 3. j The gas control valve 3 is controlled so that the combustion gas is processed by the electricity No. 16 and corresponds to the amount of air blown.

第2図は、横軸に圧力検出器10の差圧ΔPをとり縦軸
に、燃焼流量Q(この従来例では空気流量)をとってい
る。今定格最大燃焼量qmaxの状態からに記に説明し
た如く例えは出湯量を減少させるなどしてqmin迄燃
焼量を絞ると、例えばTDR=qmln/qmax=1
/15にすると、燃焼流Hoと圧力検出器10の差圧Δ
Pの間にはQa舟の関係にあるのでqminの時のJP
は、qm a Xの1/26になる、例えは、qmax
のときのJPが50wnH2Oの場合、qmlnのとき
のJPは2隨H20になる。
In FIG. 2, the horizontal axis represents the differential pressure ΔP of the pressure detector 10, and the vertical axis represents the combustion flow rate Q (air flow rate in this conventional example). For example, if you reduce the combustion amount to qmin by reducing the amount of hot water as explained above from the state of the rated maximum combustion amount qmax, for example, TDR = qmln / qmax = 1
/15, the pressure difference Δ between the combustion flow Ho and the pressure detector 10
Since there is a Qa relationship between P, JP at qmin
is 1/26 of qm a X, for example, qmax
If the JP at the time is 50wnH2O, the JP at the time of qmln becomes 2H20.

またqmi n /qma9mミニ−1/1焼量を絞ろ
うとするとqminの時のJPはqmaxの1/100
迄小さく制御される必要がある。すなわち前の例と同じ
くqrna工のときJPが60臥H2oとすると、qm
inのときのdpo値はo 、s wn H20という
非常に小さな値にまで制御される必要があり、かつ圧力
検出器10には厳しい精度が要求されることになる。し
たがって、圧力検出器10の圧力の変化で燃焼ガス流楚
を精度よく制御しようとした場合、圧力検出器に対する
要求精度が” D” = qmin/qmaxを小さく
すれはするほど厳しくなるので実用的には、TDRが1
/3〜1/6の値が限界の値であった。
Also, when trying to reduce the amount of qmin/qma9m mini-1/1 burnt, JP at qmin is 1/100 of qmax.
It needs to be controlled to a minimum. In other words, as in the previous example, when JP is 60㎥ H2O when qrna is used, qm
The dpo value at the time of in needs to be controlled to a very small value of o, s wn H20, and the pressure detector 10 is required to have strict accuracy. Therefore, when trying to accurately control the flow of combustion gas by changing the pressure of the pressure detector 10, the accuracy required for the pressure detector becomes stricter as "D" = qmin/qmax becomes smaller, so it is not practical. has a TDR of 1
A value of /3 to 1/6 was the limit value.

本発明は、上記従来の欠点を解消するもので、使用圧力
検出器の要求精度をゆるくして、または検出範囲出力比
ΔPm1n/ ” maXをできるだけ大きい値で、燃
焼範囲TDRを大ならしめることを目的とするものであ
る。
The present invention solves the above-mentioned conventional drawbacks by increasing the combustion range TDR by relaxing the required accuracy of the working pressure detector or by setting the detection range output ratio ΔPm1n/"maX to a value as large as possible. This is the purpose.

この目的を達成する為に本発明は、出湯温度を検知する
温度検出器と、温度設定部からの温度偏差信号により、
ガス燃焼量を制御する可変絞り機構を有し、この可変絞
り機構の上流と下流の差圧を検出する圧力検知器を設け
、この圧力検知器かC)の電気信号によりカス1tカ制
御弁を制御するように構成したものである。
In order to achieve this purpose, the present invention uses a temperature detector that detects the hot water temperature and a temperature deviation signal from the temperature setting section.
It has a variable throttle mechanism that controls the amount of gas burned, and is equipped with a pressure sensor that detects the differential pressure between the upstream and downstream sides of the variable throttle mechanism. It is configured to control.

この構成によって、温度偏差信号により、ガス燃焼量を
制御すべく可変絞り機構、すなわち1.ノズル、または
オリフィスの流路断面積を可変することで、燃焼流量の
圧力制御特性そのものを横断的に変化させ、容易に燃焼
制御範囲TL)Hの拡大を可能ならしめたものである。
With this configuration, a variable throttle mechanism is used to control the amount of gas combustion based on the temperature deviation signal, that is, 1. By varying the flow passage cross-sectional area of the nozzle or orifice, the pressure control characteristics of the combustion flow rate itself can be changed across the board, making it possible to easily expand the combustion control range TL)H.

