JPH0343542B2 - - Google Patents

Info

Publication number
JPH0343542B2
JPH0343542B2 JP61293376A JP29337686A JPH0343542B2 JP H0343542 B2 JPH0343542 B2 JP H0343542B2 JP 61293376 A JP61293376 A JP 61293376A JP 29337686 A JP29337686 A JP 29337686A JP H0343542 B2 JPH0343542 B2 JP H0343542B2
Authority
JP
Japan
Prior art keywords
temperature
amount
hot water
water
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61293376A
Other languages
Japanese (ja)
Other versions
JPS63148050A (en
Inventor
Takeshi Sakata
Kokichi Yamada
Yutaka Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hanshin Electric Co Ltd
Original Assignee
Hanshin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hanshin Electric Co Ltd filed Critical Hanshin Electric Co Ltd
Priority to JP61293376A priority Critical patent/JPS63148050A/en
Publication of JPS63148050A publication Critical patent/JPS63148050A/en
Publication of JPH0343542B2 publication Critical patent/JPH0343542B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/34Signal processing; Details thereof with feedforward processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/18Measuring temperature feedwater temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/19Measuring temperature outlet temperature water heat-exchanger

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明はガス燃焼給湯機等において、当該給湯
機の能力を合理的に利用しながら燃焼を図る燃焼
制御方法に関し、特に要求燃焼量の演算方法にお
ける改良に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a combustion control method for achieving combustion in a gas-fired water heater, etc. while rationally utilizing the capacity of the water heater, and in particular to a method for calculating the required combustion amount. Concerning improvements in methods.

<従来の技術> 昨今、ガス等を燃料とし、第2図に示されるよ
うな概念構成で表される給湯機が盛んに開発され
る傾向にある。
<Prior Art> Recently, water heaters that use gas or the like as fuel and have a conceptual configuration as shown in FIG. 2 have been actively developed.

使用者が蛇口2を開くと、入力流路6から流れ
込んだ水はガスバーナ4により加熱される熱交換
器3にて加温され、湯となつて出湯流路7から当
該蛇口2を介し出力される。
When the user opens the faucet 2, the water that flows in from the input flow path 6 is heated by the heat exchanger 3 heated by the gas burner 4, and is turned into hot water and output from the hot water flow path 7 through the faucet 2. Ru.

これに際し、入力流路6の側では水量センサ8
にて水量(給水量または出湯量)Swを、また給
水温センサ9により給水温Tcをそれぞれ検出し、
それら情報Sw、Tcを主制御回路としてのマイク
ロコンピユータ5に送り込む。ただし水量Sw
出湯流路7の側で検出することもできる。
At this time, on the input flow path 6 side, the water amount sensor 8
The water amount (water supply amount or hot water output amount) S w is detected by the water supply temperature sensor 9, and the water supply temperature T c is detected by the water supply temperature sensor 9.
The information S w and T c are sent to the microcomputer 5 as a main control circuit. However, the water amount S w can also be detected on the hot water outlet flow path 7 side.

一方、熱交換器3から蛇口2に至る出力流路7
の途中にあつては、出湯温センサ10により出湯
温Tpが検出され、これもマイクロコンピユータ
5に帰還される。
On the other hand, an output flow path 7 leading from the heat exchanger 3 to the faucet 2
During the process, the outlet hot water temperature T p is detected by the outlet hot water temperature sensor 10, and this is also fed back to the microcomputer 5.

こうした各種センサ情報に加え、マイクロコン
ピユータ5に与えられるもう一つの情報は、使用
者が好みの温度を指定する設定温情報Tsである。
In addition to these various sensor information, another piece of information given to the microcomputer 5 is set temperature information Ts for specifying the user's preferred temperature.

