JP3061516B2 - Gas water heater - Google Patents

Gas water heater

Info

Publication number
JP3061516B2
JP3061516B2 JP05249846A JP24984693A JP3061516B2 JP 3061516 B2 JP3061516 B2 JP 3061516B2 JP 05249846 A JP05249846 A JP 05249846A JP 24984693 A JP24984693 A JP 24984693A JP 3061516 B2 JP3061516 B2 JP 3061516B2
Authority
JP
Japan
Prior art keywords
water
temperature
hot water
hot
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05249846A
Other languages
Japanese (ja)
Other versions
JPH06193968A (en
Inventor
信義 横山
Original Assignee
パロマ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パロマ工業株式会社 filed Critical パロマ工業株式会社
Priority to JP05249846A priority Critical patent/JP3061516B2/en
Publication of JPH06193968A publication Critical patent/JPH06193968A/en
Application granted granted Critical
Publication of JP3061516B2 publication Critical patent/JP3061516B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明は、瞬間ガス湯沸器等の
ガス湯沸器に関する。 【0002】 【従来の技術】従来のガス湯沸器は、その給湯温度を制
御する手段として、たとえば、図3及び図4に示したフ
ィードバック制御によるもの、又は図5及び図6に示し
たフィードバック制御にフィードフォワード制御を加味
したものがある。図3に示したフィードバック制御のガ
ス湯沸器は、主バーナ1´、熱交換器4´、入水路6
´、内胴7´、ガス比例弁8´、給水路10´に設けた
給湯温度検出用サーミスター9´、コントローラー11
´、リモートコントローラー(リモコン)12´からな
り、図4のフローチャートで示したように、リモコン1
2´で給湯温度を設定すると、熱交換器4´からの給湯
温度を給湯温度検出用サーミスター9´で検出し、コン
トローラ11´で温度比較して設定温度より高い時はガ
ス比例弁8´の開度を絞ってガス量を減じ、設定温度よ
り低い時はガス比例弁8´の開度を広げてガス量を増す
ことにより設定温度の湯を給湯するものである。 【0003】また、図5に示したフィードバック制御に
フィードフォワード制御を加味したガス湯沸器は、入水
路6´に設けた入水量検出用センサー13´、入水温度
検出用サーミスター14´、および図3のものと同一の
構成のもの(同一部分に同一符号を付した)からなり、
図6のフローチャートで示したように、リモコン12´
で給湯温度を設定すると、熱交換器4´への入水温度を
入水量検出センサー13´と入水温度検出用サーミスタ
ー14´でそれぞれ検出してコントローラ11´で必要
ガス量を演算し算出ガス量を主バーナ1´に供給し、そ
の給湯温度を給湯温度検出用サーミスター9´で検出
し、コントローラー11´で温度比較して設定温度より
高い時はガス比例弁8´の開度を絞ってガス量を減じ、
設定温度より低い時はガス比例弁8´の開度を広げてガ
ス量を増すことにより設定温度の湯を給湯するものであ
る。 【0004】また例えば、特開昭58−205043号
公報に示されるように、熱交換器の出口温度に応じて主
バーナへのガス供給量を制御(いわゆるフィードバック
制御)し、高温湯と冷水とをオートミキサーにより混合
して混合湯を得るものであるが、この混合湯温を検知し
ながら湯水混合比を調節すると共に、これを主バーナの
加熱にフィードバックし、ガス燃焼を制御するものであ
る。 【0005】さらに、特開昭58−217148号公報
に示されているものがあり、これは高温出湯と適温出湯
とが選択的に、あるいは、双方同時に出湯できるもので
あって、バーナへのガス供給量は湯沸器へ供給される水
の温度、すなわち、入水温度と、給水流量と、設定出湯
温度の3つの要素により演算して決定され、かつ、冷水
側の流量のみの調整により適温水の温度制御を行う構造
となっている。 【0006】 【発明が解決しようとする課題】図3及び図4に示され
ているフィードバック制御によるものは、給湯量の変更
及び設定温度の変更時に給湯温度と設定温度の誤差量に
応じガス比例弁でガス量を増減させるが、熱交換器の保
有熱量があることからガス量を増減しても速やかに給湯
温度の変化としてあらわれない。したがって、給湯量の
変更及び湯温の変更(調節)時に大きな温度変動がとも
ない安定するまでに長い時間が掛かるために著しく使い
勝手が悪い欠点があった。また、図5及び図6に示され
ているフィードバック制御にフィードフォワード制御を
加味したものにあっては、前記欠点はかなり解消される
が終局的にはフィードバック制御による温度補正がとも
なうため応答遅れが生じ、安定した温度の湯が常時得ら
れない欠点があった。 【0007】また特開昭58−205043号公報のも
のによれば、出湯開始時にはフィードバック制御により
熱交換器の出湯側の温度を制御するものであるから、そ
の出湯側温度がハンチング現象を起こし、そのハンチン
グを防ごうとすると出湯温度の立ち上がりを抑制せざる
を得ず、そのために所期の出湯温度が得られるまでに時
間が掛かるという問題があるし、また湯水混合時にも既
述のように熱交換器の熱容量の影響で熱交換器の出湯温
度がハンチングしてしまい不安定となり、従って湯水の
混合制御も安定せず難しくなり、安定した出湯温度が得
られるまでに時間を要することになるという問題も生じ
る。 【0008】さらに特開昭58−217148号公報の
ものでは、出湯開始時に高温湯側流量が絞られないため
に熱交換器に多量の水が流れて出湯温度の立ち上がりが
悪く、また湯水混合時もその湯水混合比を冷水側流量だ
けで行なうものであるから水側の変化に対して湯量の変
化が少なく、そのためにフィードフォワード制御におけ
る熱交換器への入水量の変化が十分に得られず、やはり
安定した湯水混合比が短時間では得られないという問題
がある。 【0009】この発明は、出湯開始時には早い出湯温度
の立ち上がりが得られることはもとより、湯水混合時に
も短時間で設定温度の出湯が可能としたガス湯沸器を提
供することにある。 【0010】 【課題を解決するための手段】上記目的を達成するため
にこの発明のガス湯沸器は、熱交換器の出湯路側に出湯
設定温度よりも高い湯温が得られるように該熱交換器に
接続される給水路を流れる冷水の入水量と入水温とに基
づいて主バーナの給ガス路を流れるガス供給量を制御す
るフィードフォワード加熱制御手段と、前記熱交換器に
接続される出湯路を流れる高温湯に冷水を混合する湯水
混合手段と、前記湯水混合手段により得られた混合湯の
温度検出手段と、前記混合湯温検出手段により検出され
た混合湯温が設定温度となるように前記出湯路を流れる
高温湯の湯量とこの高温湯に混合される冷水量とを一方
の増加または減少に合わせて他方を減少または増加させ
湯水混合比を制御する湯水混合比制御手段とを備え、
前記湯水混合比制御手段により制御される湯水混合比
おける高温湯の湯量変化に伴い前記熱交換器への入水量
を変化させて前記フィードフォワード加熱制御手段
ス供給量が変化されるようにしたことを要旨とするもの
である。 【0011】 【作用】この発明のガス湯沸器は上記構成としたから、
フィードフォワード加熱制御手段により給水路を流れる
入水量及び入水温に応じた主バーナのガス供給量が制御
されることにより速やかに所定温度の高温湯が熱交換器
の出口側(出湯路側)に得られる。この場合、ガス供給
量を熱交換器の出口温度に基づいてフィードバック制御
しないため、熱交換器の出口温度がハンチングすること
なく所定の高温度に安定する。 【0012】そして、その出湯路を流れる高温湯と冷水
との混合湯の温度が混合湯温検出手段により検出される
と、その検出温度が設定温度に近づくように、出湯路を
流れる高温湯とこれに混合される冷水との混合比が湯水
混合比制御手段により制御される。この場合、出湯路か
らの高温湯が安定した温度を維持しているため、混合比
の制御が容易となり混合湯温が設定温度に安定する。ま
た、この湯水混合比制御手段による制御では、その高温
湯と冷水との混合比が高温湯の湯量と混合冷水量とを
方を増加させた時には他方はその分減少させ、逆に減少
させた時にはその分増加させるものであるから、例えば
冷水を増量させるときには高温湯をその冷水の増量分だ
減量させ、逆に冷水を減量させるときには高温湯をや
はりその冷水の減量分だけ増量させることになる。 【0013】その結果出湯路を流れる高温湯量つまり熱
交換器を流れる流量は増減変化するが、その増減変化は
速やかに給水路を流れる冷水量の変化に対応して、フィ
ードフォワード加熱制御手段による給ガス路のガス供給
量が調節される。これらの結果、出湯温度が迅速に設定
温度に到達するとともに安定した出湯温度の湯が得られ
ることになる。 【0014】 【実施例】以下この発明によるガス湯沸器の一実施例を
図面に基づき説明する。図1において、Aは主バーナ1
を入水量及び入水温に応じたガス供給量に制御して燃焼
させるための自動制御装置で、たとえば、主バーナ1へ
のガス通路2に備えた水圧自動ガス弁3が熱交換器4へ
の入水圧に応動するダイヤフラム5と連動して主バーナ
1への供給ガス量を熱交換器4への入水量と比例的に自
動制御する構造の水圧応動装置と、ダイヤフラム室17
の一次室17aとベンチュリ部23の前流側を連通する
流水通路内に装備した水温応動弁22により入水温度に
応じ通過水量と主バーナ1への供給ガス量の関係を自動
制御する水温応動装置とからなり、該自動制御装置Aは
熱交換器4の前流側の給水路6に設置されて出湯設定温
度に関係なく入水量、入水温に応じて比例弁の開度を制
御し、熱交換器の下流側から一定温度の高温湯の送出を
可能とした定温湯送出部を構成している。 【0015】この自動制御装置Aの水圧応動装置と水温
応動装置の具体的構造を説明すると、水圧応動装置は、
主バーナ1へのガス通路2に設けた弁室15に水圧自動
ガス弁3をその弁シート16に対向して装備し、該水圧
自動ガス弁3を給水路6に設けたダイヤフラム室17に
張設せるダイヤフラム5の二次室17b側に弁軸18を
介して連設し、かつ、ダイヤフラム5の一次室17a側
にはベンチュリ部23への通路25とバランス弁19を
介してベンチュリ部23の後流側と連通するバイパス通
路20を設け、さらに、水圧自動ガス弁3を発条21に
より閉止方向に付勢せしめて水圧自動ガス弁3がダイヤ
フラム5を介して熱交換器4への入水圧に応動すること
で、主バーナ1への供給ガス量を熱交換器4への入水量
と比例的に自動制御するようになっている。 【0016】なお、23は上記水圧応動装置の下流側の
給水路6に設けたベンチュリー部であり、ダイヤフラム
室17の二次室17bと連通され、給水量に応じた差圧
を発生しダイヤフラム5を介して水圧自動ガス弁3を制
御している。24はガス導入管、2aはガスノズルであ
る。 【0017】また、水温応動装置は、ダイヤフラム室1
7の一次室17aとベンチュリ部23の前流側を連通す
る流水通路内に水温応動弁22を挿入して設置し、該水
温応動弁22により入水温度に応じ通過水量と主バーナ
1への供給ガス量の関係を自動制御することで、入水温
度の変化に対しても主バーナ1への供給ガス量が補正さ
れて精度のよい制御が円滑に行えるようになっている。 【0018】Bは熱交換器4で予め作られた高温の一定
温度の湯を給水路6から分岐して導かれた冷水と混合し
その混合比を混合された湯温を検出してモータ弁により
設定の給湯温度に自動制御する湯水混合装置(オートミ
キサー)で、熱交換器4の後流側の給湯路30に設置さ
れて高温湯と冷水との混合比の制御が応答遅れなくでき
るようになした混合比制御部を構成している。 【0019】この湯水混合装置Bの具体的構造は、弁軸
26の一端に一定の間隔を存して備えた湯側制御弁27
と水側制御弁28からなる混合弁を混合室29内に進退
移動自由に挿入し、熱交換器4からの給湯路30の出口
に設けた湯側弁シート31に湯側制御弁27を、また、