以下、本発明の一実施例を第3図〜第6図にもとすいて
説明する。なお第3図中第1図と同一部品については同
一番号を+]している。
An embodiment of the present invention will be described below with reference to FIGS. 3 to 6. Note that parts in FIG. 3 that are the same as those in FIG. 1 are marked with the same numbers.

第3図に於いて4Aは、温度偏差信号をうけて流路断面
積が可変制御される可変絞り機構、14は温度設定部、
16は比較部、判断部からなる調節操作部、16は温度
偏差信号、17は電気信号である。
In FIG. 3, 4A is a variable throttle mechanism in which the cross-sectional area of the flow path is variably controlled in response to a temperature deviation signal; 14 is a temperature setting unit;
Reference numeral 16 denotes an adjustment operation section consisting of a comparison section and a judgment section, 16 a temperature deviation signal, and 17 an electric signal.

第4図及び第6図に於いて、横軸は圧力検出器10の差
圧ΔP1縦軸は燃焼流量Qを表わす、燃焼流量の圧力制
御特性を示している。
In FIGS. 4 and 6, the horizontal axis represents the differential pressure ΔP of the pressure detector 10, and the vertical axis represents the combustion flow rate Q, indicating the pressure control characteristics of the combustion flow rate.

φ1〜φ6(または第5図に於けるφ6)は可変絞り機
構の流路等価断面積を記号で表わし、φ1が、定格最大
燃焼時に於ける可変絞り機構の流路等価断面積の大きさ
である。以下φ2.φ3・・・・・・となるにしたがい
流路等価断面積が小さくなっている。
φ1 to φ6 (or φ6 in Figure 5) represent the equivalent cross-sectional area of the flow path of the variable throttle mechanism with symbols, and φ1 is the size of the equivalent cross-sectional area of the flow path of the variable throttle mechanism at the maximum rated combustion. be. Below φ2. The equivalent cross-sectional area of the flow path becomes smaller as the diameter increases to φ3.

また、第4図に於ける曲線a −eは、φ1〜φ6に夫
々対応している燃焼流量の圧力制御特性曲線である。そ
して、(イ)は定格最大燃焼時に於ける圧力検知器10
の差圧、(ロ)は本発明に於けるTDR最小時に於ける
差圧、←→は従来例の固定ノズルを使った場合(したが
って燃焼流量の圧力制御特性曲線はaのみである。)の
TDR最小時に於ける差圧の値を示している。
Further, curves a-e in FIG. 4 are pressure control characteristic curves of combustion flow rate corresponding to φ1 to φ6, respectively. And (a) is the pressure detector 10 at the maximum rated combustion.
, (b) is the differential pressure at the minimum TDR in the present invention, ←→ is the pressure difference when using the conventional fixed nozzle (therefore, the pressure control characteristic curve of the combustion flow rate is only a). It shows the value of the differential pressure at the minimum TDR.

上記構成に於いて、定格最大燃焼状態から順次燃焼量を
絞ってきた場合を説明する。すなわち。
In the above configuration, a case where the combustion amount is sequentially reduced from the rated maximum combustion state will be explained. Namely.

例えば、出湯量を減少させるとあるいは出湯温度を低く
設定すると、温度検知器7からの電気信号あるいは温度
設定部14からの電気信号が、16の調節操作部で、比
較判断され、温度偏差信号16として、4Aの可変絞り
機構へ出力される。
For example, when the amount of hot water discharged or the temperature of hot water discharged is set low, the electric signal from the temperature detector 7 or the electric signal from the temperature setting section 14 is compared and determined by the adjustment operation section 16, and the temperature deviation signal 16 It is output to the 4A variable aperture mechanism.

そして、可変絞り機構4Aの流路等価断面積の面積をφ
1からφ2あるいはさらにφ3へと順次温度偏差信号1
6に対応した値に変化するように作用する5、一方、流
路等価断面積φ1の値が変化するのに対応し圧力検知器
10の値も変化し、電気信号17を出力する。この電気
信号17は電気制御回路([1)13で、ガス圧力制御
弁3の操作信号として処理されると同時に圧力検知器1
0の差圧が小さくなり燃焼量が減少されるようにガス圧
力制御す[3へ出力するものである。
Then, the area of the flow path equivalent cross-sectional area of the variable throttle mechanism 4A is φ
Temperature deviation signal 1 sequentially from 1 to φ2 or further to φ3
On the other hand, as the value of the flow path equivalent cross-sectional area φ1 changes, the value of the pressure sensor 10 also changes, and an electrical signal 17 is output. This electric signal 17 is processed by the electric control circuit ([1) 13 as an operation signal for the gas pressure control valve 3 and at the same time, the pressure sensor 1
The gas pressure is outputted to the gas pressure control unit [3] so that the differential pressure at zero becomes smaller and the amount of combustion is reduced.