このような装置構成において、マイクロコンピ
ユータ5はそのときどきで最適な燃焼が行なわれ
るよう、空気量制御信号Saにより空気量調節器
11を、またガス量制御信号Sgによりガス比例
弁12を制御すべく、選択した制御方式に応じ、
当該そのときどきに必要な要求燃焼量Fを算出す
る。
In such a device configuration, the microcomputer 5 controls the air amount regulator 11 using the air amount control signal Sa and the gas proportional valve 12 using the gas amount control signal Sg so that optimal combustion can be carried out at any given time. , depending on the selected control method,
The required combustion amount F required at that time is calculated.

しかるに従来、このための制御方式としてもつ
とも一般的なのは、特開昭55−75156号公報や特
開昭57−33749号公報等に開示のように、フイー
ドフオワード制御(FF制御)と比例制御(P制
御)を併用する方式であり、ためにこの場合、要
求燃焼量Fの算出式は、フイードフオワード量を
“FF”とし、比例制御量を“FP”とすると、次式
のようになつていた。
However, conventionally, the most common control methods for this purpose are feedforward control (FF control) and proportional control, as disclosed in Japanese Patent Application Laid-open No. 55-75156 and Japanese Patent Application Laid-open No. 57-33749. Therefore, in this case, the calculation formula for the required combustion amount F is as follows, assuming that the feed forward amount is “F F ” and the proportional control amount is “F P ”. It was becoming like that.

F=FF+FP=(設定温Ts−給水温Tc)×水量Sw +(設定温Ts−出湯温Tp)×水量Sw …… ここにおいて特に、フイードフオワード量FF
は給湯機の能力を越えることなく、かつまた当該
能力を最大限に発揮させるため、蛇口2の開度と
は独立に、水量バルブ制御信号Siを介して水量バ
ルブ1を制御するにも用いられる。
F = F F + F P = (Set temperature T s - Water supply temperature T c ) x Water amount S w + (Set temperature T s - Output water temperature T p ) x Water amount S w ... Here, in particular, the feed forward amount F F
is also used to control the water flow valve 1 via the water flow valve control signal S i , independently of the opening degree of the faucet 2, in order not to exceed the capacity of the water heater and to maximize the capacity. It will be done.

これに対し、いわゆる比例、積分、微分制御
(PID制御)を取入れた方式も当然に考えられ、
その場合、要求燃焼量Fの演算式は、新たに積分
制御量を“FI”、品分制御量を“FD”とすると次
のようになる。
On the other hand, it is natural to consider a method that incorporates so-called proportional, integral, and differential control (PID control).
In that case, the calculation formula for the required combustion amount F is as follows, where the integral control amount is newly set as " FI " and the component control amount is "F D ".

F=FP+FI+FD=(設定温Ts−出湯温Tp)×水量Sw×KP +Σ(設定温Ts−出湯温Tp)×KI+(前回の出湯温−
今回の出湯温)×KD…… これに対し本出願人等の研究により、この種給
湯機の燃焼制御に採用すべき制御形式として最も
望ましいのではと考えられる方式があり、これは
フイードフオワード(FF)制御と比例(P)、積
分制御(I)を併用する方式である。
F=F P +F I +F D = (Set temperature T s - Output hot water temperature T p ) x Water amount S w x K P + Σ (Set temperature T s - Output hot water temperature T p ) x K I + (Previous hot water temperature -
Current hot water temperature ) This is a method that uses forward (FF) control, proportional (P), and integral control (I) together.

したがつてこのFF+PI制御においては、上記
要求燃焼量Fの演算式は下式のように定義され
る。
Therefore, in this FF+PI control, the calculation formula for the above-mentioned required combustion amount F is defined as the following formula.