給水路6から分岐して混合室29に接続したミキサー用
給水路32の出口に設けた水側弁シート33には水側制
御弁28をそれぞれ接離可能に対向して設け、かつ、弁
軸26の他端はサーボモータMのモータ軸に一体に連結
し、サーボモータMを所要の角度まで正逆回転駆動する
ことで、弁軸26に刻設せるねじ部(図示せず)によっ
て弁軸26を進退させ、前記湯側制御弁27と水側制御
弁28をそれぞれの弁シート31,33に接離させて互
いに逆方向にそれぞれの開度を変化調節できるようにな
している。 【0020】また、混合室29から導出した給湯管34
には給湯温度検知用サーミスター35を設け、該サーミ
スター35をコントローラー36に接続して給湯管34
内を流れる給湯温度を検出してコントローラー36に入
力し、かつ、サーボモータMは前記サーミスター35か
らの信号に基づくコントローラー36からの指令で回転
駆動制御されるようになっている。さらに、コントロー
ラ36はリモートコントローラー(リモコン)12で操
作できるようになっている。なお、図1において7は内
胴である。 【0021】上記構成において、熱交換器4の前流側の
入水路6に設置した水圧応動装置と水温応動装置からな
る自動制御装置Aと、熱交換器4の後流側の給湯路30
に設置したモータ駆動による湯水混合装置Bとの組合わ
せにより、図2のフローチャートに示したように、ステ
ップ101でリモコン12により給湯温度を設定する
と、ステップ102で自動制御装置Aにより出湯設定温
度に関係なく熱交換器4への入水量及び入水温に応じた
供給ガス量に自動制御して主バーナ1を燃焼させ、ステ
ップ103で熱交換器4により高温の一定温度の湯を予
め作り,ステップ104で熱交換器4の下流側から送出
される高温の湯を給水混合装置Bへ給湯路30を介して
導き、給水路6からミキサー用給水路32を介して供給
される冷水とを混合室29で混合し、給湯管34から混
合された湯を送出するものであるが、給湯管34を流れ
る給湯温度をステップ105で給湯温度検知用サーミス
ター35で検出してコントローラー36に入力すると、
ステップ106でコントローラー36により該給湯温度
と設定の給湯温度とを比較し、給湯温度が設定の給湯温
度より高い時は高温の湯を減じ冷水を増し、また、給湯
温度が設定の給湯温度より低い時は高温の湯を増し冷水
を減ずるよう湯水混合装置Bの湯側制御弁27,水側制
御弁28をコントローラ36からの指令でサーボモータ
Mを駆動制御して作動し、高温の湯と冷水との混合比を
設定の給湯温度になるように自動制御し、ステップ10
7で設定の給湯温度の湯を給湯管34から給湯せしめる
ものである。 【0022】そして給湯器6を流れる高温湯の流量の増
減に連動して給水路6のダイヤフラム5により流水量が
感知され、水圧自動ガス弁3を介して主バーナ1のガス
通路2を流れるガス供給量が所期量に変更される。例え
ば給湯路30を流れる高温湯の流量が増す場合には給水
路6の流水量が増し、それと同時に主バーナ1へのガス
供給量も増す。そしてその結果給水路6を流れる冷水量
に応じたガス加熱がなされ、熱交換器4の出側の給湯路
30を流れる高温湯の湯温が所期の設定温度にまで速や
かに達成される。 【0023】また逆に、例えば給湯路30を流れる高温
湯の流量が減る場合には給水路6の流水量が減り、それ
と同時に主バーナ1へのガス供給量も減る。そしてその
結果やはり給水路6を流れる冷水量に応じたガス加熱が
なされ、熱交換器4の出側の給湯路30を流れる高温湯
の湯温が所期の設定温度にまで速やかに達成される。 【0024】かくして本発明によれば、出湯開始時に
は、フィードフォワード制御により熱交換器4の出湯側
の温度が早く立ち上げられ、所期の設定温度の高温湯が
速やかに得られる。この点従来のフィードバック制御の
ように、熱交換器4の出湯側温度がハンチング現象を起
こし、このハンチングを防ごうとして出湯温度の立ち上
がりが遅くなることにより所期の出湯温度が得られるま
でに時間が掛かるという問題は解消される。 【0025】また、既述の特開昭58−217148号
公報に示されるように湯水混合比を冷水側流量だけで変
えるものとの比較でも、本発明では高温湯側の流量が絞
られるために出湯温度の立ち上がりが早く、速やかに所
期の出湯温度が得られるものである。 【0026】また、湯水混合時にも、本発明によれば、
湯水混合弁(湯側制御弁27および水側制御弁28)の
弁動作に対して熱交換器4を流れる流水量が素早く変化
し、これに伴なってやはり主バーナ1へのガス量が素早
く変化する。これは、この流水量と主バーナ1の加熱と
がフィードフォワード制御によりなされているからであ
り、このために熱交換器4の出口側温度は素早く所期温
度になり、しかもその出口側温度はハンチングすること
もなく安定したものとなる。この結果、安定した高温湯
と冷水との混合制御が容易となり、短時間で設定温度に
て安定して出湯ができることになる。この点についても
従来のフィードバック制御のもののように、熱交換器の
熱容量の影響で出湯温度がハンチングして不安定とな
り、湯水の混合制御が安定せず難しくなって、安定した
出湯温度が得られるまでに時間が掛かるといった問題も
生じない。 【0027】さらに既述の、湯水混合比を冷水側流量だ
けで行なう特開昭58−217148号公報のものとの
比較でも、本発明によれば、水側の変化に対して湯量が
反比例的に適格に変化するためにフィードフォワード制
御における入水量の変化が十分に得られ、やはり安定し
た湯水混合比が短時間では得られる点で本発明はこれと
の比較でも優れていると言える。 【0028】尚、本発明は上記実施例に何ら限定される
ものではなく、本発明の趣旨を逸脱しない範囲で種々の
設計変更は可能である。例えば、上記実施例では湯水混
合装置Bの湯側制御弁27と水側制御弁28とを一体的
に設けた軸弁26をサーボモータMに連繋し、このサー
ボモータMの駆動により両制御弁27,28を作動させ
るようにしたが、両制御弁を別々に設けてそれぞれを個
々に反比例的増減制御するようにしてもよく、また必ず
しもその弁作動をモータに依らずとも、各種の電気的・
機械的機構によっても達成されるものである。 【0029】また上記実施例では、給水路6の冷水量と
主バーナ1のガス量とを水圧自動ガス弁3により連動的
に制御するものであるが、これも例えば給水路に流水量
センサを設け、これの検知信号によりガス開閉調整弁を
比例的に制御するものであっても同様の効果が達成され
る。 【0030】 【0031】 【発明の効果】この発明は以上説明したように、熱交換
器の出口湯温が迅速に所定の高温度に立ち上がり安定す
るため、この高温湯と冷水との混合制御が容易となり混
合湯温が安定する。しかも、高温湯と冷水との混合比が
一方を増加させれば他方がその分減少し、逆に減少させ
ればその分増加するというように、熱交換器に流れる水
量が素早く増減変化し、それに応じて速やかにガス供給
量がフィードフォワード制御されるため、短時間での安
定した設定温度の出湯が得られるものである。したがっ
てこのガス湯沸器は、需要者にとってきわめて使い勝手
の良いものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas water heater such as an instantaneous gas water heater. 2. Description of the Related Art In a conventional gas water heater, as means for controlling the hot water supply temperature, for example, a means based on feedback control shown in FIGS. 3 and 4 or a feedback control shown in FIGS. 5 and 6 is used. There is a control in which feedforward control is added. The gas water heater of the feedback control shown in FIG. 3 includes a main burner 1 ′, a heat exchanger 4 ′, and a water inlet 6.
', Inner body 7', gas proportional valve 8 ', hot water supply temperature detecting thermistor 9' provided in water supply passage 10 ', controller 11
′, A remote controller (remote controller) 12 ′, and as shown in the flowchart of FIG.
When the hot water supply temperature is set at 2 ', the hot water supply temperature from the heat exchanger 4' is detected by the hot water supply temperature detecting thermistor 9 ', and the temperature is compared by the controller 11'. When the temperature is higher than the set temperature, the gas proportional valve 8 ' When the temperature is lower than the set temperature, the opening of the gas proportional valve 8 'is widened to increase the gas amount to supply hot water at the set temperature. A gas water heater that incorporates feedforward control in addition to the feedback control shown in FIG. 5 includes a sensor 13 'for detecting the amount of water provided in an inlet channel 6', a thermistor 14 'for detecting the temperature of incoming water, and It has the same configuration as that of FIG. 3 (the same parts have the same reference numerals),
As shown in the flowchart of FIG.
When the hot water supply temperature is set, the incoming water temperature to the heat exchanger 4 'is detected by the incoming water amount detecting sensor 13' and the incoming water temperature detecting thermistor 14 ', respectively, and the required gas amount is calculated by the controller 11' and the calculated gas amount is calculated. Is supplied to the main burner 1 ', and the hot water supply temperature is detected by the hot water supply temperature detecting thermistor 9'. The temperature is compared by the controller 11 '. When the temperature is higher than the set temperature, the opening of the gas proportional valve 8' is reduced. Reduce the amount of gas,