すなわち、第4図に於いて、曲線aなる燃焼流量の圧力
制御特性曲線上にあって、φ1の流路等価断面積の定格
最大燃焼量qmaxのとき圧力検知器10の値が(イ)
のとき、出湯量を減少させるあるいは出湯温度を低く設
定しなおすと、従来は、曲線aの燃焼流量の圧力制御特
性曲線上に沿って変化していたものが、本発明では可変
絞り機構の流路等価断面積がφ1から11次減少する方
向及び、圧力検知器10の差圧JPが減少する方向に制
御されるので、第4図のFなるはソ直線に沿って制御さ
れるものである。
That is, in FIG. 4, when the curve a is on the pressure control characteristic curve of the combustion flow rate and the rated maximum combustion amount qmax of the flow path equivalent cross-sectional area of φ1 is reached, the value of the pressure sensor 10 is (a).
In this case, when the amount of hot water discharged is reduced or the temperature of hot water discharged is reset to a lower value, conventionally, the combustion flow rate changes along the pressure control characteristic curve of curve a, but in the present invention, the flow rate of the variable throttle mechanism changes. Since the pressure is controlled in the direction in which the equivalent cross-sectional area of the road decreases 11th from φ1 and in the direction in which the differential pressure JP of the pressure sensor 10 decreases, F in FIG. 4 is controlled along the straight line. .

したがって、第4図をみれは明らかのように最小燃焼流
量値qminに対応した最小制御圧力が従来0→であっ
たものが、本発明では、(ロ)の如く大きな値になる。
Therefore, as is clear from FIG. 4, the minimum control pressure corresponding to the minimum combustion flow rate value qmin, which was conventionally 0→, becomes a large value as shown in (b) in the present invention.

また、この場合、流路等価断面積のみがφ1から順次変
化して、圧力検知器10の検知する差圧、すなわち可変
絞り機構の上流、下流の差圧ΔPが一定になるように、
ガス圧力制御弁を制御するようにすると第5図に示す如
く差圧が(イ)′ですなわち定格最大燃焼時に於ける圧
力の捷ま一定で、直線Gに沿って制御されることになる
In addition, in this case, only the flow path equivalent cross-sectional area changes sequentially from φ1, so that the differential pressure detected by the pressure detector 10, that is, the differential pressure ΔP upstream and downstream of the variable throttle mechanism becomes constant.
When the gas pressure control valve is controlled, the differential pressure is kept constant at (a)', ie, the pressure at the maximum rated combustion time, as shown in FIG. 5, and is controlled along the straight line G.

次に第3図に於ける可変絞り機構4Aの具体的構成の一
実施例として第6図に示す。
Next, FIG. 6 shows an example of a specific configuration of the variable diaphragm mechanism 4A shown in FIG. 3.

101は可変絞り機構本体、102は弁座、103は弁
軸、104はオーリングである。弁軸103と歯車A1
05および、ステッピングモータ106が同軸−ヒで締
結されている。そして、歯車A106から歯車B107
を介して、ポテンショメータ108が回転駆動されるよ
う配置されている。
101 is a variable throttle mechanism main body, 102 is a valve seat, 103 is a valve shaft, and 104 is an O-ring. Valve stem 103 and gear A1
05 and a stepping motor 106 are coaxially connected. Then, from gear A106 to gear B107
A potentiometer 108 is arranged to be rotationally driven via the .

第6図をみれば明らかのように、温度偏差信号16に対
応して、ステッピングモータ106が回転駆動され、し
たがって、弁座102と、弁軸103とで形成される隙
間すなわち流路等価断面積が変化し、ガス燃料流量が前
記説明した如く制御されるものである。
As is clear from FIG. 6, the stepping motor 106 is rotated in response to the temperature deviation signal 16, and therefore the gap formed between the valve seat 102 and the valve shaft 103, that is, the equivalent cross-sectional area of the flow path. is changed, and the gas fuel flow rate is controlled as described above.