F=FF+FP+FI=(設定温Ts−給湯温Tc)×水量Sw +(設定温Ts−出湯温Tp)×水量Sw×Kp+Σ(設定温
Ts−出湯温Tp)×KI…… <発明が解決しようとする問題点> 静特性からだけするならば、上記各演算式〜
に即したいずれの制御方式を採用しても、共に
安定な出湯温Tpを得ることができる。
F=F F +F P +F I = (Set temperature T s - Hot water supply temperature T c ) x Water amount S w + (Set temperature T s - Output hot water temperature T p ) x Water amount S w x K p + Σ (Set temperature
T s − Hot water temperature T p ) × K I ... <Problems to be solved by the invention> If we look only from the static characteristics, each of the above calculation formulas ~
Regardless of which control method is adopted, a stable outlet temperature T p can be obtained.

しかしまず、要求燃焼量の演算に上記、式
を用いる方式、つまりFF+P制御、PID制御は、
上記の演算式に従うFF+PI制御に比すと劣つ
た点がある。
However, first, the method that uses the above formula to calculate the required combustion amount, that is, FF + P control, PID control,
There are some disadvantages compared to FF+PI control according to the above calculation formula.

FF+P制御は残留偏差が大きく、出湯温Tp
設定温Tsに対してどうしてもズレやすいという
欠点があるし、PID制御はその演算系が複雑にな
りがちで演算処理り時間が掛かり、この種の給湯
機用としての実効的な応答性に劣り、原理からす
る程には優れないという欠点がある。
FF+P control has the disadvantage that the residual deviation is large and the outlet temperature T p tends to deviate from the set temperature T s . PID control tends to have a complicated calculation system and takes a long time to process. The disadvantage is that the effective response for use in water heaters is poor, and it is not as good as it should be based on the principle.

これに対し、上記式に従つて要求燃焼量Fを
求めるFF+PI制御は、上記のような欠点が程度
において最も少ない。
On the other hand, the FF+PI control which calculates the required combustion amount F according to the above formula has the least amount of the above-mentioned drawbacks.

しかしそれでも当該動特性、すなわち過渡特性
においては不満が残り、出湯温Tpが設定温Ts
至るまでの収束時間は未だ十分に短いとは決して
言えず、特に給湯機の最大能力をオーバした時や
最大能力近傍の燃焼から最小燃焼へ移行したた際
等において収束時間は相当長目になつていた。
However, the dynamic characteristics, that is, the transient characteristics, remained unsatisfactory, and the convergence time for the hot water temperature T p to reach the set temperature T s was still not sufficiently short, especially when the maximum capacity of the water heater was exceeded. The convergence time was considerably long when changing from combustion near maximum capacity to minimum combustion.

本発明はこうした従来例の持つ欠点を全て解消
ないし緩和すべく、従来例の中でも比較的優れて
いると思われる上記式に従うFF+PI制御にさ
らに改良を加えんとするものである。
The present invention aims to further improve the FF+PI control according to the above formula, which is considered to be relatively superior among the conventional examples, in order to eliminate or alleviate all of the drawbacks of the conventional examples.

<問題点を解決するための手段> 本発明は上記目的を達成するため、要求燃焼量
の算出に工夫を凝らし、次のような構成の給湯機
用水量バルブ制御方法を提供する。
<Means for Solving the Problems> In order to achieve the above object, the present invention devises a method for calculating the required combustion amount and provides a method for controlling a water flow valve for a water heater having the following configuration.

給水温、水量、出湯温を各検出するセンサを有
し、それら情報と使用者により設定される設定温
情報とから、フイードフオワード制御と比例、積
分制御とに基づき、そのときどきで要求される要
求燃焼量を演算する給湯機における燃焼制御方法
であつて; 上記フイードフオワード量を (設定温−給水温)×(水量)×(設定温−出湯温)×
α …… にて定義し、もつて上記要求燃焼量を (設定温−給水温)×(水量)×(設定温−出湯温)×
α +(設定温−出湯温)×(水量)×KP+Σ(設定温−
出湯温)×KI…… により求めることを特徴とする給湯機における燃
焼制御方法。
It has a sensor that detects the water supply temperature, water flow rate, and hot water temperature, and based on these information and the set temperature information set by the user, it calculates the temperature required at any given time based on feed forward control, proportional control, and integral control. A combustion control method in a water heater that calculates the required combustion amount;
α is defined as ……, and the above required combustion amount is (set temperature – water supply temperature) × (water amount) × (set temperature – hot water temperature) ×
α + (Set temperature - hot water temperature) x (Water amount) x K P + Σ (Set temperature -
A combustion control method in a water heater characterized by determining the temperature of hot water discharged) x K I ...