When the temperature is lower than the set temperature, hot water at the set temperature is supplied by increasing the opening of the gas proportional valve 8 'to increase the gas amount. [0004] For example, as disclosed in Japanese Patent Application Laid-Open No. 58-205043, the amount of gas supplied to a main burner is controlled (so-called feedback control) in accordance with the outlet temperature of a heat exchanger, so that hot water and cold water are controlled. Is mixed by an automixer to obtain a mixed hot water. The hot water mixing ratio is adjusted while detecting the mixed hot water temperature, and this is fed back to the heating of the main burner to control gas combustion. . [0005] Furthermore, Japanese Patent Application Laid-Open No. 58-217148 discloses a method in which high-temperature tapping and appropriate-temperature tapping can be performed selectively or simultaneously, and gas discharged to a burner is supplied. The supply amount is determined by calculating the temperature of the water supplied to the water heater, that is, the input water temperature, the supply water flow rate, and the set tap water temperature, and is adjusted by adjusting only the flow rate on the cold water side. Temperature control. [0008] The feedback control shown in FIGS. 3 and 4 is based on a gas proportional control based on the difference between the hot water supply temperature and the set temperature when the hot water supply amount is changed and the set temperature is changed. The amount of gas is increased or decreased by a valve. However, since the amount of heat held by the heat exchanger is present, even if the amount of gas is increased or decreased, it does not immediately appear as a change in hot water supply temperature. Therefore, when the amount of hot water is changed and the temperature of the hot water is changed (adjusted), it takes a long time to stabilize with a large temperature fluctuation, so that there is a disadvantage that the usability is extremely poor. Further, in the feedback control shown in FIGS. 5 and 6 in which feedforward control is added, the above-mentioned disadvantage is considerably solved, but the response delay is ultimately accompanied by the temperature correction by the feedback control, resulting in a delay in response. There was a disadvantage that hot water having a stable temperature could not always be obtained. According to Japanese Patent Application Laid-Open No. 58-205043, at the start of tapping, the tapping side temperature of the heat exchanger is controlled by feedback control, and the tapping side temperature causes a hunting phenomenon. If you try to prevent the hunting, you have to suppress the rise of the tapping temperature, there is a problem that it takes time until the expected tapping temperature is obtained, and also when mixing hot and cold water as described above Due to the heat capacity of the heat exchanger, the tapping temperature of the heat exchanger hunts and becomes unstable, so that the mixing control of the tap water becomes unstable and difficult, and it takes time until a stable tapping temperature is obtained. The problem also arises. Further, in Japanese Patent Application Laid-Open No. 58-217148, a large amount of water flows into the heat exchanger at the start of hot water supply so that a large amount of water flows into the heat exchanger, so that the hot water temperature rises poorly. Also, since the mixing ratio of the hot water and cold water is determined only by the flow rate on the cold water side, the change in the amount of hot water with respect to the change on the water side is small, and therefore, the change in the amount of water entering the heat exchanger in the feedforward control cannot be sufficiently obtained. However, there is a problem that a stable mixture ratio of hot and cold water cannot be obtained in a short time. It is an object of the present invention to provide a gas water heater in which not only a quick rise in tapping temperature can be obtained at the start of tapping but also tapping at a set temperature can be performed in a short time even when mixing tap water. [0010] In order to achieve the above object, a gas water heater according to the present invention is provided so that a hot water temperature higher than a set hot water temperature can be obtained on a hot water outlet side of a heat exchanger. Feedforward heating control means for controlling a gas supply amount flowing through the gas supply passage of the main burner based on an amount of incoming cold water and an incoming water temperature flowing through the water supply passage connected to the exchanger, and connected to the heat exchanger Hot water mixing means for mixing cold water with high-temperature hot water flowing in the hot water path, temperature detection means for the mixed hot water obtained by the hot water mixing means, and the mixed hot water temperature detected by the mixed hot water temperature detecting means become the set temperature. one and a cold water amount to be mixed into the hot water and hot water of the hot water flowing through the hot water passage as
Decrease or increase the other according to the increase or decrease of
And a hot and cold water mixing ratio control means for controlling the hot and cold water mixing ratio Te,
The hot and cold water mixing ratio controlled by the hot and cold water mixing ratio control means
Of water entering the heat exchanger due to changes in hot water volume
It is an Abstract that gas <br/> scan feed amount of the feed-forward heat control means by changing has to be changed. Since the gas water heater of the present invention has the above-described structure,
