JPH0158412B2 - - Google Patents

Info

Publication number
JPH0158412B2
JPH0158412B2 JP58230147A JP23014783A JPH0158412B2 JP H0158412 B2 JPH0158412 B2 JP H0158412B2 JP 58230147 A JP58230147 A JP 58230147A JP 23014783 A JP23014783 A JP 23014783A JP H0158412 B2 JPH0158412 B2 JP H0158412B2
Authority
JP
Japan
Prior art keywords
gas
air
signal
amount
throttle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58230147A
Other languages
Japanese (ja)
Other versions
JPS60122818A (en
Inventor
Yoshuki Yokoajiro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58230147A priority Critical patent/JPS60122818A/en
Publication of JPS60122818A publication Critical patent/JPS60122818A/en
Publication of JPH0158412B2 publication Critical patent/JPH0158412B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
    • F23N5/188Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel using mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/04Measuring pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/19Measuring temperature outlet temperature water heat-exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • F23N2233/08Ventilators at the air intake with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/16Fuel valves variable flow or proportional valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2900/00Special features of, or arrangements for controlling combustion
    • F23N2900/05181Controlling air to fuel ratio by using a single differential pressure detector

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、負荷に応じて燃焼量を連続可変する
とともに、燃焼用空気量(以下単に空気量と言
う)とガス量の比(以下空燃比と言う)をほぼ一
定に保ち、燃焼の安定性と高効率を実現するため
の、特に家庭用機器に用いられる高負荷ガスバー
ナの燃焼制御装置に関する。 従来例の構成とその問題点 従来のこの種の高負荷ガスバーナの燃焼制御装
置として第1図に示す均圧弁方式がよく知られて
いる。 第1図において、送風機1により送られた空気
は空気絞り2を経て混合部3へ導かれ、一方ガス
は均圧弁4、ガス絞り5を経て混合部3へ導かれ
混合ガスはバーナ6で燃焼する。ここで均圧弁4
の背圧室7には空気絞り2の上流の圧力PAが導
かれており、均圧弁4はその出口ガス圧PGをPA
とほぼ等しく調節する。 以上の構成において送風機1の回転数を調節し
て空気量を増減するとPAの圧力が変化し、均圧
弁4はPGをPAとほぼ等しく保つ、従つて、空気
絞り2とガス絞り5のそれぞれに加わる圧力差が
常に等しくなり空気絞り2とガス絞りのそれぞれ
の流量係数で決まる一定の空燃比に保たれる。 しかし均圧弁4はPAとPGの圧力差を受けて機
械式弁を動かす構造のため、操作力を得るために
は必ず差圧が必要であり、PAとPGを完全に一致
させることはできない。さらにガス供給圧力の変
化、均圧弁構成部品の経時変化等の影響もあり高
精度化は難しい。高精度化のためには、均圧弁4
を大型化して受圧面積を大きくすれば良いが、機
器の大型化、コスト上昇を招き、家庭用機器には
適用できない。 また燃焼量変更時、空気量の変化が生じて圧力
差が生じてからガス量を変化させる動作が始まる
ため急激な変化に応答できず、過渡的な空燃比の
変化が大きい。また前述の均圧弁大型化による高
精度化は、均圧弁可動部の質量を増すことになり
さらに応答を遅くすることになり、高精度化と高
速応答性は相反するものであつた。 発明の目的 本発明はかかる従来の問題を解消するもので、
送風機や弁装置を大型化することなく空燃比調節
精度を高めるとともに、燃焼量調節、空燃比調節
の応答を高め過渡安定性のすぐれたガス燃焼制御
装置を提供するものである。 発明の構成 この目的を達成するために本発明は空気通路に
送風機と空気絞りと、送風機の回転数調節回路
と、ガス通路にガス比例制御弁とガス絞りを設
け、空気絞りの下流とガス絞りの下流を合流する
混合部と、空気絞りの上流とガス絞りの上流との
圧力がそれぞれ導かれた差圧検出器と、バーナの
負荷に応じて燃焼量調節信号を算出する燃焼量演
算回路と、燃焼量調節信号を遅延してガス比例制
御弁を駆動するガス遅延駆動回路と、燃焼量調節
信号より必要空気量信号を算出する空気量演算回
路と、差圧検出器の差圧信号を積分要素を含んで
演算し空気量補正信号を算出する空気量補正演算
回路と、必要空気量信号と空気量補正信号とを加
算して回転数調節回路の入力とするよう構成した
ものである。 この構成によつて、バーナの負荷に応じて燃焼
量調節信号が急変すると、燃焼量調節信号により
算出された必要空気量信号によつてまず回転数調
節手段が駆動され送風機の応答速度で変化を始め
る。ガス比例制御弁はガス量遅延駆動回路により