<作用および効果> 上記本発明の構成によれば、顕かなように、先
に挙げた従来のFF+PI制御における要求燃焼量
演算式の中、フイードフオワード量FFを表す
第一項が改良され、上記式に示されるように、
当該従来のフイードフオワード量FFに対し、本
発明により求められるフイードフオワード量
FF′は FF′=FF(設定温−出湯温)×α
……′となつている。
<Operations and Effects> According to the above configuration of the present invention, it is obvious that the first term representing the feed forward amount F F in the required combustion amount calculation formula in the conventional FF + PI control mentioned above is improved. and as shown in the above formula,
The feed forward amount obtained by the present invention with respect to the conventional feed forward amount F F
F F ′ is F F ′ = F F (set temperature - hot water temperature) x α
...' is written.

したがつて、設定温が上がつたときは流量増大
により出湯温が下がつたときには、上記式また
は′式中、 (設定温−出湯温)×α …… なる補正積項の値は設定温と出湯温の差が大きく
なることから大きくなり、ために式で表される
要求燃焼量Fの値も過渡的に十分大きくなつて立
ち上がり特性が良くなり、同様に設定温が下がつ
た場合や流量減少により出湯温が上がつた際には
いち速く要求燃焼量Fが小さくなり、立ち下がり
特性も良好になる。
Therefore, when the set temperature rises and the outlet temperature decreases due to an increase in the flow rate, the value of the corrected product term in the above equation or '' formula, (set temperature - outlet temperature) x α...... is the set temperature. As the difference between the temperature and the outlet temperature increases, the value of the required combustion amount F expressed by the formula also becomes sufficiently large transiently, improving the start-up characteristics.Similarly, when the set temperature falls, When the temperature of the hot water rises due to a decrease in the flow rate, the required combustion amount F quickly decreases, and the falling characteristic also improves.

このように、本発明によつて要求燃焼量演算式
中、フイードフオワード量演算に (設定温−出湯温)×α …… なる補正積項が加味されたFF+PI制御は、従来
のFF+PI制御の特性をさらに改善する働きがあ
り、将来的に汎用されると思われるこの種給湯機
の制御方式として極めて望ましいものとなる。
In this way, the FF+PI control in which the correction product term (set temperature - outlet hot water temperature) x α... is added to the feed forward amount calculation in the required combustion amount calculation formula according to the present invention is different from the conventional FF+PI control. This has the effect of further improving the characteristics of water heaters, making it extremely desirable as a control method for this type of water heater, which is expected to be widely used in the future.

また、一般に第2図中に示されている水量バル
ブ1の制御にはフイードフオワード量を用いる
が、これに際しても本発明により上記補正積項
を加味されたフイードフオワード量FF′を採用す
れば、出湯温を上げる必要があるときにはいち速
く水量バルブを閉方向に動作させて速やかに出湯
量を絞つた後、出湯温に上がるにつれて逆に開方
向に動作させてから停止させ、全く同様に出湯温
を下げる必要のあるときには水量バルブを素早く
開方向に動作させて速やかに出湯量を増した後、
閉方向に動作させてから停止させることができ、
したがつて出湯温Tpの制御のみならず、出湯温
の制御も良好になし得、これによつてまた、出湯
温の立ち上がり、立ち下がり特性をさらに幇助
し、良好にすることができる。
Further, generally, the feed forward amount is used to control the water flow valve 1 shown in FIG. 2, but in this case also, according to the present invention, the feed forward amount F If this is adopted, when it is necessary to raise the hot water temperature, the water flow valve is quickly operated in the closing direction to quickly reduce the amount of hot water, and then as the hot water temperature rises, it is reversely operated in the open direction, and then stopped. In exactly the same way, when it is necessary to lower the hot water temperature, the water flow valve is quickly moved in the open direction to quickly increase the hot water flow, and then
It can be moved in the closing direction and then stopped.
Therefore, it is possible to control not only the tapped water temperature T p but also the tapped hot water temperature, thereby further aiding and improving the rise and fall characteristics of the tapped hot water temperature.

なお、上記式中における選択定数項KP、KI
は、この種の自動制御系の常として、従来からも
設計的、実験的に設定されるものであつたが、こ
れと全く同様に、今般フイードフオワード量
FF′の演算項に新たに追加された補正積項中、
定数αもまた、実験的、設計的に適当値に設定し
得るものである。
Note that the selection constant terms K P and K I in the above formula
has traditionally been set in design and experimentally as usual in this type of automatic control system, but in exactly the same way, the amount of feed forward
Among the newly added correction product terms to the operational terms of F F ′,
The constant α can also be set to an appropriate value experimentally or by design.

<実施例> 第1図には本発明における既述の演算式に従
つて算出された要求燃焼量FによるFF+PI制御
の動作例が示されている。
<Example> FIG. 1 shows an example of the operation of FF+PI control using the required combustion amount F calculated according to the above-mentioned arithmetic expression in the present invention.

あらかじめ述べて置くと、第1図中の各過渡期
において、実線a,b,c,dで記された曲線は
本発明によつた場合を、仮想線e,f,gで記さ
れた曲線は式によりフイードフオワード量FF
を求める従来のFF+PI制御によつた場合を各示
している。
To state in advance, in each transition period in FIG. 1, the curves marked by solid lines a, b, c, and d correspond to the case according to the present invention, and the curves marked by virtual lines e, f, and g is the feed forward amount F F according to the formula
Each case is shown using conventional FF + PI control to find .

時刻T1で示されるように、出湯量(水量)Sw
が零の状態から第2図に示される蛇口2が開か
れ、ある流量で急に流れ始めたような場合、あら
かじめ設定されている設定温Tsに出湯温Tpを持
つて行くに際し、本発明の制御方式が採用された
ものでは、既述したフイードフオワード量FF′を
求める式の中、 (設定温−出湯温)×α …… なる補正積項の値が当該蛇口開放の当初、極めて
大きくなり、式にて求められる要求燃焼量Fの
値もこの項の影響で十分過渡的に大きくなるこ
とから、図中、実線aで示されるように、そのと
きの設定温Tsのいかんによつては速やかに給湯
機の最大能力程度にまでもなり得、これに伴つて
出湯温Tpも曲線bで示されるように、ややオー
バシユート気味になる程素早く立ち上がつた後、
短い収束時間で設定温Tsに収束するようになる。
As shown at time T 1 , the amount of hot water (water amount) S w
When the faucet 2 shown in Fig. 2 is opened from a state of zero and the water suddenly starts flowing at a certain flow rate , the main In the system in which the control method of the invention is adopted, in the formula for calculating the feed forward amount F Initially, the value of the required combustion amount F obtained by the formula also becomes sufficiently large transiently due to the influence of this term. Therefore, as shown by the solid line a in the figure, the set temperature T s at that time Depending on the situation, the water heater's maximum capacity can be reached quickly, and as a result, the hot water temperature Tp rises quickly enough to slightly overshoot, as shown by curve b.
The temperature converges to the set temperature T s in a short convergence time.