The feedforward heating control means controls the amount of water flowing through the water supply passage and the amount of gas supplied to the main burner in accordance with the temperature of the incoming water, so that high-temperature hot water at a predetermined temperature is quickly obtained at the outlet side (outflow passage side) of the heat exchanger. Can be In this case, the gas supply
Feedback control based on heat exchanger outlet temperature
Hunting at the outlet temperature of the heat exchanger
And stabilizes at a predetermined high temperature. When the temperature of the mixed hot water of the hot water and the cold water flowing through the hot water path is detected by the mixed hot water temperature detecting means, the high temperature hot water flowing through the hot water path and the hot water flowing through the hot water path are detected so as to approach the set temperature. The mixing ratio with the cold water mixed therewith is controlled by the hot and cold water mixing ratio control means. In this case, since the high-temperature hot water from the tapping water path maintains a stable temperature, the control of the mixing ratio is easy, and the temperature of the mixed hot water is stabilized at the set temperature. Further, in the control according to the hot and cold water mixing ratio control means, and a hot water mixed cold water amount of the mixed ratio of the high-temperature hot water and the hot water and cold water one
When one is increased, the other decreases by that amount and conversely decreases
Since when is is intended to increase by that amount, but increasing amount of the cold water hot water when to increase for example cold water
When decreasing the amount of cold water, and conversely, decreasing the amount of cold water, the amount of high-temperature hot water is also increased by the amount of the reduced amount of cold water . [0013] As a result the flow rate through the high-temperature hot water, i.e. heat exchanger through the hot water passage is increased or decreased change, increase or decrease changes in response to changes in the cold water quantity flowing through the rapidly water supply path, Fi
The gas supply amount of the gas supply path by the feedforward heating control means is adjusted. As a result, tapping temperature can be set quickly
As soon as the temperature is reached, hot water with a stable tapping temperature is obtained.
Will be. An embodiment of a gas water heater according to the present invention will be described below with reference to the drawings. In FIG. 1, A is the main burner 1
Automatic control device for controlling the gas supply amount according to the amount of incoming water and the temperature of incoming water for combustion. For example, a hydraulic automatic gas valve 3 provided in a gas passage 2 to a main burner 1 is connected to a heat exchanger 4. A water pressure responsive device having a structure in which the amount of gas supplied to the main burner 1 is automatically controlled in proportion to the amount of water supplied to the heat exchanger 4 in conjunction with the diaphragm 5 responsive to the incoming water pressure, and a diaphragm chamber 17
Temperature responsive device that automatically controls the relationship between the amount of passing water and the amount of gas supplied to the main burner 1 according to the incoming water temperature by a water temperature responsive valve 22 provided in a flowing water passage communicating the primary chamber 17a and the upstream side of the venturi section 23. The automatic control device A is installed in the water supply channel 6 on the upstream side of the heat exchanger 4 and controls the opening of the proportional valve according to the amount of incoming water and the temperature of incoming water, regardless of the set temperature of hot water. A constant-temperature hot water delivery unit is configured to enable delivery of high-temperature hot water at a constant temperature from the downstream side of the exchanger. The specific structure of the water pressure responsive device and the water temperature responsive device of the automatic control device A will be described.
A hydraulic automatic gas valve 3 is provided in a valve chamber 15 provided in a gas passage 2 to the main burner 1 so as to face a valve seat 16 thereof, and the hydraulic automatic gas valve 3 is stretched over a diaphragm chamber 17 provided in a water supply passage 6. The diaphragm 5 is connected to the secondary chamber 17b of the diaphragm 5 via a valve shaft 18, and the primary chamber 17a of the diaphragm 5 is connected to the venturi 23 via a passage 25 to the venturi 23 and a balance valve 19. A bypass passage 20 communicating with the downstream side is provided. Further, the automatic hydraulic gas valve 3 is urged in the closing direction by a spring 21 so that the automatic hydraulic gas valve 3 reduces the pressure of water entering the heat exchanger 4 via the diaphragm 5. By responding, the amount of gas supplied to the main burner 1 is automatically controlled in proportion to the amount of water entering the heat exchanger 4. Reference numeral 23 denotes a venturi section provided in the water supply passage 6 on the downstream side of the hydraulic pressure responsive device. The venturi 23 communicates with the secondary chamber 17b of the diaphragm chamber 17 to generate a differential pressure in accordance with the amount of water supply, thereby generating a differential pressure. The hydraulic automatic gas valve 3 is controlled via the. Reference numeral 24 denotes a gas introduction pipe, and reference numeral 2a denotes a gas nozzle. Further, the water temperature responsive device comprises a diaphragm chamber 1
