JPH033848B2 - - Google Patents

Info

Publication number
JPH033848B2
JPH033848B2 JP57107228A JP10722882A JPH033848B2 JP H033848 B2 JPH033848 B2 JP H033848B2 JP 57107228 A JP57107228 A JP 57107228A JP 10722882 A JP10722882 A JP 10722882A JP H033848 B2 JPH033848 B2 JP H033848B2
Authority
JP
Japan
Prior art keywords
gas
air
pressure
differential pressure
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57107228A
Other languages
Japanese (ja)
Other versions
JPS58224228A (en
Inventor
Yoshuki Yokoajiro
Hideo Uematsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57107228A priority Critical patent/JPS58224228A/en
Publication of JPS58224228A publication Critical patent/JPS58224228A/en
Publication of JPH033848B2 publication Critical patent/JPH033848B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/025Regulating fuel supply conjointly with air supply using electrical or electromechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/02Measuring filling height in burners

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Combustion (AREA)
  • Regulation And Control Of Combustion (AREA)

Description

【発明の詳細な説明】 本発明は、負荷に応じて燃焼量を自動的に連続
可変すると共に、燃焼用空気量とガス量の比(以
後空燃比と言う)をほぼ一定に保ち燃焼の安定性
と高効率を保つための、特に家庭用機器に用いら
れる高負荷ガス燃焼制御装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention automatically and continuously varies the amount of combustion depending on the load, and also maintains the ratio of the amount of combustion air to the amount of gas (hereinafter referred to as the air-fuel ratio) almost constant to stabilize combustion. The present invention relates to high-load gas combustion control devices used particularly in household appliances to maintain performance and high efficiency.

従来のこの種の高負荷燃焼器の燃焼制御装置と
して第1図に示す均圧弁方式(あるいはゼロガバ
ナ方式)がよく知られている。すなわち、送風機
1により送られた燃焼用空気は空気側絞り2を径
て混合部3へ、ガスは均圧弁4を通りガス側絞り
5を径て混合部3へ入り空気とガスが混合されバ
ーナ6で燃焼する。
As a conventional combustion control device for this type of high-load combustor, the pressure equalization valve system (or zero governor system) shown in FIG. 1 is well known. That is, the combustion air sent by the blower 1 passes through the air-side throttle 2 and enters the mixing section 3, and the gas passes through the pressure equalization valve 4 and enters the mixing section 3 via the gas-side throttle 5, where the air and gas are mixed and sent to the burner. Burns at 6.

均圧弁の背圧室7には空気側絞り2の上流の圧
力が導かれており、均圧弁4は均圧弁出口のガス
圧力を背圧室の圧力と等しくなる様に自動調節す
る。ここで、空気側絞りの上流の圧力をPA、空
気量をQA、ガス側絞りの上流の圧力をPG、ガス
量をQG、混合部の圧力をPMとすると空気比QA/QGの関係がある。
The pressure upstream of the air-side throttle 2 is introduced into the back pressure chamber 7 of the pressure equalizing valve, and the pressure equalizing valve 4 automatically adjusts the gas pressure at the outlet of the pressure equalizing valve to be equal to the pressure in the back pressure chamber. Here, if the pressure upstream of the air-side throttle is P A , the air volume is Q A , the pressure upstream of the gas-side throttle is P G , the gas volume is Q G , and the pressure in the mixing section is P M , then the air ratio Q A /Q G is There is a relationship between