以−Fの説明から明らかなように、本発明のガス燃焼比
例制御装置は、出湯温度の温度偏差信号によりガス燃焼
量を制御する可変絞り機構を具備し、この可変絞り機構
の上流と下流の差圧を圧力検知器で検知し、この圧力検
知信号でガス圧力制御弁を制御するようにしたことで、
従来のような固定ノズル方式と比較して、圧力を小さな
値まで制御する必要がなくなり、したがってガス燃料の
流量制御精度が著しく向上するはかりでなく、定格最大
燃焼流t qma!と最小燃焼流量qm i nの比、
いわゆるTDR(qm1n/qrnaりを著しるしく小
さZできるものである。いいかえれは燃焼出力調整範囲
が従来より、大巾に拡大できるものである。
As is clear from the explanation in F below, the gas combustion proportional control device of the present invention is equipped with a variable throttle mechanism that controls the amount of gas combustion based on the temperature deviation signal of the tapping temperature, and the upstream and downstream of the variable throttle mechanism is By detecting the differential pressure with a pressure detector and controlling the gas pressure control valve with this pressure detection signal,
Compared to the conventional fixed nozzle system, it is no longer necessary to control the pressure to a small value, and therefore the accuracy of gas fuel flow rate control is significantly improved. and the minimum combustion flow rate qmin,
The so-called TDR (qm1n/qrna ratio) can be significantly reduced.The change is that the combustion output adjustment range can be expanded to a greater extent than before.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のガス燃焼比例制御装置の概略システム図
、第2図は従来のガス燃焼比例制御装置に於ける燃焼流
量の圧力制御特性図、第3図は本発明の一実施例による
ガス燃焼比例制御装置の概略システム図、第4図および
第6図は本発明の燃料流量の圧力制御特性図、第6図は
本発明に於ける可変絞り機構の一実施例である。 3・・・・・・ガス圧力制御弁、4A・・・・・・可変
絞り機構、7・・・・・・温度検知器、10・・・・・
・圧力検知器、14・・・・・・温度設定部、16・・
・・・・温度偏差信号、17・・・・・・電気信号。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
84 fI!j2図 @4図 第3図 3 第5図
Fig. 1 is a schematic system diagram of a conventional gas combustion proportional control device, Fig. 2 is a pressure control characteristic diagram of combustion flow rate in the conventional gas combustion proportional control device, and Fig. 3 is a gas combustion proportional control device according to an embodiment of the present invention. A schematic system diagram of the combustion proportional control device, FIGS. 4 and 6 are fuel flow rate pressure control characteristic diagrams of the present invention, and FIG. 6 is an embodiment of the variable throttle mechanism in the present invention. 3...Gas pressure control valve, 4A...Variable throttle mechanism, 7...Temperature detector, 10...
・Pressure detector, 14...Temperature setting section, 16...
...Temperature deviation signal, 17...Electrical signal. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
84 fI! j2 Figure @4 Figure 3 Figure 3 Figure 5

Claims (7)