7, a water temperature responsive valve 22 is inserted and installed in a flowing water passage communicating the primary chamber 17a with the upstream side of the venturi portion 23, and the water temperature responsive valve 22 supplies water to the main burner 1 according to the incoming water temperature. By automatically controlling the relationship between the gas amounts, the amount of gas supplied to the main burner 1 is corrected even for a change in the incoming water temperature, so that accurate control can be smoothly performed. B is a motor valve which mixes high-temperature hot water previously produced in the heat exchanger 4 with cold water which is branched from the water supply passage 6 and detects the mixed water temperature based on the mixing ratio. A water mixing apparatus (automixer) that automatically controls the hot water supply temperature to a set value is installed in the hot water supply path 30 on the downstream side of the heat exchanger 4 so that the mixing ratio between high-temperature hot water and cold water can be controlled without a response delay. And a mixing ratio control unit. The concrete structure of the hot water mixing apparatus B is a hot water side control valve 27 provided at one end of a valve shaft 26 at a constant interval.
And a mixing valve comprising a water-side control valve 28 are freely inserted into the mixing chamber 29 to move forward and backward. Also,
A water-side control valve 28 is provided on a water-side valve seat 33 provided at an outlet of a mixer water supply path 32 branched from a water supply path 6 and connected to a mixing chamber 29 so as to be able to approach and separate from each other. The other end of the valve shaft 26 is integrally connected to the motor shaft of the servo motor M, and the servo motor M is driven forward and reverse to a required angle, whereby the valve shaft (not shown) is engraved on the valve shaft 26. The hot water side control valve 27 and the water side control valve 28 are moved toward and away from the respective valve seats 31 and 33 so that the respective opening degrees can be changed and adjusted in directions opposite to each other. A hot water supply pipe 34 extending from the mixing chamber 29
Is provided with a thermistor 35 for detecting a hot water supply temperature, and the thermistor 35 is connected to a controller 36 to connect a hot water supply pipe 34.
The temperature of hot water flowing through the inside is detected and input to the controller 36, and the rotation of the servo motor M is controlled by a command from the controller 36 based on a signal from the thermistor 35. Further, the controller 36 can be operated by the remote controller (remote controller) 12. In FIG. 1, reference numeral 7 denotes an inner body. In the above configuration, an automatic control device A comprising a water pressure responsive device and a water temperature responsive device installed in the water inlet channel 6 on the upstream side of the heat exchanger 4, and the hot water supply channel 30 on the downstream side of the heat exchanger 4
When the hot water supply temperature is set by the remote controller 12 in step 101 as shown in the flowchart of FIG. 2 by the combination with the motor-driven hot / water mixing device B installed in the Irrespective of this, the main burner 1 is burned by automatically controlling the amount of water supplied to the heat exchanger 4 and the amount of supplied gas in accordance with the temperature of incoming water, and hot water of a constant high temperature is prepared in advance by the heat exchanger 4 in step 103. At 104, high-temperature hot water sent from the downstream side of the heat exchanger 4 is guided to the feed water mixing apparatus B via the hot water supply path 30 and mixed with cold water supplied from the water supply path 6 via the mixer water supply path 32. The hot water mixed at 29 is sent out from the hot water supply pipe 34. The hot water temperature flowing through the hot water pipe 34 is detected by the hot water temperature detecting thermistor 35 at step 105. When you enter the Controller 36,
In step 106, the controller 36 compares the hot water supply temperature with the set hot water supply temperature. When the hot water supply temperature is higher than the set hot water supply temperature, the hot water is reduced to increase cold water, and the hot water supply temperature is lower than the set hot water supply temperature. At this time, the hot water side control valve 27 and the water side control valve 28 of the hot and cold water mixing apparatus B are operated by driving the servo motor M in accordance with a command from the controller 36 so as to increase the amount of hot water and reduce the amount of cold water. Is automatically controlled such that the mixing ratio with