燃焼量調節信号の変化から遅れて駆動され、ガス
量は空気量が目的値に達するか、あるいはその途
中で変化する。その後、差圧信号が積分演算され
た空気量補正信号が空気量調節回路に加算され空
気絞りの上流とガス絞りの上流との圧力差がなく
なるまで空気量が補正され空燃比を一定に保つよ
う作用する。 実施例の説明 以下本発明の一実施例を第2図、第3図、第4
図を用いて説明する。 第2図において、空気通路には送風機1とその
下流に空気絞り2が、ガス通路にはガス比例制御
弁8とその下流にはガス絞り5が、空気絞り2と
ガス絞り5の下流に空気とガスを混合する混合部
3が設けられ混合部3にはバーナ6が接続され
る。空気絞り2の上流の圧力PAとガス絞り5の
上流の圧力PGはそれぞれ差圧検出器9に導かれ
る。被加熱体である水を加熱する熱交換器10の
出口に温度検出器が設けられその温度信号は温度
設定回路12の温度設定信号13と比較され、そ
の差が燃焼量演算回路14に入力されその出力す
なわち燃焼量調節信号15はガス量遅延駆動回路
16および空気量演算回路17に入力される。ガ
ス量遅延駆動回路16は燃焼量調節信号を一定時
間遅延させる信号遅延回路18と信号遅延回路1
8の出力信号すなわちガス比例弁駆動信号19を
増幅してガス比例制御弁8を駆動する駆動回路2
0とからなる。信号遅延回路18はBBD素子
(バケツトブリゲードデイバイス)を用いたもの
や、マイクロコンピユーターのソフトウエアで構
成したものでも実現でき信号波形を変えずに一定
時間だけ遅延させるものである。 一方、差圧検出器9の差圧信号21は積分演算
を含む空気量補正演算回路22に入りその出力す
なわち空気量補正信号23は空気量演算回路17
の出力すなわち必要空気量信号24とが空気量調
節回路25に導かれその出力信号すなわち回転数
設定信号26が回転数調節回路27に入力され、
回転数調節回路27はその入力信号に比例して送
風機1の回転数を調節するもので回転数調節回路
26と送風機1とで空気量調節手段を構成してい
る。 上記の構成において、温度検出器11の温度信
号は温度設定信号13と比較されその差が燃焼量
演算回路14でPID演算され、必要燃焼量を与え
る燃焼量調節信号15が得られる。燃焼量調節信
号15はガス量遅延駆動回路16に導かれ、信号
遅延回路18で一定時間だけ燃焼量調節信号15
を遅らせて駆動回路19に伝える。駆動回路20
はガス比例弁駆動信号19を増幅してガス比例制
御弁8の電磁コイルに電流を供給してガス量すな
わち燃焼量を制御する。 一方、燃焼量調節信号15は空気量演算回路1
7にも導かれここで一定比率で増幅又は分圧され
て、燃焼量調節信号15に比例した必要空気量信
号24を得る。必要空気量信号24は差圧信号2
1を積分演算した空気量補正信号23と、空気量
調節回路25で加算され回転数調節回路27への
回転数設定信号26が得られる。回転数調節回路
27は回転数設定信号26に応じて送風機1の回
転数を調節することにより空気量を制御する。 第3図において、28は燃焼量調節信号15
の、29はガス比例弁駆動信号19の、30は回
転数設定信号26の、31は差圧信号21のそれ
ぞれ横軸時間に対する変化を表わしたものであ
る。いま時刻T1で燃焼量調節信号15が点32
から点33に急変すると、必要空気量信号24は
同時に変化するため回転数設定信号26は同じく
T1で点34から点35まで変化する。回転数調
節回路27は直ちに送風機1のモータへの供給電
圧を増やして回転数を増加させようとするが送風
機1には慣性があり急激にはその回転数は増加し
ない。同図36は送風機の回転数の時間に対する
変化を示すもので時刻T1から緩やかに増加する。
空気量は空気通路の抵抗変化がなければ、ほぼ送
風機1の回転数に比例する。一方、信号遅延回路
18を経たガス比例弁駆動信号19は時刻T2
点37から点38まで変化する。ガス比例制御弁
8は大きな慣性を持たないため、送風機1に比べ
てきわめて速い応答性を持つておりガス比例弁駆
動信号19とほぼ同じ速度でガス量が変化する。
この間の差圧信号21の変化をみると、時刻T1
からT2まではガス量の変化がなく空気量だけ増
加しているので正方向の差圧信号が発生する。こ
の間空燃比は目標の値よりも空気過剰となる。時
刻T2で空気量が目標値に達しない時にガス量が
目標値まで変化するため空燃比は空気不足となり
差圧信号21は負の値となる。T2以後、送風機
1の回転数が目標値に近づくとともに、差圧信号
21を積分した空気量補正信号23が回転数設定
信号26に加算されて送風機1の回転数を補正し
差圧信号21が零になつて安定し、空燃比は目標
値に保たれる。第4図39は比較のために信号遅
延回路18を使用せずに燃焼量調節信号15でガ
ス比例制御弁8を駆動したときの差圧信号の変化
を示したもので、時刻T1でガス量が急変し、空
気量は急激に変化できないので大きな負方向の差
圧が発生する。このことは空燃比が空気不足方向
に大きくずれることを意味しバーナ6の燃焼性を
悪くする。特に空気不足になるとススやCO2が発
生しやすくなる。本実施例では前述のようにガス
量の変化を遅らせたため空燃比の変化は小さく抑
えられる。遅延時間(T2−T1)を送風機の立上
り時定数付近に選べば空燃比の変化は最小に抑え
られることになる。以上ガス量急増時の動作を説
明したが、急減時にも方向が逆で同様の動作とな
る。 以上の作用で燃焼量の急変時に信号遅延回路1
8によりガス比例制御弁8への操作を遅らせると
ともに空気量演算回路17を経て回転数調節回路
27へ燃焼量の変化を直ちに伝えて送風機1の操
作を行えるため、送風機の応答遅れを補正して空
燃比の変動を小さく抑えることができる。さらに
差圧検出器9と積分要素を含んだ空気量補正演算
回路22によりPGとPAが等しくなるまで送風機
1の回転数を補正するため、ガス比例制御弁8の
電流対ガス量特性や送風機1の回転数対空気量特
性の非直線性やバラツキ、空気通路の抵抗変化等
を吸収して空燃比を一定に保つ効果がある。 発明の効果 以上のように本発明のガス燃焼制御装置によれ
ば次の効果が得られる。 空気通路に設けた送風機と回転数調節手段と空
気絞りと、ガス通路に設けたガス比例制御弁とガ
ス絞りと、前記空気絞りとガス絞りのそれぞれの
上流の圧力の差を検出する差圧検出器と、負荷に
応じた燃焼量調節信号を算出する燃焼量演算回路
と、前記燃焼量調節信号より必要空気量を算出す
る空気量演算回路と、前記差圧検出器の差圧信号
を空気量補正演算回路で演算して得られた空気量
補正信号とを加算して回転数調節手段を駆動する
空気量調節回路と、前記燃焼量調節信号を一定時
間遅延させてガス比例制御弁を駆動するガス量遅