【特許請求の範囲】[Claims] (1)  ガス給湯装置の出湯温度を検知する温度検出
器と、温度設定部からの温度偏差信号により、ガス燃焼
量を制御する可変絞り機構を有し、この可変絞り機構の
上流と下流の差圧を検出する圧力検知器を設け、この圧
力検知器からの電気信号により制御されかつ前記可変絞
り機構と直列に配設されたガス圧力制御弁とからなるガ
ス燃焼比例制御装置。
(1) It has a temperature detector that detects the outlet temperature of the gas water heater and a variable throttle mechanism that controls the amount of gas burned based on the temperature deviation signal from the temperature setting section, and the difference between the upstream and downstream of this variable throttle mechanism. A gas combustion proportional control device comprising a pressure sensor for detecting pressure, a gas pressure control valve controlled by an electric signal from the pressure sensor, and arranged in series with the variable throttle mechanism.
(2)可変絞り機構の上流、下流の差圧がはソ一定にな
るべく、ガス圧力制御弁を制御するようにした特許請求
の範囲第1項記載のガス燃焼比例制御装置。
(2) The gas combustion proportional control device according to claim 1, wherein the gas pressure control valve is controlled so that the differential pressure between the upstream and downstream sides of the variable throttle mechanism is kept constant.
(3)  可変絞り機構を操作する温度偏差信号により
燃焼に必要な空気量を同時に制御するようにした特許請
求の範囲第1項記載のガス燃焼比例制御装置。
(3) The gas combustion proportional control device according to claim 1, wherein the amount of air necessary for combustion is simultaneously controlled by a temperature deviation signal that operates a variable throttle mechanism.
(4)可変絞り機構に、絞り量に対応した位置検出手段
を設け、この位置検出手段から出力される電気信号と前
記可変絞り機構の上流、下流の差圧電気信号からカス圧
力制御弁を制御するようにした特許請求の範囲第1項記
載のガス燃焼比例制御装置。
(4) The variable throttle mechanism is provided with a position detection means corresponding to the amount of throttle, and the waste pressure control valve is controlled from the electric signal output from the position detection means and the differential pressure electric signal upstream and downstream of the variable throttle mechanism. A gas combustion proportional control device according to claim 1, wherein the gas combustion proportional control device is configured to:
(5)絞り量に対応した位置検出信号により、空気ばを
制御するようにした特許請求の範囲第4項記載のガス燃
焼比例制御装置。
(5) The gas combustion proportional control device according to claim 4, wherein the air flow is controlled by a position detection signal corresponding to the throttle amount.
(6)  可変絞り機構を無段階に制御できるように構
成した特許請求の範囲第1項記載のガス燃焼比例制御装
置1、
(6) Gas combustion proportional control device 1 according to claim 1, configured to be able to control the variable throttle mechanism steplessly;
(7)  可変絞り機構を多段に制御できるように構成
した特許請求の範囲第1項記載のガス燃焼比例制御装置
(7) The gas combustion proportional control device according to claim 1, which is configured to control the variable throttle mechanism in multiple stages.
JP57061463A 1982-04-12 1982-04-12 Proportioning controller for gas combustion Granted JPS58178117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57061463A JPS58178117A (en) 1982-04-12 1982-04-12 Proportioning controller for gas combustion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57061463A JPS58178117A (en) 1982-04-12 1982-04-12 Proportioning controller for gas combustion

Publications (2)

Publication Number Publication Date
JPS58178117A true JPS58178117A (en) 1983-10-19
JPS6331694B2 JPS6331694B2 (en) 1988-06-24

Family

ID=13171750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57061463A Granted JPS58178117A (en) 1982-04-12 1982-04-12 Proportioning controller for gas combustion

Country Status (1)

Country Link
JP (1) JPS58178117A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6181556U (en) * 1984-10-31 1986-05-30
JPS63197946U (en) * 1987-05-29 1988-12-20
JPH01111125A (en) * 1987-09-10 1989-04-27 Samsung Electronics Co Ltd Gas flow controller

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6181556U (en) * 1984-10-31 1986-05-30
JPH0315970Y2 (en) * 1984-10-31 1991-04-05
JPS63197946U (en) * 1987-05-29 1988-12-20
JPH01111125A (en) * 1987-09-10 1989-04-27 Samsung Electronics Co Ltd Gas flow controller
JPH054567B2 (en) * 1987-09-10 1993-01-20 Sansei Electronics Corp

Also Published As

Publication number Publication date
JPS6331694B2 (en) 1988-06-24

Similar Documents

Publication Publication Date Title
CN106642711B (en) Dual sensing combustion system
EP0606527B1 (en) A gas combustion apparatus incorporating an atmospheric burner, and method for controlling the air in the apparatus
GB2187000A (en) Burner control
CA2229129C (en) A differential pressure modulated gas valve for single stage combustion control
JPS58178117A (en) Proportioning controller for gas combustion
JPH0465305B2 (en)
JPS6144111Y2 (en)
JPH01302063A (en) Water quantity controller for hot water supplying apparatus
JPH0633903B2 (en) Bypass mixing type water heater
JPH0268448A (en) Control device for hot water feeder
JPH07107444B2 (en) Combustion device
JPH0237249A (en) Water rate control device in hot-water heater
GB2140587A (en) Improvements in and relating to combustion processes
JP2615152B2 (en) Bypass mixing water heater
JPS608618A (en) Gas combustion controller
JPH0271048A (en) Controller for hot water supplying apparatus
JPS5815689B2 (en) gas combustion equipment
KR910004775B1 (en) Controller for gas fueled heating apparatus
JPS60164115A (en) Gas burning control device
JPH0221723Y2 (en)
JPH0449478Y2 (en)
JP3061516B2 (en) Gas water heater
JP2024002212A (en) combustion device
JPH0571846B2 (en)
JPH03186150A (en) Hot water supply control device