The hot water of the hot water supply temperature set at 7 is supplied from the hot water supply pipe 34. The amount of flowing water is sensed by the diaphragm 5 of the water supply passage 6 in conjunction with the increase or decrease in the flow rate of the high-temperature hot water flowing through the water heater 6, and the gas flowing through the gas passage 2 of the main burner 1 via the automatic hydraulic gas valve 3. The supply volume is changed to the expected volume. For example, when the flow rate of the high-temperature hot water flowing through the hot water supply path 30 increases, the flow rate of the hot water supply path 6 increases, and at the same time, the gas supply amount to the main burner 1 increases. As a result, gas heating according to the amount of cold water flowing through the water supply passage 6 is performed, and the hot water temperature of the high-temperature hot water flowing through the hot water supply passage 30 on the outlet side of the heat exchanger 4 is quickly achieved to the desired set temperature. Conversely, for example, when the flow rate of the high-temperature hot water flowing through the hot water supply passage 30 decreases, the amount of flowing water in the water supply passage 6 decreases, and at the same time, the gas supply amount to the main burner 1 decreases. As a result, gas heating corresponding to the amount of cold water flowing through the water supply passage 6 is also performed, and the temperature of the high-temperature hot water flowing through the hot water supply passage 30 on the outlet side of the heat exchanger 4 is quickly achieved to the desired set temperature. . Thus, according to the present invention, at the start of tapping, the tapping temperature of the tapping side of the heat exchanger 4 is quickly raised by feedforward control, and high-temperature tap water at the desired set temperature is quickly obtained. In this point, as in the conventional feedback control, the tapping temperature of the tapping side of the heat exchanger 4 causes a hunting phenomenon. In order to prevent the hunting, the tapping temperature rises slowly, and it takes time until the desired tapping temperature is obtained. Is eliminated. Also, as compared with the case where the mixing ratio of hot and cold water is changed only by the flow rate on the cold water side as shown in the above-mentioned Japanese Patent Application Laid-Open No. 58-217148, the present invention reduces the flow rate on the high-temperature hot water side. The rising of the tapping temperature is quick, and the desired tapping temperature can be obtained quickly. According to the present invention, when mixing hot and cold water,
The amount of flowing water flowing through the heat exchanger 4 changes quickly with respect to the valve operation of the hot and cold water mixing valves (the hot water side control valve 27 and the water side control valve 28). Change. This is because the amount of flowing water and the heating of the main burner 1 are controlled by feedforward control, so that the outlet temperature of the heat exchanger 4 quickly reaches the desired temperature, and the outlet temperature is It is stable without hunting. As a result, stable control of mixing high-temperature hot water and cold water becomes easy, and hot water can be stably discharged at the set temperature in a short time. Also in this regard, as in the case of the conventional feedback control, the tapping temperature becomes unstable due to the hunting effect due to the heat capacity of the heat exchanger, and the mixing control of the tapping water becomes difficult without stability, and a stable tapping temperature can be obtained. There is no problem that it takes a long time. Further, according to the present invention, the amount of hot water is inversely proportional to the change on the water side, as compared with the above-mentioned one disclosed in Japanese Patent Application Laid-Open No. 58-217148, in which the mixing ratio of hot water and hot water is determined only by the flow rate on the cold water side. It can be said that the present invention is also excellent in comparison with the point that the amount of incoming water in the feedforward control can be sufficiently changed due to the appropriate change, and a stable mixing ratio of hot and cold water can be obtained in a short time. The present invention is not limited to the above embodiment, and various design changes can be made without departing from the spirit of the present invention. For example, in the above embodiment, the shaft valve 26 integrally provided with the hot water side control valve 27 and the water side control valve 28 of the hot water mixing apparatus B is connected to the servo motor M, and both control valves are driven by driving the servo motor M. Although the control valves 27 and 28 are operated, both control valves may be separately provided to individually control the increase / decrease of each control valve independently.・
This can also be achieved by a mechanical mechanism. In the above embodiment, the amount of cold water in the water supply passage 6 and the amount of gas in the main burner 1 are controlled in an interlocking manner by the automatic hydraulic pressure gas valve 3. A similar effect can be achieved even if a gas opening / closing control valve is proportionally controlled by a detection signal of the provision. As described above, according to the present invention, since the outlet hot water temperature of the heat exchanger quickly rises to a predetermined high temperature and stabilizes, the mixing control of the hot water and the cold water is performed. It becomes easy and the temperature of the mixed water becomes stable. In addition, the mixing ratio of hot water and cold water
If you increase one, the other will decrease by that amount,
The amount of water flowing through the heat exchanger quickly increases and decreases, and the gas supply amount is quickly controlled in a feed-forward manner.Accordingly, a stable tap water at a set temperature can be obtained in a short time. It is something that can be done. Therefore, this gas water heater is extremely convenient for consumers.