延駆動回路とで構成したので、 (1) 燃焼量変更時に、燃焼量調節信号により先ず
回転数制御回路が駆動され、遅延回路により一
定時間遅れてガス比例制御弁が駆動されるの
で、送風機の応答遅れを補正して過渡的な空燃
比変化を小さく抑えることができる。さらにガ
ス比例制御弁及び送風機にそれぞれ駆動信号と
ガス量及び空気量に概略比例関係を持たせてあ
るので、空燃比制御がオープン制御により応答
性良く安定に行われる。 (2) ガス絞り、空気絞り及び差圧検出器で構成さ
れる空燃比検出によるフイードバツク補正を加
えることにより、定常時の空燃比精度を向上す
るとともに、前記(1)のオープン制御との併用に
よりフイードバツク系のゲインを小さく設定で
きるため、応答遅れを有するフイードバツク制
御を安定に行うことができる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention continuously varies the combustion amount according to the load, and also changes the ratio of the combustion air amount (hereinafter simply referred to as the air amount) to the gas amount (hereinafter referred to as the air-fuel ratio). This invention relates to a combustion control device for high-load gas burners used in household appliances, in particular, to maintain combustion stability and high efficiency by keeping the amount of gas at a nearly constant level. Conventional Structure and Problems The pressure equalizing valve system shown in FIG. 1 is well known as a conventional combustion control device for this type of high-load gas burner. In FIG. 1, air sent by a blower 1 is guided to a mixing section 3 via an air throttle 2, while gas is guided to a mixing section 3 via a pressure equalizing valve 4 and a gas throttle 5, and the mixed gas is combusted in a burner 6. do. Here pressure equalizing valve 4
The pressure P A upstream of the air throttle 2 is guided to the back pressure chamber 7 of
Adjust approximately equal to. In the above configuration, when the rotational speed of the blower 1 is adjusted to increase or decrease the amount of air, the pressure of P A changes, and the pressure equalizing valve 4 keeps P G almost equal to P A. Therefore, the air throttle 2 and the gas throttle 5 The pressure difference applied to each of them is always equal, and a constant air-fuel ratio determined by the respective flow coefficients of the air restrictor 2 and the gas restrictor is maintained. However, since the pressure equalizing valve 4 operates a mechanical valve in response to the pressure difference between P A and P G , a pressure difference is always required to obtain the operating force, and P A and P G must be perfectly matched. It is not possible. Furthermore, it is difficult to achieve high accuracy due to the effects of changes in gas supply pressure, changes in pressure equalizing valve components over time, etc. For high precision, pressure equalizing valve 4
It would be possible to increase the pressure receiving area by increasing the size of the device, but this would increase the size of the device and increase the cost, making it impossible to apply it to household devices. Furthermore, when changing the combustion amount, the operation to change the gas amount starts after a change in the air amount occurs and a pressure difference occurs, so it is not possible to respond to sudden changes, and transient air-fuel ratio changes are large. In addition, increasing the precision by increasing the size of the pressure equalizing valve described above increases the mass of the pressure equalizing valve's movable part, which further slows down the response, and high precision and high-speed response are contradictory. Purpose of the invention The present invention solves such conventional problems,
