JP3033415B2 - Hot water supply control device - Google Patents

Hot water supply control device

Info

Publication number
JP3033415B2
JP3033415B2 JP5332903A JP33290393A JP3033415B2 JP 3033415 B2 JP3033415 B2 JP 3033415B2 JP 5332903 A JP5332903 A JP 5332903A JP 33290393 A JP33290393 A JP 33290393A JP 3033415 B2 JP3033415 B2 JP 3033415B2
Authority
JP
Japan
Prior art keywords
temperature
heating
ratio
hot water
control means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5332903A
Other languages
Japanese (ja)
Other versions
JPH07190483A (en
Inventor
啓次郎 国本
行夫 長岡
文孝 菊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP5332903A priority Critical patent/JP3033415B2/en
Publication of JPH07190483A publication Critical patent/JPH07190483A/en
Application granted granted Critical
Publication of JP3033415B2 publication Critical patent/JP3033415B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Control Of Temperature (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、熱交換器を迂回するバ
イパス路を備え、熱交換器からの湯とバイパス路からの
水を混合して出湯する瞬間式給湯機の給湯制御装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot water supply control device for an instantaneous water heater having a bypass which bypasses a heat exchanger and mixing hot water from the heat exchanger and water from the bypass to supply hot water. It is.

【0002】[0002]

【従来の技術】従来のこの種の給湯制御装置は、図8
(例えば特開平4−126951号公報)に示すよう
に、熱交換器1を備えた加熱路2と、熱交換器1を迂回
するバイパス路3と、加熱路1とバイパス路3との流量
比率を調節する分流調節弁4と、加熱路2の上流に設け
た給水温度検知器5と、熱交換器1の下流の加熱路2に
設けた加熱温度検知器6と、加熱路2に設けた流量検知
器7と、加熱路2とバイパス路3との合流点の下流に設
けた混合温度検知器8と、出湯温度設定器9と、熱交換
器1を加熱するバーナ10と、バーナ10へのガス供給
量を制御するガス制御弁11により成り、給湯中は出湯
温度設定器9と混合温度検知器8の信号の偏差に応じて
ガス制御弁11を駆動し混合温度を設定温度に制御す
る。一方、給水温度検知器5と加熱温度検知器6からの
信号から、加熱路2におけるドレン発生防止温度(例え
ば60℃)となる分流調節弁4の開度を演算し設定駆動
する。給湯が停止すると、加熱温度検知器6と出湯温度
設定器9の信号を入力して温度の経時変化に応ずる湯水
混合率を補正演算し、短時間で所望の出湯安定温度に達
するような分流調節弁4の開度を設定駆動する。
2. Description of the Related Art A conventional hot water supply control device of this type is shown in FIG.
As shown in, for example, JP-A-4-126951, a heating path 2 provided with a heat exchanger 1, a bypass path 3 bypassing the heat exchanger 1, and a flow ratio between the heating path 1 and the bypass path 3 , A feedwater temperature detector 5 provided upstream of the heating path 2, a heating temperature detector 6 provided in the heating path 2 downstream of the heat exchanger 1, and a heating temperature detector 6 provided in the heating path 2. To a flow rate detector 7, a mixing temperature detector 8 provided downstream of the junction of the heating path 2 and the bypass path 3, a tapping temperature setting device 9, a burner 10 for heating the heat exchanger 1, and a burner 10. During the hot water supply, the gas control valve 11 is driven according to the deviation of the signals from the tapping temperature setting device 9 and the mixing temperature detector 8 to control the mixing temperature to the set temperature. . On the other hand, based on the signals from the feedwater temperature detector 5 and the heating temperature detector 6, the opening degree of the flow dividing control valve 4 at which the drain generation preventing temperature (for example, 60 ° C.) in the heating path 2 is calculated and driven. When the hot water supply is stopped, the signals of the heating temperature detector 6 and the tapping temperature setting unit 9 are input to correct the hot water mixing ratio corresponding to the temporal change of the temperature, and the flow is adjusted so that the desired tapping stable temperature is reached in a short time. The opening of the valve 4 is set and driven.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の給湯制御装置の構成では、給湯中に分流調整弁4の
開度を加熱路2におけるドレン発生防止温度となる開度
に固定する、いわゆるフィードフォワード制御を行い、
混合温度を設定温度に制御するのを応答速度の遅いガス
制御弁11のフィードバック制御により行っているた
め、再出湯時の後沸きや前冷えなどの急激な加熱路2の
温度変化に対応しきれず、混合温度にも比例的に後沸き
や前冷えの影響が出てしまっていた。
However, in the configuration of the above-described conventional hot water supply control device, during the hot water supply, the degree of opening of the branch flow control valve 4 is fixed to the degree of opening at which the drain generation preventing temperature in the heating path 2 is prevented, that is, a so-called feeder. Perform forward control,
Since the mixing temperature is controlled to the set temperature by the feedback control of the gas control valve 11 having a low response speed, it is not possible to cope with a rapid temperature change of the heating path 2 such as a post-boil or a pre-cooling at the time of re-hot water. In addition, the effects of after-boiling and pre-cooling were also proportional to the mixing temperature.

【0004】また、再出湯時の分流調整弁4の開度は出
湯温度設定器9と加熱温度検知器6の検知温度変化によ
り設定されているが、分流比率は(設定温度−給水温
度)/(加熱温度−給水温度)により決定されるため、
設定温度と加熱温度の変化だけでは決まらない。すなわ
ち、給水温度の異なる冬と夏では、同じ加熱温度の変化
でも分流調整弁4の補正量は異なってしまう。すなわ
ち、給水温度が変わると再出湯直後に設定した湯温が得
られなかった。
[0004] The degree of opening of the diversion adjusting valve 4 at the time of re-discharging is set by the detected temperature change of the tapping temperature setting device 9 and the heating temperature detector 6, but the diversion ratio is (set temperature-water supply temperature) / (Heating temperature-feed water temperature)
It cannot be determined just by changing the set temperature and heating temperature. In other words, in winter and summer, when the supply water temperature is different, the correction amount of the shunt adjusting valve 4 is different even with the same change in the heating temperature. That is, if the supply water temperature changes, the hot water temperature set immediately after the re-water supply cannot be obtained.

【0005】そこで、本発明は上記課題を解決するもの
で、素早く安定した給湯を提供することを目的としてい
る。
The present invention has been made to solve the above-mentioned problems, and has as its object to provide a quick and stable hot water supply.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明の給湯制御装置は、以下の構成とした。
In order to achieve the above object, a hot water supply control device according to the present invention has the following configuration.