【図面の簡単な説明】 【図1】この発明によるガス湯沸器の一実施例を示した
概略構成図である。 【図2】その作動状態のフローチャートである。 【図3】従来例の概略構成図である。 【図4】その作動状態のフローチャートである。 【図5】異なる従来例の概略構成図である。 【図6】その作動状態のフローチャートである。 【符号の説明】 A 自動制御装置 1 主バーナ 3 水圧自動ガス弁 4 熱交換器 5 ダイヤフラム 6 給水路 13 湯水混合装置 22 水温応動弁 29 混合室 30 給湯路 32 ミキサー用給水路 34 給湯管 35 給湯温度検知用サーミスタ 36 コントローラ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic configuration diagram showing an embodiment of a gas water heater according to the present invention. FIG. 2 is a flowchart of the operation state. FIG. 3 is a schematic configuration diagram of a conventional example. FIG. 4 is a flowchart of the operation state. FIG. 5 is a schematic configuration diagram of a different conventional example. FIG. 6 is a flowchart of the operation state. DESCRIPTION OF SYMBOLS A Automatic control device 1 Main burner 3 Automatic water pressure gas valve 4 Heat exchanger 5 Diaphragm 6 Water supply channel 13 Hot water mixing device 22 Water temperature responsive valve 29 Mixing chamber 30 Water supply channel 32 Mixer water supply channel 34 Hot water supply pipe 35 Hot water supply Temperature detection thermistor 36 Controller