The present invention provides a gas combustion control device that improves the accuracy of air-fuel ratio adjustment without increasing the size of the blower or valve device, improves the response of combustion amount adjustment and air-fuel ratio adjustment, and has excellent transient stability. Structure of the Invention In order to achieve this object, the present invention provides a blower, an air throttle, a rotation speed adjustment circuit for the blower, a gas proportional control valve and a gas throttle in the gas passage, and a downstream side of the air throttle and a gas throttle. a mixing section that joins the downstream of the , a differential pressure detector that detects the pressure upstream of the air throttle and upstream of the gas throttle, and a combustion amount calculation circuit that calculates a combustion amount adjustment signal according to the burner load. , a gas delay drive circuit that delays the combustion amount adjustment signal to drive the gas proportional control valve, an air amount calculation circuit that calculates the required air amount signal from the combustion amount adjustment signal, and an integrated differential pressure signal from the differential pressure detector. The air amount correction calculation circuit calculates an air amount correction signal by calculation including elements, and the required air amount signal and the air amount correction signal are added and input to the rotation speed adjustment circuit. With this configuration, when the combustion amount adjustment signal suddenly changes depending on the burner load, the rotation speed adjustment means is first driven by the required air amount signal calculated from the combustion amount adjustment signal, and the change is controlled by the response speed of the blower. start. The gas proportional control valve is driven by the gas amount delay drive circuit with a delay from the change in the combustion amount adjustment signal, and the gas amount changes until the air amount reaches the target value or in the middle thereof. After that, the air amount correction signal obtained by integrating the differential pressure signal is added to the air amount adjustment circuit, and the air amount is corrected until the pressure difference between the upstream of the air restriction and the upstream of the gas restriction disappears, and the air-fuel ratio is kept constant. act. DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below as shown in FIGS. 2, 3, and 4.
This will be explained using figures. In Fig. 2, the air passage has a blower 1 and an air throttle 2 downstream thereof, the gas passage has a gas proportional control valve 8 and a gas throttle 5 downstream thereof, and the air throttle 2 and the gas throttle 5 have an air throttle downstream thereof. A mixing section 3 for mixing the gas and the gas is provided, and a burner 6 is connected to the mixing section 3. The pressure P A upstream of the air throttle 2 and the pressure P G upstream of the gas throttle 5 are each guided to a differential pressure detector 9. A temperature detector is provided at the outlet of a heat exchanger 10 that heats water, which is an object to be heated, and its temperature signal is compared with a temperature setting signal 13 of a temperature setting circuit 12, and the difference is inputted to a combustion amount calculation circuit 14. The output, that is, the combustion amount adjustment signal 15 , is input to a gas amount delay drive circuit 16 and an air amount calculation circuit 17. The gas amount delay drive circuit 16 includes a signal delay circuit 18 and a signal delay circuit 1 that delay the combustion amount adjustment signal for a certain period of time.
A drive circuit 2 that amplifies the output signal of 8, that is, the gas proportional valve drive signal 19, and drives the gas proportional control valve 8.
Consists of 0. The signal delay circuit 18 can be realized by using a BBD element (bucket brigade device) or by using microcomputer software, and delays the signal by a certain period of time without changing the signal waveform. On the other hand, the differential pressure signal 21 of the differential pressure detector 9 enters the air amount correction calculation circuit 22 including integral calculation, and its output, that is, the air amount correction signal 23, is sent to the air amount calculation circuit 17.
The output, ie, the required air amount signal 24, is led to the air amount adjustment circuit 25, and the output signal, ie, the rotation speed setting signal 26, is input to the rotation speed adjustment circuit 27.
The rotation speed adjustment circuit 27 adjusts the rotation speed of the blower 1 in proportion to the input signal thereof, and the rotation speed adjustment circuit 26 and the blower 1 constitute air amount adjustment means. In the above configuration, the temperature signal from the temperature detector 11 is compared with the temperature setting signal 13, and the difference therebetween is subjected to PID calculation in the combustion amount calculation circuit 14, thereby obtaining the combustion amount adjustment signal 15 that provides the required combustion amount. The combustion amount adjustment signal 15 is guided to a gas amount delay drive circuit 16 , and the signal delay circuit 18 outputs the combustion amount adjustment signal 15 for a certain period of time.
is delayed and transmitted to the drive circuit 19. Drive circuit 20
amplifies the gas proportional valve drive signal 19 and supplies current to the electromagnetic coil of the gas proportional control valve 8 to control the gas amount, that is, the combustion amount. On the other hand, the combustion amount adjustment signal 15 is transmitted to the air amount calculation circuit 1.
7, where it is amplified or divided at a constant ratio to obtain a required air amount signal 24 that is proportional to the combustion amount adjustment signal 15. The required air amount signal 24 is the differential pressure signal 2
The air amount correction signal 23 obtained by integrating 1 is added in the air amount adjustment circuit 25 to obtain the rotation speed setting signal 26 to the rotation speed adjustment circuit 27. The rotation speed adjustment circuit 27 controls the amount of air by adjusting the rotation speed of the blower 1 according to the rotation speed setting signal 26. In FIG. 3, 28 is the combustion amount adjustment signal 15.
, 29 represents the gas proportional valve drive signal 19, 30 represents the rotation speed setting signal 26, and 31 represents the differential pressure signal 21, respectively, with respect to time on the horizontal axis. Now at time T 1 , the combustion amount adjustment signal 15 is at point 32.
When there is a sudden change from point 33 to point 33, the required air amount signal 24 changes at the same time, so the rotation speed setting signal 26 also changes at the same time.
It changes from point 34 to point 35 at T 1 . The rotation speed adjustment circuit 27 immediately increases the voltage supplied to the motor of the blower 1 to try to increase the rotation speed, but the blower 1 has inertia and the rotation speed does not increase rapidly. FIG. 36 shows the change in the rotation speed of the blower over time, which gradually increases from time T1 .
The amount of air is approximately proportional to the rotation speed of the blower 1 unless there is a change in the resistance of the air passage. On the other hand, the gas proportional valve drive signal 19 that has passed through the signal delay circuit 18 changes from point 37 to point 38 at time T2 . Since the gas proportional control valve 8 does not have a large inertia, it has a much faster response than the blower 1, and the gas amount changes at almost the same speed as the gas proportional valve drive signal 19.
Looking at the change in the differential pressure signal 21 during this time, it is found that at time T 1
From to T 2 , the gas amount does not change and only the air amount increases, so a positive differential pressure signal is generated. During this time, the air-fuel ratio becomes in excess of the target value. When the air amount does not reach the target value at time T2 , the gas amount changes to the target value, so the air-fuel ratio becomes insufficient and the differential pressure signal 21 takes a negative value. After T 2 , as the rotation speed of the blower 1 approaches the target value, the air amount correction signal 23 obtained by integrating the differential pressure signal 21 is added to the rotation speed setting signal 26 to correct the rotation speed of the blower 1, and the differential pressure signal 21 becomes zero and becomes stable, and the air-fuel ratio is maintained at the target value. For comparison, FIG. 4 39 shows the change in the differential pressure signal when the gas proportional control valve 8 is driven by the combustion amount adjustment signal 15 without using the signal delay circuit 18 . Since the amount of air changes suddenly and the amount of air cannot change rapidly, a large negative differential pressure occurs. This means that the air-fuel ratio deviates significantly in the direction of air shortage, which worsens the combustibility of the burner 6. Especially when there is a lack of air, soot and CO 2 are more likely to be generated. In this embodiment, since the change in the gas amount is delayed as described above, the change in the air-fuel ratio can be kept small. If the delay time (T 2 −T 1 ) is selected near the startup time constant of the blower, changes in the air-fuel ratio can be minimized. The operation when the gas amount increases rapidly has been described above, but the same operation occurs when the gas amount suddenly decreases, but in the opposite direction. Due to the above action, the signal delay circuit 1 is activated when the combustion amount suddenly changes.