均圧弁が理想的にPG=PAに調節できれば上式
より となりQAを変化させても空燃比は常に一定とな
るが、しかし均圧弁はダイアフラム8でPAとPG
の差圧を受けて弁9を機械的に動かすものである
から、ダイアフラムの剛性、変位に伴うダイアフ
ラムの有効面積変化などにより必ず圧力設定誤差
△PGが生じる。すなわち、PG=PA+△PGである
ので となる。すなわち誤差△PGによる空燃比の誤差
はPA−PMの絶対値が小さくなるほど大きくなる。
したがつて一定の空燃比誤差の範囲で燃焼量調節
比を大きくするためには、PA−PMを大きくする
か又は均圧弁のダイアフラムを大きくして△PG
を小さくしなければならない。
If the pressure equalizing valve can ideally adjust P G = P A , then from the above equation Therefore , even if Q A is changed, the air-fuel ratio will always remain constant .
Since the valve 9 is mechanically moved in response to differential pressure of In other words, since P G = P A + △P G becomes. That is, the error in the air-fuel ratio due to the error ΔP G becomes larger as the absolute value of P A −P M becomes smaller.
Therefore, in order to increase the combustion amount control ratio within a certain air-fuel ratio error range, increase P A - P M or enlarge the diaphragm of the pressure equalizing valve to increase △P G
must be made smaller.

このため、燃焼量調節比を1/5ないし1/10
に取ろうとすれば、きわめて大きな送風機や均圧
弁が必要となり、機器が大型になり、また燃焼量
調節範囲を大きくするために空気側絞りの発生差
圧(PA−PM)を大きくすると、ガス供給圧力の
低い特に都市ガス等の家庭用ガス燃料では使えな
いなど、家庭用燃焼装置への適用は難しかつた。
For this reason, the combustion amount adjustment ratio should be adjusted to 1/5 to 1/10.
If you try to achieve this, you will need an extremely large blower and pressure equalizing valve, which will make the equipment larger, and if you increase the differential pressure (P A − P M ) generated at the air side restriction in order to widen the combustion amount adjustment range, It has been difficult to apply this method to household combustion equipment, as it cannot be used with household gas fuels such as city gas, which have low gas supply pressures.

本発明はそのような従来の欠点を除去するもの
で、送風機や弁装置を大型化することなく、燃焼
量調節比が大きく、かつ空燃比安定性の良い燃焼
制御装置を提供することを目的とする。
The present invention eliminates such conventional drawbacks, and aims to provide a combustion control device with a large combustion amount control ratio and good air-fuel ratio stability without increasing the size of the blower or valve device. do.

この目的を達成するために本発明は、必要燃焼
量により、空気量可変機構を制御し燃焼用空気量
を調節すると共に、混合部の上流に設けられた空
気側絞りとガス側絞りのそれぞれの上流の間の圧
力差を差圧検出器で検出して、その圧力差が零と
なる様ガス比例弁を制御するものである。
In order to achieve this objective, the present invention controls an air amount variable mechanism to adjust the amount of combustion air according to the required combustion amount, and also controls the air amount and gas side restrictions provided upstream of the mixing section. The pressure difference between the upstream and downstream sides is detected by a differential pressure detector, and the gas proportional valve is controlled so that the pressure difference becomes zero.

この構成によつて、差圧検出器は直接ガス弁を
動かす必要もなく電気信号を発生するのみで良
く、さらに制御回路に積分要素をもたせれば定常
的に差圧が零の状態で安定させることも可能にな
る。したがつて差圧検出器は小さなダイアフラム
でその目的を果せ、かつ絞りの両端の発生圧力も
小さくできるので送風機も小さなもので良い。
With this configuration, the differential pressure detector does not need to directly move the gas valve and only needs to generate an electrical signal, and if the control circuit includes an integral element, the differential pressure can be constantly stabilized at zero. It also becomes possible. Therefore, the differential pressure detector can achieve its purpose with a small diaphragm, and since the pressure generated at both ends of the throttle can be reduced, the blower can also be small.

以下、本発明の実施例を図面を用いて詳しく説
明する。尚、図中第1図と同一部品については同
一番号を付している。
Embodiments of the present invention will be described in detail below with reference to the drawings. Note that the same parts in the figure as in FIG. 1 are given the same numbers.

第2図は本発明の一実施例の構成を示すブロツ
ク図である。
FIG. 2 is a block diagram showing the configuration of one embodiment of the present invention.