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F24H 1/10 F24H 9/20 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) F24H 1/10 F24H 9/20

Claims (1)

(57)【特許請求の範囲】 1.熱交換器の出湯路側に出湯設定温度よりも高い湯温
が得られるように該熱交換器に接続される給水路を流れ
る冷水の入水量と入水温とに基づいて主バーナの給ガス
路を流れるガス供給量を制御するフィードフォワード加
熱制御手段と、前記熱交換器に接続される出湯路を流れ
る高温湯に冷水を混合する湯水混合手段と、前記湯水混
合手段により得られた混合湯の温度検出手段と、前記混
合湯温検出手段により検出された混合湯温が設定温度と
なるように前記出湯路を流れる高温湯の湯量とこの高温
湯に混合される冷水量とを一方の増加または減少に合わ
せて他方を減少または増加させて湯水混合比を制御する
湯水混合比制御手段とを備え、前記湯水混合比制御手段
により制御される湯水混合比における高温湯の湯量変化
に伴い前記熱交換器への入水量を変化させて前記フィー
ドフォワード加熱制御手段ガス供給量が変化されるよ
うにしたことを特徴とするガス湯沸器。
(57) [Claims] The gas supply path of the main burner is changed based on the water input amount and the cold water flowing through the water supply path connected to the heat exchanger so that a hot water temperature higher than the hot water set temperature is obtained on the hot water outlet side of the heat exchanger. Feed-forward heating control means for controlling the amount of flowing gas, hot-water mixing means for mixing cold water with high-temperature hot water flowing through a tapping path connected to the heat exchanger, and temperature of the mixed hot water obtained by the hot-water mixing means Detecting means, and increasing or decreasing one of an amount of hot water flowing through the tapping channel and an amount of cold water mixed with the high-temperature water so that the temperature of the mixed water detected by the mixed-water temperature detecting means becomes a set temperature. Fit
Allowed to reduce or increase the other and a hot and cold water mixing ratio control means for controlling the hot and cold water mixing ratio, hot water changes the hot water in the hot and cold water mixing ratio controlled by the hot and cold water mixing ratio control means
Accordingly, the amount of water supplied to the heat exchanger is changed to change the gas supply amount of the feedforward heating control means .
Gas water heaters, characterized in that there was Unishi.
JP05249846A 1993-09-10 1993-09-10 Gas water heater Expired - Fee Related JP3061516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05249846A JP3061516B2 (en) 1993-09-10 1993-09-10 Gas water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05249846A JP3061516B2 (en) 1993-09-10 1993-09-10 Gas water heater

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59115812A Division JPS60259855A (en) 1984-06-06 1984-06-06 Hot water supplying temperature control device of gas-fired water heater

Publications (2)

Publication Number Publication Date
JPH06193968A JPH06193968A (en) 1994-07-15
JP3061516B2 true JP3061516B2 (en) 2000-07-10

Family

ID=17199057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05249846A Expired - Fee Related JP3061516B2 (en) 1993-09-10 1993-09-10 Gas water heater

Country Status (1)

Country Link
JP (1) JP3061516B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845435A (en) * 1981-09-11 1983-03-16 Setagaya Seisakusho:Kk System for controlling combustion
JPS58205043A (en) * 1982-05-26 1983-11-29 Paloma Ind Ltd Tap-controlled type hot-water supplying machine equipped with automatic mixer

Also Published As

Publication number Publication date
JPH06193968A (en) 1994-07-15

Similar Documents

Publication Publication Date Title
JPS58205043A (en) Tap-controlled type hot-water supplying machine equipped with automatic mixer
JPH0465305B2 (en)
JP3061516B2 (en) Gas water heater
JPS5885016A (en) Combustion control device
JPS6144111Y2 (en)
JPH0633903B2 (en) Bypass mixing type water heater
JP3792365B2 (en) Water heater with bypass
JPS6231231B2 (en)
JP3512135B2 (en) Hot water mixing type hot water supply device
JPS58224246A (en) Heating controller
JP2560578B2 (en) Bypass mixing type water heater
JPH0237249A (en) Water rate control device in hot-water heater
JP2584196B2 (en) Hot water supply control device
JP2576351B2 (en) Water heater
JPH03186150A (en) Hot water supply control device
JPH06347095A (en) Hot water feeder
JP2513092B2 (en) Bypass mixing control method
JPS5974425A (en) Hot water supply control device
JPH1163665A (en) Hot water supply device provided with bypass passage
JP3386575B2 (en) Water heater and combustion control method using the same
JPH102609A (en) Hot-water supply apparatus
JPH06174303A (en) Hot water supplier
JPS5944542A (en) Apparatus for controlling supply of hot water
JP2000213745A (en) Gas hot water supply apparatus
JPS6342259Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees