JPH0450498B2 - - Google Patents

Info

Publication number
JPH0450498B2
JPH0450498B2 JP9112585A JP9112585A JPH0450498B2 JP H0450498 B2 JPH0450498 B2 JP H0450498B2 JP 9112585 A JP9112585 A JP 9112585A JP 9112585 A JP9112585 A JP 9112585A JP H0450498 B2 JPH0450498 B2 JP H0450498B2
Authority
JP
Japan
Prior art keywords
water
temperature
value
detector
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9112585A
Other languages
Japanese (ja)
Other versions
JPS61250446A (en
Inventor
Shigeo Watanabe
Mitsuru Ikei
Koji Tajima
Hiromi Oota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP9112585A priority Critical patent/JPS61250446A/en
Publication of JPS61250446A publication Critical patent/JPS61250446A/en
Publication of JPH0450498B2 publication Critical patent/JPH0450498B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、給湯機の出湯温度制御方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for controlling the outlet temperature of hot water in a water heater.

〔従来の技術〕[Conventional technology]

給湯機の出湯温度制御方法は、従来熱交換器の
出口側に温度検出器を設け、その温度検出器で検
出した出湯温度と温度設定器で設定した設定温度
との偏差で燃料流量調節弁の開度を調節するフイ
ードバツク制御が主流であつた。しかしフイード
バツク制御では水量を検出していないため、給湯
機の起動時の応答特性及び水量変化時の応答特性
が悪いという欠点をもつていた。そこで近年、給
湯機内の水通路に水量検出器を設け水量を検出す
ると共に、熱交換器の入口側にも温度検出器を設
けて入水温度も検出することにより、次の演算式
により予め必要熱量に比例した値を計算し、燃料
流量調節弁の開度を調節するフイードフオワード
制御が行なわれている。
The conventional method for controlling the outlet temperature of a water heater is to install a temperature detector on the outlet side of the heat exchanger, and adjust the fuel flow control valve based on the deviation between the outlet temperature detected by the temperature sensor and the set temperature set by the temperature setting device. Feedback control, which adjusts the opening, was the mainstream. However, since the feedback control does not detect the amount of water, it has the drawback of poor response characteristics when starting up the water heater and when changing the amount of water. Therefore, in recent years, a water flow sensor has been installed in the water passage in the water heater to detect the water flow, and a temperature sensor has also been installed on the inlet side of the heat exchanger to detect the incoming water temperature. Feedforward control is performed to calculate a value proportional to , and adjust the opening degree of the fuel flow rate control valve.

F1=K・W・(Ts−TI) ……(1) F1:必要熱量に比例した値 W:水量 Ts:設定温度 Ti:入水温度 K:定数 このフイードフオワード制御は、一般には前記
フイードバツク制御と合わせて用いられている。
第3図に、フイードフオワード制御とフイードバ
ツク制御によつて出湯温度制御を行う給湯機の作
動原理図を示す。水通路1には熱交換器4の前流
側に水量検出器2、入水温度検出器3、後流側に
出湯温度検出器5を備えている。燃料通路6には
電磁弁7、熱量流量調節弁8を備え、燃料はバー
T9へ導かれて燃焼する。
F1=K・W・(Ts−TI) ……(1) F1: Value proportional to required heat amount W: Water amount Ts: Set temperature Ti: Inlet water temperature K: Constant This feedback control is generally based on the above feedback. It is used in conjunction with control.
FIG. 3 shows a diagram of the operating principle of a water heater that controls the temperature of hot water through feed forward control and feedback control. The water passage 1 is equipped with a water amount detector 2 and an inlet water temperature detector 3 on the upstream side of the heat exchanger 4, and an outlet hot water temperature detector 5 on the downstream side. The fuel passage 6 is equipped with an electromagnetic valve 7 and a heat flow control valve 8, and the fuel is guided to the bar T9 and combusted.

第4図には、第3図の給湯機の従来の出湯温度
制御方法を示す。水量検出器2で検出した水量W
と、入水温度検出器3で検出した入水温度Tiと、
出湯温度検出器5で検出しいた出湯温度Toと、
温度設定器10で設定した設定温度Tsを入力信
号として前記(1)式により必要熱量に比例した値で
あるF1を求め、次に第1の制御系(フイドフオ
ワード制御系)では、F1を入力としてF1に比例
した値F2を出力する。そしてF2の値によつて燃
料流量調節弁8の開度を設定する。一方第2の制
御系(フイードバツク制御系)では設定温度Ts
と出湯温度Toとて求められる偏差ΔT=Ts−To
に基づいてフイードバツク量を求め、前記偏差が
小さくなるように前記第1の制御系で設定した燃
料流量調節弁8の開度を補正する信号B2を出力
する。以上の制御により出湯温度が設定温度に一
致する様に燃料流量調節弁8の開度を制御してい
た。
FIG. 4 shows a conventional hot water temperature control method for the water heater shown in FIG. Water amount W detected by water amount detector 2
and the inlet water temperature Ti detected by the inlet water temperature detector 3,
The hot water temperature To detected by the hot water temperature detector 5,
Using the set temperature Ts set by the temperature setting device 10 as an input signal, F1, which is a value proportional to the required amount of heat, is calculated using equation (1) above. Next, in the first control system (feed forward control system), F1 is used as an input signal. Outputs a value F2 proportional to F1. The opening degree of the fuel flow control valve 8 is then set based on the value of F2. On the other hand, in the second control system (feedback control system), the set temperature Ts
Deviation ΔT = Ts − To, which is obtained from the hot water temperature To
A feedback amount is determined based on the deviation, and a signal B2 is outputted to correct the opening degree of the fuel flow rate control valve 8 set by the first control system so that the deviation becomes smaller. Through the above control, the opening degree of the fuel flow rate control valve 8 was controlled so that the outlet hot water temperature matched the set temperature.

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

従来のフイードフオワードとフイードバツク制
御による出湯特性の1例を第5図に示す。ここで
は、フイードバツク制御を積分制御だけで行な
い、設定温度を42℃→50℃に変化させた場合の応
答特性を示している。設定温度を変化すると、第
1の制御系(フイードフオワード制御系)では
Ts,Ti,Wから計算されたF1を入力としてF2を
出力する。また第2の制御系(フイードバツク制
御系)では、Ts,Toから求められる偏差ΔTを
入力としてB2を出力する。ところで給湯機の熱
交換器4の水管は1〜2mの長さをもつため、変
化開始時には適切な燃料量が投入されても出湯温
度が変化しない無駄時間が発生すると共に、熱交
換器4のもつ熱容量のために、出湯温度の立北り
は遅くなる。
FIG. 5 shows an example of hot water discharge characteristics under conventional feedforward and feedback control. Here, feedback control is performed using only integral control, and the response characteristics are shown when the set temperature is changed from 42°C to 50°C. When the set temperature is changed, the first control system (feed forward control system)
It inputs F1 calculated from Ts, Ti, and W, and outputs F2. The second control system (feedback control system) inputs the deviation ΔT obtained from Ts and To and outputs B2. By the way, since the water pipes of the heat exchanger 4 of the water heater have a length of 1 to 2 m, there is a dead time when the hot water temperature does not change even if an appropriate amount of fuel is input at the start of change, and the heat exchanger 4 Because of the heat capacity it has, the temperature of the hot water rises slowly.

そのため従来の制御方法では、第1の制御系か
らの出力F2によつて燃料流量調節弁8の開度が
イの点に設定されると共に、第2の制御系からの
出力B2によつて出湯温度が設定温度以下にある
間は燃料流量調節弁8の開度を開ける方向に駆動
される。ところで前述の様に設定温度変化時の出
湯温度の応答には無駄時間と遅れが発生するた
め、設定温度変化開始時には見掛け上ΔTの値は
大きくなりその結果B2が大きくなるため、燃料
流量調節弁8の開度はロの点まで大きくなる。次
に出湯温度が設定温度以上になると、ΔTの値が
負になりB2も負となつて燃料流量調節弁の開度
を閉める方向に駆動するが、前記出湯温度の応答
の無駄時間と応答遅れのための、出湯温度には図
中示したようなオーバーシユートが発生すると共
に出湯温度の安定に時間を要していた。また、第
4図の従来の制御方法のフイードバツク制御系
は、設定温度と出湯温度の偏差だけで制御してお
り、水量のデータが入つていない為、水量が多い
場合は相対的にフイードバツクによる補正値が小
さく、水量が少ない場合は相対的にフイードバツ
クによる補正値が大きくなるため、特に水量が少
ない場合に前記オーバーシユートが大きくなり使
用者に不快感を与えていた。
Therefore, in the conventional control method, the opening degree of the fuel flow rate control valve 8 is set to point A by the output F2 from the first control system, and the hot water discharge is set by the output B2 from the second control system. While the temperature is below the set temperature, the fuel flow control valve 8 is driven in the direction of opening. By the way, as mentioned above, dead time and delay occur in the response of the outlet temperature when the set temperature changes, so when the set temperature starts changing, the value of ΔT increases, and as a result, B2 increases, so the fuel flow control valve The opening degree at point 8 increases to point B. Next, when the hot water outlet temperature exceeds the set temperature, the value of ΔT becomes negative and B2 also becomes negative, driving the opening of the fuel flow control valve in the direction of closing. However, the wasted time and response delay in response to the hot water outlet temperature Therefore, overshoot as shown in the figure occurs in the hot water outlet temperature, and it takes time for the hot water outlet temperature to stabilize. In addition, the feedback control system of the conventional control method shown in Fig. 4 controls only the deviation between the set temperature and the hot water temperature, and does not include data on water volume, so when the water volume is large, it is relatively dependent on feedback. When the correction value is small and the amount of water is small, the correction value due to feedback becomes relatively large, so especially when the amount of water is small, the overshoot becomes large, causing discomfort to the user.

〔問題点を解決するための手段〕[Means for solving problems]

前記従来技術による問題点を解決するための本
発明の制御方法を第1図に示す。
FIG. 1 shows a control method of the present invention for solving the problems of the prior art.

まず給水量検出器2で検出した水量Wと、入水
温度検出器3で検出した入水温度Tiと、温度設
定器10で設定した設定温度Tsとから(1)式でF1
を計算する。また設定温度Tsと、出湯温度検出
器5で検出した出湯温度Toと、水量Wとすら次
式によりB1を計算する。
First, from the water amount W detected by the water supply amount detector 2, the inlet water temperature Ti detected by the inlet water temperature detector 3, and the set temperature Ts set by the temperature setting device 10, F1 is calculated by formula (1).
Calculate. Further, B1 is calculated from the set temperature Ts, the hot water outlet temperature To detected by the hot water outlet temperature detector 5, and the water amount W using the following equation.

B1=K×W×(Ts−To) ……(2) ここでB1は、次式の様に計算しても全く同様で
ある。
B1=K×W×(Ts-To)...(2) Here, B1 is calculated in the same manner as in the following equation.

B1=F1−K×W×(To−Ti) ……(3) 次にB1にある定数C1を乗算してF1との和をと
り、 F2=F1+C1×B1 ……(4) を求める。
B1=F1-K×W×(To-Ti)...(3) Next, multiply B1 by the constant C1 and take the sum with F1 to obtain F2=F1+C1×B1...(4).

以上(1),(2),(又は(3)),(4)式で求めたF1,B1,
F2を用いて以下制御するものである。
F1, B1, obtained using equations (1), (2), (or (3)), and (4) above,
The following control is performed using F2.

第1の制御系では、F2を入力として第1図に
示す如くF2の関数であるF3を出力する。ここで
F3はフイードフオワードにフイードバツクの比
例制御を加えた制御による値と考えてさしつかえ
ない。又、第2の制御系ではB1を入力としてフ
イードバツク量B2を出力する。そしてF1の単位
時間当りの変化量DF1がある値C2以下であると、
F1が変化してから一定時間C3内は第2の制御系
の出力をB2=0とし、第1の制御系の出力であ
るF3たけで燃料流量調節弁8の開度を制御する。
そして一定時間C3経過後から、F3とB2の両方の
信号で燃料流量制御弁8の開度を調節するように
した。即ち従来の制御系と比べると次の点に特徴
がある。
The first control system receives F2 as an input and outputs F3, which is a function of F2, as shown in FIG. here
F3 can be considered to be a value obtained by adding proportional control of feedback to feedforward. Further, the second control system receives B1 as an input and outputs a feedback amount B2. And if the change amount DF1 of F1 per unit time is less than a certain value C2,
Within a certain period of time C3 after F1 changes, the output of the second control system is set to B2=0, and the opening degree of the fuel flow rate control valve 8 is controlled by F3, which is the output of the first control system.
After a certain period of time C3 has elapsed, the opening degree of the fuel flow control valve 8 is adjusted using both the F3 and B2 signals. That is, compared to conventional control systems, it has the following features.

(1) 負荷変化時(水量又は設定温度変化時)に第
1の制御系から、出力する信号が従来はフイー
ドフオワード値であつたが、本発明はフイード
フオワード値とフイードバツク(比例制御)値
とした。
(1) Conventionally, the signal output from the first control system when the load changes (when the water amount or set temperature changes) is a feedforward value, but the present invention uses a feedforward value and a feedback (proportional control) value.

(2) 第2の制御系の入力が従来は単純にΔT=Ts
−Toであつたが、本発明はこれに水量の項を
加え(2)式とした。
(2) Conventionally, the input of the second control system was simply ΔT=Ts
-To, but in the present invention, a term for the amount of water is added to this to form equation (2).

(3) 負荷変化時、従来の制御方法では負荷変化直
後から、第2の制御系の出力と第1の制御系の
出力で燃料流量調節弁8を駆動していたが、本
発明では負荷変化時一定時間内は第2の制御系
の出力をOとした。
(3) When the load changes, in the conventional control method, the fuel flow control valve 8 is driven by the output of the second control system and the output of the first control system immediately after the load change. The output of the second control system was set to O during a certain period of time.

〔作用〕[Effect]