【0007】(1)熱交換器の出湯側に接続された加熱
路と、前記熱交換器を迂回するバイパス路と、前記加熱
路と前記バイパス路との流量比率を可変する比率調整弁
と、前記加熱路への給水温度を検知する水温検知手段
と、前記加熱路の熱交換器下流の加熱温度を検知する加
熱検知手段と、前記加熱路と前記バイパス路との合流点
下流の混合温度を検知する出湯検知手段と、設定温度を
任意に定める温度設定手段と、前記熱交換器への水量を
検知する水量検知手段と、前記水量を検知した状態にお
ける前記給水温度を記憶する記憶手段と、前記給水温度
と前記加熱温度と前記設定温度とに応じて前記比率調整
弁の開度を設定する第一のフィードフォワード制御手段
と、前記記憶手段の記憶値と前記加熱温度と前記設定温
度とに応じて前記比率調整弁の開度を設定する第二のフ
ィードフォワード制御手段と、前記設定温度と前記混合
温度との偏差を小さくするよう前記比率調整弁の開度を
設定するフィードバック制御手段と、前記水量を検知し
た場合に所定時間前記第二のフィードフォワード制御手
段とフィードバック制御手段の設定値を加算して前記比
率調整弁を制御駆動し、前記所定時間後前記第一のフィ
ードフォワード制御手段とフィードバック制御手段の設
定値を加算して前記比率調整弁を制御駆動する比率制御
器とを備えたものである。
(1) A heating path connected to the tapping side of the heat exchanger, a bypass path bypassing the heat exchanger, a ratio adjusting valve for varying a flow rate ratio between the heating path and the bypass path, Water temperature detection means for detecting a temperature of water supplied to the heating path, heating detection means for detecting a heating temperature of the heating path downstream of a heat exchanger, and a junction between the heating path and the bypass path
Hot water detection means for detecting the downstream mixing temperature, temperature setting means for arbitrarily setting a set temperature , and a water amount to the heat exchanger.
Means for detecting the amount of water to be detected;
Storage means for storing the supply water temperature, first feedforward control means for setting an opening of the ratio adjusting valve according to the supply water temperature, the heating temperature, and the set temperature, and storage of the storage means. Value, the heating temperature, and the set temperature
The second valve for setting the opening of the ratio adjusting valve according to the
Feedforward control means, the set temperature and the mixing
Opening of the ratio adjustment valve to reduce the deviation from the temperature
Feedback control means for setting and detecting the water amount
The second feedforward control means for a predetermined time if
The ratio and the set value of the feedback control means are added to obtain the ratio.
Control drive of the rate adjusting valve, and after the predetermined time , setting of the first feedforward control means and the feedback control means.
A ratio controller for controlling and driving the ratio adjusting valve by adding a constant value .

【0008】[0008]

【作用】本発明は上記構成によって、次のように作用す
る。
The present invention operates as follows by the above-mentioned structure.

【0009】(1)フィードフォワード制御手段により
給水温度Tcと加熱温度Thと設定温度Tsとに応じて
比率調整弁の開度を設定する。例えば次式により加熱路
の所要の流量比率Vffを求め、Vffに基づいて開度
を設定する。
(1) The opening of the ratio adjusting valve is set by the feedforward control means in accordance with the feed water temperature Tc, the heating temperature Th, and the set temperature Ts. For example, the required flow rate Vff of the heating path is obtained by the following equation, and the opening is set based on Vff.

【0010】 Vff=(Ts−Tc)/(Th−Tc) そして、フィードフォワード制御手段の設定開度に基づ
いて比率調整弁を駆動させる。すなわち、加熱路とバイ
パス路との湯水が混合した場合に混合温度が設定温度と
なる開度を設定できる。
Vff = (Ts−Tc) / (Th−Tc) Then, the ratio adjustment valve is driven based on the set opening of the feedforward control means. That is, the opening degree at which the mixing temperature reaches the set temperature when the hot water and the hot water in the bypass path are mixed can be set.

【0011】(2)フィードフォワード制御手段は
(1)と同様に開度を設定する。フィードバック制御手
段は設定温度Tsと混合温度Tmとの偏差を小さくする
よう比率調整弁の開度を設定する。例えば公知のPID
動作により偏差をゼロに近づけるための、開度を求め
る。
(2) The feedforward control means sets the opening in the same manner as (1). The feedback control means sets the opening of the ratio adjustment valve so as to reduce the deviation between the set temperature Ts and the mixing temperature Tm. For example, a known PID
An opening is determined to bring the deviation closer to zero by the operation.

【0012】そして、給湯が開始されるとフィードフォ
ワード制御手段の設定開度とフィードバック制御手段の
設定開度との加算値に基づいて比率調整弁を駆動させ
る。すなわち、フィードフォワード制御手段により基本
開度を決定し、検知手段や比率調整弁の応答遅れや誤差
による混合温度と設定温度のズレをフィードバック制御
手段により修正する。
When the hot water supply is started, the ratio adjusting valve is driven based on the sum of the set opening of the feedforward control means and the set opening of the feedback control means. That is, the basic opening is determined by the feedforward control means, and a deviation between the mixing temperature and the set temperature due to a response delay or an error of the detection means or the ratio adjusting valve is corrected by the feedback control means.

【0013】(3)記憶手段より給湯中の給水温度を記
憶し、(1)におけるフィードフォワード制御手段の給
水温度に記憶値を用いて同様に比率調整弁の開度を設定
する。
(3) The water supply temperature during hot water supply is stored from the storage means, and the opening degree of the ratio adjustment valve is similarly set using the stored value for the water supply temperature of the feedforward control means in (1).

【0014】(4)給湯が開始された直後から所定時間
は(5)の記憶値を用いた第二のフィードフォワード制
御手段とフィードバック制御手段の設定開度の加算値に
より比例調整弁を制御し、所定時間後は水温検知手段の
給水温度を用いた第一のフィードフォワード制御手段と
フィードバック制御手段の設定開度の加算値により比率
調整弁を制御する。
(4) For a predetermined time immediately after the start of hot water supply, the proportional adjustment valve is controlled by an addition value of the set opening of the second feedforward control means and the feedback control means using the stored value of (5). After a predetermined time, the ratio regulating valve is controlled by the sum of the set opening degrees of the first feedforward control means and the feedback control means using the water supply temperature of the water temperature detection means.

【0015】[0015]

【実施例】以下、本発明の第1の実施例を図面に基づい
て説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to the drawings.