図において、1は燃焼用空気を供給する送風機
でここでは送風機の回転数を制御することにより
風量可変機構を構成している。2は空気通路に設
けられた空気側絞りでありその両端に空気量に応
じた差圧を発生する。5はガス通路に設けられた
ガス側絞りであり、その両端にガス量に応じた差
圧を発生する。3は空気通路とガス通路の合流す
る混合部で、ガスと燃焼用空気とが混合されバー
ナ6に混合ガスを導く。11は熱交換器でそのパ
イプに通された水を加熱する。12はサーミスタ
で熱交換器出口の出湯温度に応じた電気信号を発
生する。13はガス比例弁であり電磁コイルに流
す電流に応じてコイル中に置かれた可動鉄芯がガ
ス弁の開度を連続的に調節する。14は温度設定
器であり可変抵抗器を手動回動することにより出
湯温度を設定する。15は出湯温制御回路であり
サーミスタ12と温度設定器14との信号の差を
増幅し回転数制御回路19により送風機1の回転
数を制御する。16は空気側絞り2の上流とガス
側絞り5の上流との差圧に応じた電気信号を出力
する差圧検出器である。17は空燃比制御回路で
あり差圧検出器16の信号を受けてその差圧が正
(PG>PA)になればガス比例弁13の電流を減少
させ、差圧が負(PG<PA)になればガス比例弁
の電流を増大させる様に働く。さらに空燃比制御
回路17は積分要素18を有し、差圧の定常偏差
を零にする様に働く。
In the figure, reference numeral 1 denotes a blower that supplies combustion air, and here a variable air volume mechanism is constructed by controlling the rotational speed of the blower. Reference numeral 2 denotes an air-side throttle provided in the air passage, which generates a pressure difference between both ends of the throttle in accordance with the amount of air. Reference numeral 5 denotes a gas-side throttle provided in the gas passage, which generates a pressure difference between both ends of the throttle in accordance with the amount of gas. Reference numeral 3 denotes a mixing section where the air passage and the gas passage join together, where gas and combustion air are mixed and the mixed gas is guided to the burner 6. A heat exchanger 11 heats the water passed through the pipe. 12 is a thermistor that generates an electric signal according to the hot water temperature at the outlet of the heat exchanger. 13 is a gas proportional valve, and a movable iron core placed in the coil continuously adjusts the opening degree of the gas valve according to the current flowing through the electromagnetic coil. Reference numeral 14 denotes a temperature setting device, and the hot water temperature is set by manually rotating a variable resistor. Reference numeral 15 denotes a hot water temperature control circuit which amplifies the difference between the signals between the thermistor 12 and the temperature setting device 14 and controls the rotation speed of the blower 1 by means of a rotation speed control circuit 19. 16 is a differential pressure detector that outputs an electric signal according to the differential pressure between the upstream side of the air-side throttle 2 and the upstream side of the gas-side throttle 5. 17 is an air-fuel ratio control circuit which receives a signal from the differential pressure detector 16, and when the differential pressure becomes positive (P G > P A ), it reduces the current of the gas proportional valve 13 and makes the differential pressure negative (P G <P A ), it works to increase the current of the gas proportional valve. Further, the air-fuel ratio control circuit 17 has an integral element 18, which functions to reduce the steady-state deviation of the differential pressure to zero.

ここで従来例で述べた式3と同様の関係が成り
立ち、送風機により供給された空気量に比例した
ガス量が供給される。ここでは空燃比制御回路1
7の積分要素18により式3に於ける△PGに相
当する誤差分が限りなく零に近づけられるので、
定格時の空気側及びガス側絞りの発生差圧を小さ
く選んでも燃焼量調節比を大きくできる。
Here, a relationship similar to Equation 3 described in the conventional example is established, and an amount of gas is supplied that is proportional to the amount of air supplied by the blower. Here, air-fuel ratio control circuit 1
Since the error corresponding to △P G in equation 3 can be brought as close to zero as possible by the integral element 18 of 7,
Even if the differential pressure generated between the air side and gas side throttles at rated time is selected to be small, the combustion amount control ratio can be increased.

ここでは、ガスと燃焼用空気とを混合部で予め
混合しバーナに供給する全一次方式を例にとつて
いるが混合部とバーナとが一体となり燃焼用空気
を多段に分けて、ガスと混合する型式でもほぼ同
様に実施できる。また空気量可変機構が空気通路
に設けたダンパで構成されるものであつてもかま
わない。
Here, an all-primary system is used as an example where gas and combustion air are pre-mixed in a mixing section and supplied to the burner, but the mixing section and burner are integrated, dividing the combustion air into multiple stages and mixing it with the gas. It can be carried out in almost the same way even if the model is Further, the air amount variable mechanism may be constituted by a damper provided in the air passage.

第3図は本発明の一実施例の差圧検出器の詳細
構造を示す縦断面図である。上面ケース21と下
面ケース22とダイアフラム23とで圧力室A2
4と圧力室B25とが形成され、圧力導入孔A2
6及び圧力導入孔B27からそれぞれ空気側絞り
上流圧力及びガス側絞り上流圧力が導かれる。ダ
イアフラムは受圧板A28と受圧板B29とでは
さまれ中央部で固定ピン30によつて固定されか
つ圧力室A,B間がシールされている。上面ケー
ス21には同筒状で非磁性体のコアガイド31が
一体で設けられ、固定ピン30に当接したコア3
2をガイドするとともに差動トランス部の外気と
のシールを果している。コアガイド31の外側に
は差動トランスのコイル33が固定される。ダイ
アフラム部及びコアーの重量は、下面ケース22
とネジ結合された調節ネジ34とスプリング受け
35と受圧板B29との間のスプリング36によ
つて支えられ、圧力差が零のときに、コアが差動
トランスの中点になる様に、すなわち差動トラン
スの出力信号が零となる様に調節される。
FIG. 3 is a longitudinal sectional view showing the detailed structure of a differential pressure detector according to an embodiment of the present invention. The upper case 21, the lower case 22, and the diaphragm 23 form a pressure chamber A2.
4 and a pressure chamber B25 are formed, and the pressure introduction hole A2
6 and pressure introduction hole B27, the air side throttle upstream pressure and the gas side throttle upstream pressure are respectively introduced. The diaphragm is sandwiched between a pressure receiving plate A28 and a pressure receiving plate B29 and fixed at the center by a fixing pin 30, and the pressure chambers A and B are sealed. A cylindrical core guide 31 made of non-magnetic material is integrally provided on the upper case 21, and the core 3 in contact with the fixing pin 30
2 and also serves as a seal between the differential transformer and the outside air. A coil 33 of a differential transformer is fixed to the outside of the core guide 31. The weight of the diaphragm part and core is the lower case 22.
It is supported by a spring 36 between an adjusting screw 34, a spring receiver 35, and a pressure receiving plate B29, which are threadedly connected to each other, so that when the pressure difference is zero, the core is at the midpoint of the differential transformer. The output signal of the differential transformer is adjusted to zero.

圧力室A,Bの間に差圧が発生するとダイアフ
ラムが変位し、その変位量に応じた電気信号が差
動トランス33の2次コイルから出力される訳で
あるが、前述の様に空燃比制御回路により、その
圧力差が常に零となる様フイードバツク制御され
るためダイアフラムの変位量は小さくてすむた
め、ダイアフラムの剛性、変位による有効面積の
変化等の影響を受けにくい。さらに、差圧検出器
に要求される性能は、差圧零時の出力のみが安定
しておれば良く差圧に対する出力信号の直線性、
ゲインの変化等は高精度である必要はない。差動
トランスの零点出力位置はコイル33とコア32
との機械的位置関係によりほぼ決まるもので、励
磁電流及び周波数の変動、コイル抵抗の変動等に
よつてほとんど影響を受けない。したがつて、差
圧検出器は小さなダイアフラムと簡単な構造の差
動トランスとの組み合わせで構成できる。
When a pressure difference occurs between pressure chambers A and B, the diaphragm is displaced, and an electric signal corresponding to the amount of displacement is output from the secondary coil of the differential transformer 33.As mentioned above, the air-fuel ratio Since the control circuit performs feedback control so that the pressure difference is always zero, the amount of displacement of the diaphragm can be small, so it is less susceptible to changes in the rigidity of the diaphragm and effective area due to displacement. Furthermore, the performance required of a differential pressure detector is that only the output when the differential pressure is zero is stable, and the linearity of the output signal with respect to the differential pressure,
Changes in gain, etc. do not need to be highly accurate. The zero point output position of the differential transformer is the coil 33 and core 32.
It is almost determined by the mechanical positional relationship with the coil, and is almost unaffected by fluctuations in the excitation current and frequency, fluctuations in the coil resistance, etc. Therefore, the differential pressure detector can be constructed by combining a small diaphragm and a simple differential transformer.