8 delays the operation of the gas proportional control valve 8 and immediately transmits the change in combustion amount to the rotational speed adjustment circuit 27 via the air amount calculation circuit 17 to operate the blower 1. Therefore, the response delay of the blower can be corrected. Fluctuations in the air-fuel ratio can be suppressed. Furthermore, in order to correct the rotational speed of the blower 1 until P G and P A become equal using the differential pressure detector 9 and the air amount correction calculation circuit 22 including an integral element, the current vs. gas amount characteristic of the gas proportional control valve 8 is adjusted. This has the effect of keeping the air-fuel ratio constant by absorbing non-linearities and variations in the rotational speed vs. air amount characteristic of the blower 1, changes in resistance of the air passage, and the like. Effects of the Invention As described above, the gas combustion control device of the present invention provides the following effects. A blower, a rotation speed adjustment means, an air throttle provided in an air passage, a gas proportional control valve and a gas throttle provided in a gas passage, and differential pressure detection for detecting the difference in pressure upstream of each of the air throttle and gas throttle. a combustion amount calculation circuit that calculates a combustion amount adjustment signal according to the load; an air amount calculation circuit that calculates the required air amount from the combustion amount adjustment signal; an air amount adjustment circuit that adds the air amount correction signal calculated by the correction calculation circuit to drive the rotation speed adjustment means; and a gas proportional control valve that delays the combustion amount adjustment signal for a certain period of time. (1) When changing the combustion amount, the rotation speed control circuit is first driven by the combustion amount adjustment signal, and the gas proportional control valve is driven after a certain time delay by the delay circuit. Transient air-fuel ratio changes can be suppressed by correcting the response delay of the blower. Furthermore, since the gas proportional control valve and the blower are each given a roughly proportional relationship between the drive signal, the gas amount, and the air amount, the air-fuel ratio control can be performed stably with good responsiveness through open control. (2) By adding feedback correction based on air-fuel ratio detection consisting of a gas throttle, air throttle, and differential pressure detector, the air-fuel ratio accuracy during steady state is improved, and when used in combination with the open control described in (1) above, Since the gain of the feedback system can be set small, feedback control with response delay can be stably performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のガス燃焼制御装置の構成図、第
2図は本発明のガス燃焼制御装置の一実施例を示
す構成図、第3図は第2図の実施例の動作を説明
する各信号の時間に対する変化を示す特性図であ
る。 1……送風機、2……空気絞り、3……混合
部、5……ガス絞り、6……バーナ、8……ガス
比例制御弁、9……差圧検出器、14……燃焼量
演算回路、16……ガス量遅延駆動回路、17…
…空気量演算回路、22……空気量補正演算回
路、25……空気量調節回路、27……回転数調
節回路。
Fig. 1 is a block diagram of a conventional gas combustion control device, Fig. 2 is a block diagram showing an embodiment of the gas combustion control device of the present invention, and Fig. 3 is a block diagram showing the operation of the embodiment of Fig. 2. FIG. 3 is a characteristic diagram showing changes in a signal over time. 1... Blower, 2... Air throttle, 3... Mixing section, 5... Gas throttle, 6... Burner, 8... Gas proportional control valve, 9... Differential pressure detector, 14... Combustion amount calculation Circuit, 16 ...Gas amount delay drive circuit, 17...
...Air amount calculation circuit, 22... Air amount correction calculation circuit, 25... Air amount adjustment circuit, 27... Rotation speed adjustment circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 空気通路に設けた送風機と空気絞りと、前記
送風機の回転数調節回路と、ガス通路に設けられ
駆動電流とガス流量とが概略比例関係にあるガス
比例制御弁とガス絞りと、前記空気絞りと前記ガ
ス絞りとの下流でガスと空気を混合する混合部
と、前記空気絞りの上流の圧力と前記ガス絞りの
上流の圧力との差圧に応じた電気信号を発生する
差圧検出器と、バーナの負荷に応じた燃焼量調節
信号を算出する燃焼量演算回路と、前記燃焼量調
節信号より必要空気量信号を算出する空気量演算
回路と、前記差圧検出器の差圧信号を積分要素を
含んで演算し空気量補正信号を算出する空気量補
正演算回路とを設け、前記必要空気量信号と前記
空気量補正信号とを加算して回転数調節回路の入
力とするとともに、前記燃焼量調節信号を一定時
間遅延するガス量遅延駆動回路を設けて前記ガス
量遅延駆動回路の出力で前記ガス比例制御弁を駆
動する様構成したガス燃焼制御装置。
1. A blower and an air throttle provided in the air passage, a rotation speed adjustment circuit for the blower, a gas proportional control valve and a gas throttle provided in the gas passage and in which the driving current and the gas flow rate are in a roughly proportional relationship, and the air throttle. and a mixing unit that mixes gas and air downstream of the gas throttle; and a differential pressure detector that generates an electrical signal in accordance with the differential pressure between the pressure upstream of the air throttle and the pressure upstream of the gas throttle. , a combustion amount calculation circuit that calculates a combustion amount adjustment signal according to the burner load, an air amount calculation circuit that calculates a required air amount signal from the combustion amount adjustment signal, and an integrated differential pressure signal of the differential pressure detector. an air amount correction calculation circuit that calculates an air amount correction signal by calculating the air amount correction signal including the elements, and adds the required air amount signal and the air amount correction signal to input the rotation speed adjustment circuit; A gas combustion control device comprising a gas amount delay drive circuit that delays a quantity adjustment signal for a predetermined period of time, and the gas proportional control valve is driven by an output of the gas amount delay drive circuit.