【0016】図1において、熱交換器12を介して入水
路13と加熱路14が直列に接続され、通水は入水路1
3、熱交換器12、加熱路14の順に流れる。熱交換器
12を迂回するバイパス路15は、入水路13の分岐点
16と加熱路14先端の合流点17に接続され、合流点
17で加熱路14とバイパス路15の流れが合流し、出
湯路18へと流れる。19はバイパス路15の中間に設
けた比率調整弁で、公知のソレノイド駆動の水量比例弁
よりなり、開閉信号によりバイパス路15の通路の開度
を調節し加熱路14とバイパス路15の流量比率を可変
する。20は合流点17の下流に設けた出湯検知手段
で、サーミスタ等のセンサによりなり、加熱路14とバ
イパス路15との混合温度を検知する。21は加熱路1
4に設けた加熱検知手段で熱交換器12の出口温度を検
知する。22は分岐点16の上流に設けた水温検知手段
で、給水温度を検知する。23は入水路13に設けた水
量検知手段で、熱交換器12への水量を検知する。24
は出湯路18から出湯される出湯温度を使用者が任意に
設定する温度設定手段、25はフィードフォワード制御
手段で、温度設定手段24と加熱検知手段21と水温検
知手段22の信号を入力し混合温度が設定温度と一致す
る流量比率を演算する。26はフィードバック制御手段
で、出湯検知手段20と水温検知手段22との信号を入
力し両信号の偏差がゼロになるように比率調整弁の操作
量を演算する。27は比率調整弁19を駆動させて開度
制御を行う比率制御器で、水量検知手段23の信号を入
力して水量を検知した場合はフィードフォワード制御手
段25とフィードバック制御手段26の演算値を加算
し、加算結果に応じて比率調整弁19の開度を決定す
る。また、水量検知手段23の信号を入力して水量がな
いことを検知した場合はフィードフォワード制御手段2
5のみの信号により比率調整弁19の開度を決定する。
28は燃焼制御器で、加熱検知手段21の信号と温度設
定手段24の信号の信号に一定値を付加した加熱設定温
度(例えば設定温度+20℃)との出力偏差に応じて偏
差がゼロになるようバーナ29へのガス供給量をガス比
例弁30の開度により制御する。なお、フィードフォワ
ード制御手段25、フィードバック制御手段26、比率
制御器27、燃焼制御器28は、マイクロコンピュータ
及び信号入出力インターフェースなど公知の電子部品と
ソフトウエアにより構成される。
In FIG. 1, an inlet 13 and a heating path 14 are connected in series via a heat exchanger 12, and water is passed through the inlet 1
3, flows in the order of the heat exchanger 12 and the heating path 14. A bypass 15 bypassing the heat exchanger 12 is connected to a junction 16 of the water inlet 13 and a junction 17 at the tip of the heating path 14. At the junction 17, the flows of the heating path 14 and the bypass 15 are merged, and the hot water is discharged. It flows to road 18. Reference numeral 19 denotes a ratio adjusting valve provided in the middle of the bypass passage 15, which is a known solenoid-driven water amount proportional valve, adjusts the opening degree of the bypass passage 15 by an open / close signal, and controls the flow ratio between the heating passage 14 and the bypass passage 15. Variable. Reference numeral 20 denotes a tapping water detection means provided downstream of the junction 17 and is constituted by a sensor such as a thermistor, and detects a mixing temperature between the heating path 14 and the bypass path 15. 21 is heating path 1
The temperature of the outlet of the heat exchanger 12 is detected by the heating detection means provided in 4. Reference numeral 22 denotes a water temperature detecting means provided upstream of the branch point 16 for detecting a water supply temperature. Reference numeral 23 denotes a water amount detecting means provided in the water inlet 13 to detect the amount of water to the heat exchanger 12. 24
Is a temperature setting means for the user to arbitrarily set the tapping temperature of the tapping water from the tapping path 18, and 25 is a feedforward control means, which inputs and mixes signals from the temperature setting means 24, the heating detection means 21 and the water temperature detection means 22. The flow rate ratio at which the temperature matches the set temperature is calculated. Reference numeral 26 denotes a feedback control unit, which inputs signals from the hot water detection unit 20 and the water temperature detection unit 22 and calculates an operation amount of the ratio adjustment valve so that a deviation between the two signals becomes zero. Reference numeral 27 denotes a ratio controller for controlling the opening degree by driving the ratio adjusting valve 19, and when a signal from the water amount detecting means 23 is inputted and the water amount is detected, the calculated value of the feed forward control means 25 and the feedback control means 26 is calculated. The addition is performed, and the opening degree of the ratio adjustment valve 19 is determined according to the addition result. When the signal of the water amount detecting means 23 is inputted and it is detected that there is no water amount, the feedforward control means 2
The degree of opening of the ratio adjusting valve 19 is determined based on the signal of only 5.
Numeral 28 denotes a combustion controller, the deviation of which becomes zero in accordance with the output deviation between a heating set temperature (for example, set temperature + 20 ° C.) obtained by adding a fixed value to the signal of the heating detection means 21 and the signal of the temperature setting means 24. The amount of gas supplied to the burner 29 is controlled by the opening of the gas proportional valve 30. The feedforward control unit 25, the feedback control unit 26, the ratio controller 27, and the combustion controller 28 are configured by known electronic components such as a microcomputer and a signal input / output interface and software.

【0017】次に制御動作について図2に基づいて説明
する。図は比率制御器27および燃焼制御器28による
比率調整弁19とガス比例弁30の制御流れを示す。3
1は水量検知手段23の検出する水量により給湯の有無
を判定する。ここで水量があり給湯されていると判定さ
れれば、32の燃焼制御を行う。燃焼制御は、燃焼制御
器28により行い、温度設定手段24により設定される
設定温度に一定値を付加した加熱設定温度(例えば設定
温度が40℃で、これに一定値20℃を付加した60
℃)を求め、加熱検知手段21の検出温度と加熱設定温
度との偏差がゼロになるよう公知のPID動作により燃
焼量を制御する。次に33でフィードフォワード制御手
段25による比率調整弁19の制御すべき流量比率Rf
fを演算する。34では、フィードバック制御手段26
により比率調整弁19の制御すべき流量比率操作量Rf
bを演算する。そして、35でRffとRfbを加算
し、この加算値に基づき36で比率制御器27による比
率調整弁19の弁開度制御を行う。弁開度制御はバイパ
ス路15の流路の開度を調整することにより加熱路14
との流量比率を変え混合温度を制御するもので、フィー
ドフォワードとフィードッバック制御によりバイパス路
15の流量比率を素早く安定に制御する。
Next, the control operation will be described with reference to FIG. The figure shows the control flow of the ratio adjusting valve 19 and the gas proportional valve 30 by the ratio controller 27 and the combustion controller 28. 3
1 determines the presence or absence of hot water supply based on the amount of water detected by the water amount detection means 23. Here, if it is determined that there is an amount of water and hot water is supplied, the combustion control of 32 is performed. Combustion control is performed by the combustion controller 28, and a heating set temperature obtained by adding a fixed value to the set temperature set by the temperature setting means 24 (for example, a set temperature of 40 ° C. and a fixed value of 20 ° C.
° C), and the amount of combustion is controlled by a known PID operation so that the deviation between the temperature detected by the heating detection means 21 and the set heating temperature becomes zero. Next, at 33, the flow rate ratio Rf of the ratio adjusting valve 19 to be controlled by the feedforward control means 25.
Calculate f. 34, the feedback control means 26
The flow rate operation amount Rf to be controlled by the ratio adjustment valve 19
Calculate b. Then, at 35, Rff and Rfb are added, and at 36, the ratio controller 27 controls the valve opening of the ratio adjusting valve 19 based on the added value. The valve opening degree control is performed by adjusting the opening degree of the flow path of the bypass path 15 to thereby control the heating path 14.
The flow rate of the bypass 15 is controlled by changing the flow rate ratio of the bypass path 15 and the feed-forward and feedback control.

【0018】フィードフォワード制御手段25での演算
方法を説明すると、混合温度Tmは、次の関係から加熱
温度Thと給水温度Twが決まればバイパス路15の流
量比率Rに反比例的に決まる。すなわち、バイパス路1
5の開度を増せば、混合温度Tmは下がり、逆に開度を
減ずれば混合温度Tmは上がる。
The calculation method of the feedforward control means 25 will be described. The mixing temperature Tm is determined in inverse proportion to the flow ratio R of the bypass passage 15 if the heating temperature Th and the feedwater temperature Tw are determined from the following relationship. That is, the bypass path 1
If the opening degree is increased, the mixing temperature Tm decreases. Conversely, if the opening degree is decreased, the mixing temperature Tm increases.

【0019】 Tm=Tw+(1−R)・(Th−Tw) この特性より、Tmを設定温度Tsetとしてフィード
フォワードによる流量比率Rffを次の関係から求め
る。
Tm = Tw + (1−R) · (Th−Tw) From this characteristic, a flow rate ratio Rff by feed forward is obtained from the following relationship, where Tm is a set temperature Tset.

【0020】 Rff=1−(Tset−Tw)/(Th−Tw) フィードバック制御手段26での演算方法は、設定温度
Tsetと出湯検知手段20の検知温度Tmとの偏差が
ゼロになるように公知のPID動作を用いて流量比率の
操作量Rfbを次式のように求める。
Rff = 1− (Tset−Tw) / (Th−Tw) The calculation method of the feedback control means 26 is known so that the deviation between the set temperature Tset and the detection temperature Tm of the hot water detection means 20 becomes zero. The operation amount Rfb of the flow rate ratio is obtained as in the following equation using the PID operation described above.

【0021】 Rfb=Kp・{e+1/Ti・Σ(e・Δt)+Td・Δe/Δt} ただし、Kp:ゲイン(流量比/℃) e :温度偏差=Tm−Tset(℃) Ti:積分時間(秒) Σ(e・Δt):偏差eの積分値(℃・秒) Δt:出湯検知手段20の温度検出時間間隔(秒) Td:微分時間(秒) Δe/Δt:偏差eの微分値(℃/秒) 一方、31で水量がなく給湯が停止されていると判定さ
れれば、37で燃料を遮断し燃焼停止させる。次に38
で33と同様にフィードフォワード制御手段25による
比率調整弁19の制御すべき流量比率Rffを演算す
る。
Rfb = Kp · {e + 1 / Ti · {(e · Δt) + Td · Δe / Δt} where Kp: gain (flow rate ratio / ° C.) e: temperature deviation = Tm−Tset (° C.) Ti: integration time (Second) Σ (e · Δt): integral value of deviation e (° C./second) Δt: temperature detection time interval of tapping detecting means 20 (second) Td: differential time (second) Δe / Δt: differential value of deviation e (° C./sec) On the other hand, if it is determined at 31 that there is no water amount and hot water supply has been stopped, then at 37 the fuel is shut off and combustion is stopped. Then 38
In step 33, the flow rate ratio Rff to be controlled by the feedforward control means 25 for the ratio adjusting valve 19 is calculated.

【0022】36の給湯停止時の弁開度制御は38で演
算した流量比率Rffに基づき比率調整弁19の開度を
決定し駆動制御する。流量比率と比率調整弁19の開度
は一定の相関があり、比率制御器27は予め求めたこの
相関関係を用いて、制御すべき流量比率となる開度に応
じた制御信号を比率調整弁19に出力する。
In the valve opening control at the time of stopping hot water supply in 36, the opening of the ratio adjusting valve 19 is determined based on the flow rate ratio Rff calculated in 38, and drive control is performed. The flow rate ratio and the opening degree of the ratio adjusting valve 19 have a fixed correlation, and the ratio controller 27 uses this correlation obtained in advance to generate a control signal corresponding to the opening degree that becomes the flow rate ratio to be controlled. 19 is output.

【0023】以上のように給湯中は、フィードフォワー
ド制御手段25とフィードバック制御手段26の制御信
号を加算した値に基づいて比例調整弁19の制御を行う
ため、フィードフォワード制御の安定でかつ応答の速い
制御と、フィードバック制御の正確な制御がマッチし
て、再出湯直後の加熱路14の温度急変時においても混
合温度を設定温度近傍に維持できる。
As described above, during hot water supply, the proportional adjustment valve 19 is controlled based on the value obtained by adding the control signals of the feedforward control means 25 and the feedback control means 26, so that the feedforward control is stable and responsive. The quick control and the accurate control of the feedback control match, and the mixing temperature can be maintained near the set temperature even when the temperature of the heating path 14 changes suddenly immediately after the hot water is again supplied.

【0024】また、給湯停止時はフィードフォワード制
御手段25の制御信号に基づいて比例調整弁19の制御
を行ない、後沸きや冷却による加熱温度の変化や、季節
の変化による給水温度の変化にも対応して常に混合温度
が設定温度となる弁開度で待機ができるため、給湯再開
時の混合温度と設定温度のズレを小さくする事ができ
る。
When the hot water supply is stopped, the proportional control valve 19 is controlled based on the control signal of the feedforward control means 25, and the change in the heating temperature due to the post-boiling or cooling, and the change in the water supply temperature due to the seasonal change. Correspondingly, it is possible to always wait at the valve opening at which the mixing temperature becomes the set temperature, so that the difference between the mixing temperature and the set temperature when restarting hot water supply can be reduced.

【0025】さらに、加熱温度は設定温度に一定値を付
加した加熱設定温度になるよう燃焼量制御されるため、
熱交換器12での結露も防止できる。
Further, the combustion amount is controlled so that the heating temperature becomes a heating set temperature obtained by adding a fixed value to the set temperature.
Dew condensation in the heat exchanger 12 can also be prevented.

【0026】次に本発明の第2の実施例を図3を用いて
説明する。図3において前記実施例と相違する点は、4
0で水量があり給湯されていると判定した場合、42で
フィードバック制御手段25のみにより流量比率を演算
し、43で比率制御器27による比率調整弁19の弁開
度制御を行うようにしたもので、制御構成が簡単にな
り、また、たとえ加熱検知手段21や水温検知手段22
が故障しても出湯検知手段20の検出値があれば所要の
設定温度が得られる。
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 3 is different from the above-described embodiment in that
When it is determined that there is a water amount and the hot water is supplied at 0, the flow rate ratio is calculated only by the feedback control means 25 at 42, and the valve opening degree control of the ratio adjusting valve 19 by the ratio controller 27 is performed at 43. Thus, the control configuration is simplified, and even if the heating detecting means 21 or the water temperature detecting means 22
Even if a failure occurs, a required set temperature can be obtained if there is a detection value of the hot water detection means 20.

【0027】次に本発明の第3の実施例を図4を用いて
説明する。図4において前記第1の実施例と相違する点
は、53において給湯開始後の経過時間が所定値(例え
ば10秒)を経過したかを判定し、所定値を超えていれ
ば第1の実施例と同様に52で演算したフィードフォワ
ードの流量比率操作量Rffと54で演算したフィード
バックの流量比率操作量Rfbを55で加算し、この加
算値に基づき56で比率調整弁19の弁開度制御を行う
ことと、一方53において経過時間が所定値に達してい
ないと判定すると、53で演算したフィードフォワード
の流量比率操作量Rffのみの値に基づき56で比率調
整弁19の弁開度制御を行うことにある。
Next, a third embodiment of the present invention will be described with reference to FIG. 4 is different from the first embodiment in that it is determined at 53 whether or not the elapsed time after the start of hot water supply has exceeded a predetermined value (for example, 10 seconds). In the same manner as in the example, the feedforward flow ratio operation amount Rff calculated in 52 and the feedback flow ratio operation amount Rfb calculated in 54 are added by 55, and based on the added value, the valve opening degree control of the ratio adjustment valve 19 is performed by 56. On the other hand, if it is determined in 53 that the elapsed time has not reached the predetermined value, the valve opening degree control of the ratio adjustment valve 19 is performed in 56 based on only the value of the feedforward flow rate operation amount Rff calculated in 53. To do.

【0028】上記構成により、給湯開始から所定時間ま
ではフィードフォワードの演算条件である水温検知手段
22の検出値と、加熱検知手段21の検出値と、温度設
定手段の信号により比率調整弁19の開度が決定され
る。この水温検知手段22と加熱検知手段21は混合点
17の上流に位置するため混合温度を事前に予測する事
ができる。すなわち、給湯開始直後の加熱温度の急激な
変化に対しても比率調整弁19を遅れなく制御する事が
できる。そして、加熱温度が安定する所定時間後は、フ
ィードバック制御を加えることでフィードフォワード制
御で発生する混合温度と設定温度のズレを小さくする事
ができる。
With the above configuration, from the start of hot water supply to the predetermined time, feed ratio calculation conditions of the water temperature detection means 22 and the detection value of the heat detection means 21 and the signal of the temperature setting means are used to control the ratio adjusting valve 19. The opening is determined. Since the water temperature detecting means 22 and the heating detecting means 21 are located upstream of the mixing point 17, the mixing temperature can be predicted in advance. That is, the ratio adjustment valve 19 can be controlled without delay even for a sudden change in the heating temperature immediately after the start of hot water supply. Then, after a predetermined time at which the heating temperature is stabilized, the difference between the mixing temperature and the set temperature generated by the feedforward control can be reduced by adding the feedback control.

【0029】次に本発明の第4の実施例を図5を用いて
説明する。図5において前記第1の実施例と相違する点
は、60の記憶手段を設けたこと、フィードフォワード
制御手段を第一のフィードフォワード制御手段61と第
二のフィードフォワード制御手段62とに並列化したこ
と、そして比率制御器63が、給湯停止と判定した場合
に第二のフィードフォワード制御手段62の設定開度に
比例調整弁19を制御し、給湯有りと判定した場合は第
一のフィードフォワード制御手段51とフィードバック
制御手段26の設定開度の加算値により比率調整弁19
を制御するようにしたことにある。記憶手段60は水量
検知手段23が水量を検知した状態の時、水温検知手段
22の検知する給水温度を半導体メモリー等の記憶媒体
(図示せず)に逐次記憶する。第一のフィードフォワー
ド制御手段61は第1の実施例におけるフィードフォワ
ード制御手段25と同様に給水温度と加熱温度と設定温
度とに応じて流量比率を演算する。第二のフィードフォ
ワード制御手段62は第一のフィードフォワード制御手
段61の給水温度を記憶手段60の最新の記憶値と置き
換え、演算する。すなわち、流量比率Rff2は次式の
ようになる。
Next, a fourth embodiment of the present invention will be described with reference to FIG. The difference from the first embodiment in FIG. 5 is that 60 storage means are provided, and the feedforward control means is parallelized to the first feedforward control means 61 and the second feedforward control means 62. When the ratio controller 63 determines that the hot water supply is stopped, the proportional control valve 19 is controlled to the set opening degree of the second feedforward control means 62, and when it is determined that the hot water is supplied, the first feedforward control is performed. The ratio adjusting valve 19 is determined by the sum of the set opening degrees of the control means 51 and the feedback control means 26.
Is to be controlled. The storage means 60 sequentially stores the water supply temperature detected by the water temperature detection means 22 in a storage medium (not shown) such as a semiconductor memory when the water amount detection means 23 detects the water amount. The first feedforward control unit 61 calculates the flow rate ratio according to the feedwater temperature, the heating temperature, and the set temperature, similarly to the feedforward control unit 25 in the first embodiment. The second feedforward control means 62 calculates the water supply temperature of the first feedforward control means 61 by replacing it with the latest stored value of the storage means 60. That is, the flow rate ratio Rff2 is expressed by the following equation.