本発明による制御方法での出湯温度特性を第2
図に示す。条件は第5図と同様とする。まず設定
温度を42℃→50℃に変化すると一定時間第2の制
御系の出力B2=0となるため、第1の制御系の
出力F3で燃料流量調節弁8の開度が設定される。
ところでF3は第1図中のようにF2に比例した値
として求められるが、F2=F1+C1×B1である。
設定温度変化時F1はある値へ変化しその後一定
値を保つが、B1は出湯温度Toと設定温度Tsとの
差が大きいうちは大きく、出湯温度Toが設定温
度Tsに近づくに従つて漸減する。即ちF3による
燃料流量調節弁8の動きは、第2図の如く負荷変
化時に開度大となり次第に開度小となる。そのた
め設定温度変化時の出湯温度の立上りの傾きが大
きくなり、素早く設定温度に近づこうとする。次
に一定時間経過後は、第1の制御系の出力F3に
第2の制御系の出力B2も加わり、更にB2は(2)式
で求められるB1に基づいた値であるため、適正
なフイードバツク量で燃料流量制御弁8の開度を
制御できるので、第5図のようなオーバーシユー
トもなく出湯温度の安定時間も短くできる。
The hot water temperature characteristics in the control method according to the present invention are
As shown in the figure. The conditions are the same as in FIG. First, when the set temperature is changed from 42° C. to 50° C., the output B2 of the second control system becomes 0 for a certain period of time, so the opening degree of the fuel flow control valve 8 is set by the output F3 of the first control system.
By the way, F3 is determined as a value proportional to F2 as shown in FIG. 1, and F2=F1+C1×B1.
When the set temperature changes, F1 changes to a certain value and then remains constant, but B1 is large while the difference between the hot water outlet temperature To and the set temperature Ts is large, and gradually decreases as the hot water outlet temperature To approaches the set temperature Ts. . That is, the movement of the fuel flow rate control valve 8 due to F3 increases in opening degree when the load changes, and gradually decreases in opening degree, as shown in FIG. Therefore, the slope of the rising temperature of the hot water when the set temperature changes becomes large, and the temperature tends to quickly approach the set temperature. Next, after a certain period of time has elapsed, the output B2 of the second control system is added to the output F3 of the first control system, and since B2 is a value based on B1 determined by equation (2), appropriate feedback can be achieved. Since the opening degree of the fuel flow rate control valve 8 can be controlled by the amount, there is no overshoot as shown in FIG. 5, and the stabilization time of the outlet temperature can be shortened.

〔発明の効果〕〔Effect of the invention〕

本発明により、設定温度変化時及び水量変化時
でも出湯温度のオーバーシユート、アンダーシユ
ートがなく、また安定の早い出湯温度特性が達成
でき、使用者の望む水量、温度の湯がすぐに得ら
れるため、使い勝手を向上させることができる。
According to the present invention, there is no overshoot or undershoot in the hot water output temperature even when the set temperature changes or the water amount changes, and a stable hot water temperature characteristic can be achieved, so that the user can immediately obtain hot water in the amount and temperature desired by the user. Therefore, usability can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明になる出湯温度制御方法を示す
図、第2図は本発明になる出湯温度制御方法での
出湯特性の1例を示す図、第3図はフイードフオ
ワード制御とフイードバツク制御をもつ給湯機の
作動原理図、第4図は従来のフイードフオワード
制御とフイードバツク制御の方法を示す図、第5
図は第4図の制御方法による出湯特性の1例を示
す図である。 符号の説明、1……水通路、2……水量検出
器、3……入水温度検出器、4……熱交換器、5
……出湯温度検出器、6……燃料通路、7……電
磁弁、8……燃料流量調節弁、9……バーナ、1
0……温度設定器、11……制御回路。
FIG. 1 is a diagram showing a hot water outlet temperature control method according to the present invention, FIG. 2 is a diagram showing an example of hot water outlet characteristics in the hot water outlet temperature control method according to the present invention, and FIG. 3 is a diagram showing feed forward control and feedback. Fig. 4 is a diagram showing the operating principle of a water heater with a control system, and Fig. 4 is a diagram showing conventional feedforward control and feedback control methods.
The figure is a diagram showing an example of hot water discharge characteristics according to the control method shown in FIG. 4. Explanation of symbols, 1...Water passage, 2...Water amount detector, 3...Water inlet temperature detector, 4...Heat exchanger, 5
... Hot water temperature detector, 6 ... Fuel passage, 7 ... Solenoid valve, 8 ... Fuel flow rate control valve, 9 ... Burner, 1
0...Temperature setting device, 11...Control circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 熱交換器を通過する水通路には、水量検出器
と入水温検出器と出湯温度検出器を備え、バーナ
に至る燃料通路には燃料量調節弁を備え、また出
湯温度を設定するための温度設定器及び制御回路
を具備した給湯機において、温度設定器で設定し
た設定温度と、入水温度検知器で検出した入水温
度との差に水量検知器で検出した水量を乗算した
値F1と、設定温度と、出湯感度検知器で検出し
た出湯温度との差に水量を乗算した値B1にある
定数C1を乗算した値C1×B1を求め、それらの和
の値F2=F1+C1×B1を入力としてそれに比例し
た値F3を出力する第1の制御系と、B1の値を積
分した値B2出力する第2の制御系をもち、F1の
単位時間当りの変化量がある値より大きい場合
は、F1の変化開始から一定時間B2=OとしてF3
の信号だけで燃焼流量調節弁の開度を制御し、一
定時間経過後はF3とB2の両方の信号で燃料流量
調節弁の開度を制御することを特徴とした給湯機
の制御方法。
1 The water passage passing through the heat exchanger is equipped with a water quantity detector, an inlet water temperature detector, and an outlet water temperature detector, and the fuel passage leading to the burner is equipped with a fuel quantity control valve, and a valve for setting the outlet water temperature. In a water heater equipped with a temperature setting device and a control circuit, a value F1 is obtained by multiplying the difference between the set temperature set by the temperature setting device and the incoming water temperature detected by the incoming water temperature detector by the amount of water detected by the water amount detector, Calculate the value C1 x B1 by multiplying the value B1, which is the difference between the set temperature and the hot water temperature detected by the hot water tap sensitivity detector by the water volume, by a certain constant C1, and use the sum value F2 = F1 + C1 x B1 as input. It has a first control system that outputs a value F3 proportional to that, and a second control system that outputs a value B2 that is an integral of the value of B1.If the amount of change in F1 per unit time is larger than a certain value, F1 F3 as B2=O for a certain period of time from the start of change of
A water heater control method characterized in that the opening degree of the combustion flow rate control valve is controlled using only the signal F3 and the opening degree of the fuel flow rate control valve after a certain period of time has elapsed, using both F3 and B2 signals.
JP9112585A 1985-04-30 1985-04-30 Control of hot-water supplier Granted JPS61250446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9112585A JPS61250446A (en) 1985-04-30 1985-04-30 Control of hot-water supplier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9112585A JPS61250446A (en) 1985-04-30 1985-04-30 Control of hot-water supplier