JP58230147A 1983-12-06 1983-12-06 Device for controlling combustion of gas Granted JPS60122818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58230147A JPS60122818A (en) 1983-12-06 1983-12-06 Device for controlling combustion of gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58230147A JPS60122818A (en) 1983-12-06 1983-12-06 Device for controlling combustion of gas

Publications (2)

Publication Number Publication Date
JPS60122818A JPS60122818A (en) 1985-07-01
JPH0158412B2 true JPH0158412B2 (en) 1989-12-12

Family

ID=16903320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58230147A Granted JPS60122818A (en) 1983-12-06 1983-12-06 Device for controlling combustion of gas

Country Status (1)

Country Link
JP (1) JPS60122818A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100414176C (en) * 2003-03-25 2008-08-27 乐金电子(天津)电器有限公司 Gas stove temperature controller and temperature control method with said device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0449478Y2 (en) * 1986-09-29 1992-11-20
DE19824524C2 (en) * 1998-06-02 2002-08-08 Honeywell Bv Control device for gas burners
DE19824521B4 (en) * 1998-06-02 2004-12-23 Honeywell B.V. Control device for gas burners
DE19922226C1 (en) * 1999-05-14 2000-11-30 Honeywell Bv Control device for gas burners
US6537060B2 (en) 2001-03-09 2003-03-25 Honeywell International Inc. Regulating system for gas burners
JP6458487B2 (en) * 2014-12-22 2019-01-30 三菱ケミカル株式会社 Combustion gas and oxygen-containing gas mixing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4978941A (en) * 1972-12-05 1974-07-30
JPS5560172A (en) * 1978-10-31 1980-05-07 Daido Steel Co Ltd Apparatus for controlling air*fuel ratio for combustion furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4978941A (en) * 1972-12-05 1974-07-30
JPS5560172A (en) * 1978-10-31 1980-05-07 Daido Steel Co Ltd Apparatus for controlling air*fuel ratio for combustion furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100414176C (en) * 2003-03-25 2008-08-27 乐金电子(天津)电器有限公司 Gas stove temperature controller and temperature control method with said device

Also Published As

Publication number Publication date
JPS60122818A (en) 1985-07-01

Similar Documents

Publication Publication Date Title
JPH0158412B2 (en)
JPS58224226A (en) Combustion control device
JPH0158411B2 (en)
JPH0231287B2 (en)
JPH033847B2 (en)
JPS649525B2 (en)
JPS6326825B2 (en)
JPS634096B2 (en)
JPH033848B2 (en)
JPS58224227A (en) Combustion control device
JPS5969613A (en) Combustion control device
JPH0450498B2 (en)
JP2669662B2 (en) Water heater control device
JPS60164115A (en) Gas burning control device
JPH0221483B2 (en)
JPS59212621A (en) Gas combustion controller
JPS5969612A (en) Gas combustion control device
JPH0449478Y2 (en)
JP3008735B2 (en) Combustion control device
JPH033853B2 (en)
JPH0145542B2 (en)
JPS6026219A (en) Gas combustion controller
KR880004145Y1 (en) Combustion control device
JP3326923B2 (en) Hot water supply control device
JPH03186150A (en) Hot water supply control device