【0030】 Rff2=1−(Tset−Mtw)/(Th−Mtw) ただし、Mtw:記憶手段60の最新記憶値(℃)上記
構成の制御動作について図6に基づいて説明する。
Rff2 = 1− (Tset−Mtw) / (Th−Mtw) where Mtw is the latest stored value (° C.) of the storage unit 60. The control operation of the above configuration will be described with reference to FIG.

【0031】図6において前記第1の実施例と相違する
点は、66で給湯中に給水温度を記憶し、67で第一の
フィードフォワード制御手段51により給水温度と加熱
温度と設定温度とに応じて流量比率を演算することと、
72で記憶手段50から記憶値を読みだし、73で第二
のフィードフォワード制御手段52により記憶値と加熱
温度と設定温度とに応じて流量比率を演算することであ
る。したがって、70では給湯中は前記第1の実施例と
同様にフィードフォワードとフィードッバック制御によ
りバイパス路15の流量比率を素早く安定に制御する。
一方、給湯停止中は第二のフィードフォワード制御手段
52により演算した流量比率に基づき比率調整弁19の
開度を決定し駆動制御する。
FIG. 6 differs from the first embodiment in that the supply water temperature is stored during hot water supply at 66 and the supply water temperature, the heating temperature and the set temperature are stored at 67 by the first feedforward control means 51. Calculating the flow ratio accordingly;
At 72, the stored value is read from the storage means 50, and at 73, the flow rate ratio is calculated by the second feedforward control means 52 according to the stored value, the heating temperature, and the set temperature. Therefore, at 70, the flow ratio of the bypass passage 15 is quickly and stably controlled by feedforward and feedback control during hot water supply as in the first embodiment.
On the other hand, while the hot water supply is stopped, the opening of the ratio adjustment valve 19 is determined based on the flow rate ratio calculated by the second feedforward control means 52 and drive control is performed.

【0032】水温検知手段22は、給水中は流水の熱伝
達が支配的となり、周囲温度等の熱的外乱の影響が無視
できるレベルとなるため、正確に給水温度を検知でき
る。しかし、給水が停止すると、管路を介した熱交換器
12からの対流や伝導、周囲からの熱伝達などの熱的外
乱の影響を受け、正確な検知が難しなる。
The water temperature detecting means 22 can accurately detect the temperature of the supplied water because the heat transfer of the flowing water becomes dominant during the supply of water and the influence of thermal disturbance such as the ambient temperature becomes negligible. However, when the supply of water is stopped, accurate detection becomes difficult due to the influence of thermal disturbances such as convection and conduction from the heat exchanger 12 through the pipeline and heat transfer from the surroundings.

【0033】前記構成により、給湯停止時のフィードフ
ォワードの演算は、給水温度を給水中の給水温度の記憶
値に置き換えられるため、給湯停止時に起こる上記の水
温検知手段22の熱的外乱の影響が演算値に現れない。
したがって、給湯中も給湯停止後も正確な比率調整弁1
9の制御ができる。
According to the above configuration, the feed-forward operation at the time of stopping hot water supply is performed by replacing the feed water temperature with the stored value of the feed water temperature during the feed water. Does not appear in the calculated value.
Therefore, the accurate ratio adjusting valve 1 can be used both during hot water supply and after hot water supply is stopped.
9 can be controlled.

【0034】次に本発明の第5の実施例を図7を用いて
説明する。図7において前記第4の実施例と相違する点
は、77において給湯開始後の経過時間が所定値(例え
ば10秒)を経過したかを判定し、所定値を超えていれ
ば第4の実施例と同様に78で給水温度を記憶し、79
で第一のフィードフォワード制御手段61が流量比率操
作量Rff1を演算し、続いて81でフィードバック制
御手段26が流量比率操作量Rfbを演算する。そし
て、82でこれらRff1とRfbを加算し、この加算
値に基づき83で比率調整弁19の弁開度制御を行うこ
とと、一方77において経過時間が所定値に達していな
いと判定すると、80で第二のフィードフォワード制御
手段62が流量比率操作量Rff2を演算し、83では
このRff2と前記Rfbの加算値に基づき比率調整弁
19の弁開度制御を行うことにある。
Next, a fifth embodiment of the present invention will be described with reference to FIG. FIG. 7 differs from the fourth embodiment in that it is determined at 77 whether or not the elapsed time after the start of hot water supply has exceeded a predetermined value (for example, 10 seconds). As in the example, the water supply temperature is stored at 78 and 79
Then, the first feedforward control means 61 calculates the flow rate operation amount Rff1. Subsequently, at 81, the feedback control means 26 calculates the flow rate operation amount Rfb. Then, at 82, Rff1 and Rfb are added, and based on the added value, the valve opening control of the ratio adjustment valve 19 is performed at 83. On the other hand, when it is determined at 77 that the elapsed time has not reached the predetermined value, 80 The second feedforward control means 62 calculates the flow rate ratio manipulated variable Rff2, and the step 83 performs valve opening control of the ratio regulating valve 19 based on the sum of the Rff2 and the Rfb.

【0035】給湯停止中の構成及び動作は第4の実施例
と同様に第二のフィードフォワード制御手段62の演算
する流量比率操作量Rff2のみに基づき83で比率調
整弁19の弁開度制御を行う。
As in the fourth embodiment, the configuration and operation during the stop of hot water supply are based on only the flow rate ratio operation amount Rff2 calculated by the second feedforward control means 62, and the valve opening degree control of the ratio adjustment valve 19 is performed at 83 based on 83. Do.

【0036】上記構成により、給湯開始から所定時間ま
では第二のフィードフォワード制御手段62の演算値と
フィードバック制御手段26の演算値の加算値により比
率調整弁19の開度が決定される。すなわち、給湯開始
時のフィードフォワードの演算の際に給水温度の記憶値
を用いた。これは、第4の実施例で述べた給湯停止時に
おける水温検知手段22の熱的外乱が給湯開始直後はま
だ残っているため、正確な給水温度検知ができるまでの
時間は記憶値を用いるようにしたもので、これにより、
フィードフォワードによる演算の精度が向上し、混合温
度と設定温度のズレをさらに小さくする事ができる。
With the above configuration, the opening of the ratio adjusting valve 19 is determined by the sum of the calculated value of the second feedforward control means 62 and the calculated value of the feedback control means 26 from the start of hot water supply to a predetermined time. That is, the stored value of the feed water temperature was used in the feed forward calculation at the start of hot water supply. This is because the thermal disturbance of the water temperature detection means 22 at the time of stopping hot water supply described in the fourth embodiment still remains immediately after the start of hot water supply, so that the stored value is used for the time until accurate water supply temperature detection can be performed. In this way,
The accuracy of the operation by the feed forward is improved, and the difference between the mixing temperature and the set temperature can be further reduced.