以上の構成により、バーナの負荷となる水の流
量や入口水温が変動しても、自動的に空気量を調
節し、空気量に応じたガス量が供給されるので、
その結果空燃比一定で、自動的に燃焼量を調節し
て、出湯温度を安定に保つことができる。
With the above configuration, even if the flow rate and inlet water temperature of the water that loads the burner fluctuate, the amount of air is automatically adjusted and the amount of gas is supplied according to the amount of air.
As a result, the air-fuel ratio remains constant, the combustion amount is automatically adjusted, and the hot water temperature can be kept stable.

以上のように本発明のガス燃焼制御装置によれ
ば、空気ガス混合部の上流にそれぞれ空気側絞り
とガス側絞りとを設け、空気側絞りの上流とガス
側絞りの上流との差圧を差圧検出器で検出し、そ
の信号により積分要素を介して差圧を零とする様
にガス比例弁を制御しているため、空気量すなわ
ち燃焼量調節比を大きくとつても高精度に空燃比
を安定化でき、空気側及びガス側絞りの発生圧力
を小さくできるので送風機も小型になりまたガス
供給圧力の低い家庭用ガス燃料でも使用可能とな
る。また差圧検出器は、差圧零時のみを安定に検
出できれば良いので、小さなダイアフラムと差動
トランスとを使つた簡単な構成で実現でき、機器
の小型化、低コスト化がはかれる等の効果が得ら
れる。
As described above, according to the gas combustion control device of the present invention, an air-side restriction and a gas-side restriction are provided upstream of the air-gas mixing section, and the differential pressure between the upstream of the air-side restriction and the upstream of the gas-side restriction is controlled. The differential pressure is detected by a differential pressure detector, and the signal is used to control the gas proportional valve to bring the differential pressure to zero through an integral element. Since the fuel ratio can be stabilized and the pressure generated at the air and gas side throttles can be reduced, the blower can also be made smaller and can be used with household gas fuel, which has a low gas supply pressure. In addition, the differential pressure detector only needs to stably detect when the differential pressure is zero, so it can be realized with a simple configuration using a small diaphragm and a differential transformer, which has the effect of reducing the size and cost of the device. is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のガス燃焼制御装置を示す構成
図、第2図は本発明の一実施例のガス燃焼制御装
置の構成を示すブロツク図、第3図は本発明の一
実施例の差圧検出器の構成を示す縦断面図であ
る。 1……送風機、2……空気側絞り、3……混合
部、5……ガス側絞り、13……ガス比例弁、1
9……回転数制御回路、16……差圧検出器、1
1……熱交換器、12……サーミスタ、14……
温度設定器、15……出湯温制御回路、17……
空燃比制御回路、18……積分要素、23……ダ
イアフラム、33……差動トランスコイル、32
……コア。
Fig. 1 is a block diagram showing a conventional gas combustion control device, Fig. 2 is a block diagram showing the structure of a gas combustion control device according to an embodiment of the present invention, and Fig. 3 is a differential pressure diagram of an embodiment of the present invention. FIG. 3 is a longitudinal cross-sectional view showing the configuration of a detector. 1...Blower, 2...Air side throttle, 3...Mixing section, 5...Gas side throttle, 13...Gas proportional valve, 1
9... Rotation speed control circuit, 16... Differential pressure detector, 1
1... Heat exchanger, 12... Thermistor, 14...
Temperature setting device, 15... Hot water temperature control circuit, 17...
Air-fuel ratio control circuit, 18... Integral element, 23... Diaphragm, 33... Differential transformer coil, 32
……core.