Publications (2)

Publication Number Publication Date
JPS61250446A JPS61250446A (en) 1986-11-07
JPH0450498B2 true JPH0450498B2 (en) 1992-08-14

Family

ID=14017803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9112585A Granted JPS61250446A (en) 1985-04-30 1985-04-30 Control of hot-water supplier

Country Status (1)

Country Link
JP (1) JPS61250446A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01118067A (en) * 1987-10-30 1989-05-10 Rinnai Corp Hot water supplying device
JPH05133602A (en) * 1991-11-13 1993-05-28 Harman Co Ltd Combustion controller

Also Published As

Publication number Publication date
JPS61250446A (en) 1986-11-07

Similar Documents

Publication Publication Date Title
JPH0450498B2 (en)
JPS6157529B2 (en)
JPS61250447A (en) Control of hot-water supplier
JPH0343542B2 (en)
JPS6144111Y2 (en)
JPH0158412B2 (en)
JPS58158444A (en) Controller for heating liquid
JPH059704B2 (en)
JPH03186150A (en) Hot water supply control device
JPS60232425A (en) Combustion control unit
JP2513092B2 (en) Bypass mixing control method
JPS58224246A (en) Heating controller
JP2584196B2 (en) Hot water supply control device
JPH0123070Y2 (en)
JP3033415B2 (en) Hot water supply control device
JP3103674B2 (en) Hot water supply temperature control device
JPS63311039A (en) Hot water feeding control apparatus
JPH058330B2 (en)
JPS6235575B2 (en)
JPS63105357A (en) Temperature control of hot water supplier
JPH0622857U (en) Water heater
JPS6222382B2 (en)
JPH0711361B2 (en) Water heater controller
JPS63311041A (en) Hot water feeding control apparatus
JP2850582B2 (en) Hot water outlet temperature control method