【0037】上記実施例では比率調整弁にソレノイド式
の比例制御弁を用いたが、モータ駆動の水量弁を用いて
も同様の効果が得られる。
In the above embodiment, a solenoid type proportional control valve is used as the ratio adjusting valve, but the same effect can be obtained by using a motor driven water flow valve.

【0038】[0038]

【発明の効果】以上の説明から明らかのように本発明の
給湯制御装置によれば次の効果が得られる。
As apparent from the above description, the following effects can be obtained according to the hot water supply control device of the present invention.

【0039】(1)給水温度、加熱温度、設定温度に基
づくフィードフォワード制御手段の制御信号で比例調整
弁の制御を行ない、後沸きや冷却による加熱温度の変化
や、季節の変化による給水温度の変化にも対応して常に
混合温度が設定温度となる弁開度に制御できるため、安
定でかつ混合温度と設定温度のズレを小さくする事がで
きる。
(1) The proportional control valve is controlled by the control signal of the feedforward control means based on the feedwater temperature, the heating temperature, and the set temperature, and the change of the heating temperature due to post-boiling or cooling, and the change of the feedwater temperature due to seasonal changes. Since the valve opening can always be controlled so that the mixing temperature becomes the set temperature in response to the change, it is possible to be stable and to reduce the difference between the mixing temperature and the set temperature.

【0040】(2)フィードフォワード制御手段とフィ
ードバック制御手段の制御信号を加算した値に基づいて
比例調整弁の制御を行うため、フィードフォワード制御
の安定でかつ応答の速い制御と、フィードバック制御の
正確な制御がマッチして、再出湯直後の加熱路の温度急
変時においても混合温度を設定温度近傍に維持できる。
(2) Since the proportional control valve is controlled based on the value obtained by adding the control signals of the feedforward control means and the feedback control means, stable and fast response control of the feedforward control and accurate control of the feedback control are performed. Thus, the mixing temperature can be maintained near the set temperature even when the temperature of the heating path changes suddenly immediately after the hot water is re-discharged.

【0041】(3)水量に応じてフィードバック制御手
段の設定値とフィードフォワード制御手段の設定値を切
り換えて比率調整弁を制御駆動する構成とし、水量があ
る場合に混合温度と設定温度の偏差により比率調整弁の
操作量が決まるフィードバック制御手段を選択すること
ができるため、たとえ給湯中に加熱検知手段や水温検知
手段が故障しても出湯検知手段の検出値があれば所要の
設定温度が得られ、安全である。
(3) The ratio control valve is controlled and driven by switching between the set value of the feedback control means and the set value of the feedforward control means in accordance with the amount of water. Since the feedback control means that determines the operation amount of the ratio adjustment valve can be selected, even if the heating detection means or the water temperature detection means fails during hot water supply, the required set temperature can be obtained if there is a detection value of the hot water detection means. Is safe and secure.

【0042】(4)水量を検知した状態におけるの給水
温度を記憶する記憶手段を設け、フィードフォワード制
御手段が、前記記憶手段の記憶値と加熱温度と設定温度
とに応じて比率調整弁の開度を設定するよう構成してい
るので、給湯停止時に起こる水温検知手段の熱的外乱の
影響が現れない。したがって、給湯中も給湯停止後も正
確な比率調整弁の制御ができる。
(4) There is provided storage means for storing the supply water temperature in a state where the amount of water is detected, and the feedforward control means opens the ratio adjustment valve according to the storage value of the storage means, the heating temperature, and the set temperature. Since the temperature is set, there is no influence of thermal disturbance of the water temperature detecting means occurring when the hot water supply is stopped. Therefore, accurate control of the ratio adjusting valve can be performed both during hot water supply and after hot water supply is stopped.

【0043】(5)水量を検知した状態におけるの給水
温度を記憶する記憶手段を設け、給水温度と加熱温度と
設定温度とに応じて比率調整弁の開度を設定する第一の
フィードフォワード制御手段と、前記記憶手段と加熱温
度と設定温度とに応じて比率調整弁の開度を設定する第
二のフィードフォワード制御手段と、水量を検知した場
合に所定時間前記第二のフィードフォワード制御手段と
フィードバック制御手段の設定値を加算して比率調整弁
を制御駆動し、その後前記第一のフィードフォワード制
御手段とフィードバック制御手段の設定値を加算して比
率調整弁を制御駆動する比率制御器とを有しているた
め、給湯開始直後に残る水温検知手段の熱的外乱の影響
をうけず、フィードフォワードによる演算の精度が向上
する。したがって、給湯開始直後から混合温度を設定温
度に制御する事ができる。
(5) First feedforward control for providing a storage means for storing the supply water temperature in a state where the amount of water is detected, and setting the opening of the ratio adjustment valve according to the supply water temperature, the heating temperature, and the set temperature. Means, a second feedforward control means for setting the degree of opening of the ratio adjustment valve according to the storage means and the heating temperature and the set temperature, and the second feedforward control means for a predetermined time when the amount of water is detected A ratio controller for controlling and driving the ratio adjusting valve by adding the set value of the feedback control means and thereafter controlling and driving the ratio adjusting valve by adding the set values of the first feedforward control means and the feedback control means. Therefore, the accuracy of the feedforward calculation is improved without being affected by thermal disturbance of the water temperature detecting means remaining immediately after the start of hot water supply. Therefore, the mixing temperature can be controlled to the set temperature immediately after the start of hot water supply.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例の給湯制御装置の構成図FIG. 1 is a configuration diagram of a hot water supply control device according to a first embodiment of the present invention.

【図2】同装置の制御流れ図FIG. 2 is a control flowchart of the apparatus.

【図3】本発明の第2の実施例の給湯制御装置の制御流
れ図
FIG. 3 is a control flowchart of a hot water supply control device according to a second embodiment of the present invention.

【図4】本発明の第3の実施例の給湯制御装置の制御流
れ図
FIG. 4 is a control flowchart of a hot water supply control device according to a third embodiment of the present invention.