Claims (1)

【特許請求の範囲】[Claims] 1 燃焼用空気を供給する送風機と、ガスと燃焼
用空気とを混合する混合部と、バーナと、混合部
の上流の空気通路及びガス通路にそれぞれ空気側
絞りとガス側絞りと、さらにガス通路に電気信号
に応じてガス供給量を連続可変するガス比例弁
と、電気信号に応じて空気量を連続可変する空気
量可変機構と、空気側絞りの上流とガス側絞りの
上流との圧力差に応じた電気信号を出力する差圧
検出器とを有し、前記差圧検出器の信号によりそ
の差圧が零となる様に前記ガス比例弁を制御する
燃焼制御装置。
1. A blower that supplies combustion air, a mixing section that mixes gas and combustion air, a burner, an air passageway and a gas passageway upstream of the mixing section, respectively, and an air side restriction and a gas side restriction, and a gas passageway. A gas proportional valve that continuously varies the gas supply amount in response to an electrical signal, an air volume variable mechanism that continuously varies the air volume in response to an electrical signal, and a pressure difference between the upstream of the air-side restriction and the upstream of the gas-side restriction. and a differential pressure detector that outputs an electric signal according to the pressure difference, and controls the gas proportional valve so that the differential pressure becomes zero based on the signal from the differential pressure detector.
JP57107228A 1982-06-21 1982-06-21 Combustion control device Granted JPS58224228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57107228A JPS58224228A (en) 1982-06-21 1982-06-21 Combustion control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57107228A JPS58224228A (en) 1982-06-21 1982-06-21 Combustion control device

Publications (2)

Publication Number Publication Date
JPS58224228A JPS58224228A (en) 1983-12-26
JPH033848B2 true JPH033848B2 (en) 1991-01-21

Family

ID=14453730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57107228A Granted JPS58224228A (en) 1982-06-21 1982-06-21 Combustion control device

Country Status (1)

Country Link
JP (1) JPS58224228A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4317981A1 (en) * 1993-05-28 1994-12-01 Ranco Inc Gas-air ratio control device for a temperature control loop for gas appliances
AT509212B1 (en) * 2010-03-01 2011-07-15 Vaillant Group Austria Gmbh DEVICE AND METHOD FOR REGULATING THE COMBUSTION AIR-AIR CONDITION OF A FUEL-DRIVEN BURNER
DE102011117736A1 (en) * 2011-11-07 2013-05-08 Honeywell Technologies Sarl Method for operating a gas burner
US9528712B2 (en) * 2012-11-05 2016-12-27 Pat Caruso Modulating burner system
CN109442405B (en) * 2018-12-26 2023-12-05 广州威茨热能技术有限公司 Air-fuel ratio example mixer

Also Published As

Publication number Publication date
JPS58224228A (en) 1983-12-26

Similar Documents

Publication Publication Date Title
US9791172B2 (en) Dual sensor combustion system
US6579087B1 (en) Regulating device for gas burners
EP0581391A1 (en) Control system for supplying a gas flow to a gas consumption apparatus
JPH033848B2 (en)
JPH033847B2 (en)
JPS649528B2 (en)
JPS5885016A (en) Combustion control device
JPS5843655B2 (en) combustion device
KR20010052485A (en) Regulating device for gas burners
JPS649526B2 (en)
JPH0158412B2 (en)
JPS59219622A (en) Gas combustion controller
JPH0229931B2 (en)
JPS6029516A (en) Gas combustion controller
JPH0236857B2 (en)
JPS646363B2 (en)
JPS6080018A (en) Gas burning control device
JPS5929915A (en) Gas feeder
JPS5969612A (en) Gas combustion control device
JPS649525B2 (en)
JP2572773B2 (en) Zero governor for combustion equipment
JPS6026219A (en) Gas combustion controller
JPS6410733B2 (en)
JPS59202318A (en) Gas combustion controller
JPH033852B2 (en)