【図5】本発明の第4の実施例の給湯制御装置の構成図FIG. 5 is a configuration diagram of a hot water supply control device according to a fourth embodiment of the present invention.

【図6】同装置の制御流れ図FIG. 6 is a control flowchart of the apparatus.

【図7】本発明の第5の実施例の給湯制御装置の制御流
れ図
FIG. 7 is a control flowchart of a hot water supply control apparatus according to a fifth embodiment of the present invention.

【図8】従来の給湯制御装置の構成図FIG. 8 is a configuration diagram of a conventional hot water supply control device.

【符号の説明】[Explanation of symbols]

12 熱交換器 14 加熱路 15 バイパス路 19 比率調整弁 20 出湯検知手段 21 加熱検知手段 22 水温検知手段 23 水量検知手段 24 温度設定手段 25 フィードフォワード制御手段 26 フィードバック制御手段 27 比率制御器 DESCRIPTION OF SYMBOLS 12 Heat exchanger 14 Heating path 15 Bypass path 19 Ratio adjusting valve 20 Hot water detecting means 21 Heat detecting means 22 Water temperature detecting means 23 Water quantity detecting means 24 Temperature setting means 25 Feed forward controlling means 26 Feedback controlling means 27 Ratio controlling apparatus

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−10592(JP,A) 特開 平1−159547(JP,A) 特開 平4−151453(JP,A) (58)調査した分野(Int.Cl.7,DB名) F24H 1/10 302 ────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-5-10592 (JP, A) JP-A 1-159547 (JP, A) JP-A 4-151453 (JP, A) (58) Field (Int.Cl. 7 , DB name) F24H 1/10 302

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】熱交換器の出湯側に接続された加熱路と、
前記熱交換器を迂回するバイパス路と、前記加熱路と前
記バイパス路との流量比率を可変する比率調整弁と、前
記加熱路への給水温度を検知する水温検知手段と、前記
加熱路の熱交換器下流の加熱温度を検知する加熱検知手
段と、前記加熱路と前記バイパス路との合流点下流の混
合温度を検知する出湯検知手段と、設定温度を任意に定
める温度設定手段と、前記熱交換器への水量を検知する
水量検知手段と、前記水量を検知した状態における前記
給水温度を記憶する記憶手段と、前記給水温度と前記加
熱温度と前記設定温度とに応じて前記比率調整弁の開度
を設定する第一のフィードフォワード制御手段と、前記
記憶手段の記憶値と前記加熱温度と前記設定温度とに応
じて前記比率調整弁の開度を設定する第二のフィードフ
ォワード制御手段と、前記設定温度と前記混合温度との
偏差を小さくするよう前記比率調整弁の開度を設定する
フィードバック制御手段と、前記水量を検知した場合に
所定時間前記第二のフィードフォワード制御手段とフィ
ードバック制御手段の設定値を加算して前記比率調整弁
を制御駆動し、前記所定時間後前記第一のフィードフォ
ワード制御手段とフィードバック制御手段の設定値を加
算して前記比率調整弁を制御駆動する比率制御器とを備
えた給湯制御装置。
A heating path connected to a tapping side of the heat exchanger;
A bypass which bypasses the heat exchanger, a ratio adjusting valve which varies a flow rate ratio between the heating path and the bypass, a water temperature detecting means for detecting a temperature of water supplied to the heating path, and a heat path for the heating path. Heating detection means for detecting a heating temperature downstream of the exchanger; hot water detection means for detecting a mixing temperature downstream of a junction of the heating path and the bypass path; temperature setting means for arbitrarily setting a set temperature; Water amount detection means for detecting the water amount to the exchanger, storage means for storing the water supply temperature in a state where the water amount is detected, and the ratio adjustment valve according to the water supply temperature, the heating temperature and the set temperature First feedforward control means for setting an opening degree, and second feedforward control means for setting an opening degree of the ratio adjusting valve according to a stored value of the storage means, the heating temperature and the set temperature. Feedback control means for setting the opening of the ratio adjustment valve so as to reduce the deviation between the set temperature and the mixing temperature; and the second feedforward control means and feedback control for a predetermined time when the water amount is detected. Ratio control for controlling and driving the ratio adjusting valve by adding the set value of the means, and adding and setting the set values of the first feedforward control means and the feedback control means after the predetermined time. Hot water supply control device equipped with a water heater.
JP5332903A 1993-12-27 1993-12-27 Hot water supply control device Expired - Lifetime JP3033415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5332903A JP3033415B2 (en) 1993-12-27 1993-12-27 Hot water supply control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5332903A JP3033415B2 (en) 1993-12-27 1993-12-27 Hot water supply control device

Publications (2)

Publication Number Publication Date
JPH07190483A JPH07190483A (en) 1995-07-28
JP3033415B2 true JP3033415B2 (en) 2000-04-17

Family

ID=18260094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5332903A Expired - Lifetime JP3033415B2 (en) 1993-12-27 1993-12-27 Hot water supply control device

Country Status (1)

Country Link
JP (1) JP3033415B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5438401B2 (en) * 2009-07-08 2014-03-12 株式会社日本サーモエナー Hybrid hot water supply system and operation control method thereof

Also Published As

Publication number Publication date
JPH07190483A (en) 1995-07-28

Similar Documents

Publication Publication Date Title
US5564625A (en) Method for controlling motor vehicle interior temperature
JP3033415B2 (en) Hot water supply control device
JPH0377421B2 (en)
JPH06257852A (en) Hot-water supplier
JPS634096B2 (en)
JP2560578B2 (en) Bypass mixing type water heater
JPH01203844A (en) Hot-water apparatus
JP2001248911A (en) Method for controlling hot water supply temperature and hot water supply apparatus
JP2979936B2 (en) Hot water supply control device
JP3161130B2 (en) Water heater
JPS6326825B2 (en)
JP2513092B2 (en) Bypass mixing control method
JP3088207B2 (en) Hot water mixing control device
JP2655385B2 (en) Water heater
JP3164712B2 (en) Circulating water heater
JP2584196B2 (en) Hot water supply control device
JP2552586B2 (en) Inlet water temperature detection method and hot water supply control method in water heater
JP2850582B2 (en) Hot water outlet temperature control method
JP3271830B2 (en) Water heater and method for setting initial water flow of water control valve
JPH03186150A (en) Hot water supply control device
JPS5974425A (en) Hot water supply control device
JPH0450498B2 (en)
JP2624032B2 (en) Post purge control method
JPS5944542A (en) Apparatus for controlling supply of hot water
JPH07225052A (en) Hot water supply control device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 9

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation of abandonment
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350