これに対し、本発明による補正積項を有さな
い従来方式では、仮想線eで示されるように、要
求燃焼量Fの過渡的な値もそれ程には大きくなり
得ず、したがつて仮想線の曲線fで示されるよう
に出湯温Tpの立ち上がりも悪く、また設定温Ts
への収束時間も長くなる。
On the other hand, in the conventional method that does not have the correction product term according to the present invention, the transient value of the required combustion amount F cannot become that large, as shown by the virtual line e, and therefore the virtual line As shown by the curve f, the rise of the outlet temperature T p is also poor, and the set temperature T s
The convergence time will also be longer.

さらに時刻T2以降に示されるように、水量Sw
には変化がないが、使用者により設定温Tsが変
更された場合、本発明によれば同様に、上記補正
積項の値が過渡的に大きくなる(設定温Tsと出
湯温Tpの差がこの時点T2で過渡的に大きくなる)
ことから、曲線a,bで示されるように、立ち上
がりが、急峻で収束時間の短い要求燃焼量Fの変
化と、これに伴う出湯温Tpの変化カーブが得ら
れるが、従来方式の場合には、曲線e,fで示さ
れるように、積分項の影響をもろに受けて立ち上
がりも鈍く、設定温への収束時間も長いものとな
る。
Furthermore, as shown after time T 2 , the water amount S w
However, if the set temperature T s is changed by the user, the value of the corrected product term increases transiently according to the present invention (the set temperature T s and the outlet temperature T p (the difference becomes transiently large at this point T 2 )
Therefore, as shown by curves a and b, curves of changes in the required combustion amount F with a steep rise and a short convergence time and the accompanying changes in the hot water temperature T p are obtained, but in the case of the conventional method, As shown by curves e and f, the temperature rises slowly due to the influence of the integral term and takes a long time to converge to the set temperature.

こうした特性傾向は負方向においても全く同様
で、例えば時刻T3で示されるように、使用者が
設定温Tsを急に低下させた場合、本発明の制御
方式によるとほぼ微分的な程、立ち下がりの鋭い
曲線aが得られ、ために出湯温Tpも素早く応答
して短い収束時間で設定温Tsにまで低下するが、
従来方式によつた場合、曲線e,fで示されるよ
うに、要求燃焼量Fの立ち下がりも鈍く、収束時
間も長くなるため、出湯温Tpが設定温Tsに低下
するまでの時間も長目になる。
These characteristic trends are exactly the same in the negative direction. For example, when the user suddenly lowers the set temperature T s as shown at time T 3 , according to the control method of the present invention, the A curve a with a sharp fall is obtained, so the outlet hot water temperature T p responds quickly and drops to the set temperature T s in a short convergence time.
When using the conventional method, as shown by curves e and f, the required combustion amount F falls slowly and the convergence time becomes long, so the time it takes for the outlet temperature T p to drop to the set temperature T s also increases. It will be long.

一方、時刻T4以降に示されるように、使用者
により蛇口2が細められ、水量Swが低下した場
合等には、同様に要求燃焼量Fは俊敏に応答して
低下演算され、かつ短い収束時間で設定温Ts
満足する要求燃焼量Fに収束するため、出湯温
Tpの方には温度レベル的にも時間的にも大きな
変化ないし変動は起こさないで済む。
On the other hand, as shown after time T 4 , when the user narrows the faucet 2 and the water volume S w decreases, the required combustion volume F is similarly calculated to decrease in response quickly and in a short time. In order to converge to the required combustion amount F that satisfies the set temperature T s in the convergence time, the outlet temperature
There is no need for large changes or fluctuations in temperature level or time at T p .

対して従来方式によつた場合には、仮想線の曲
線fで示されるように、出湯温Tpの一時的な温
度変化幅が大きくなり、使用者をして不快感を与
えることになりがちである。
On the other hand, when using the conventional method, as shown by the imaginary curve f, the range of temporary temperature change in the outlet hot water temperature T p increases, which tends to cause discomfort to the user. It is.

このように、本発明によれば、様々な過渡的な
変化に対し、全て敏捷に応答し得、あるいはまた
不快な温度変動を最小限に抑えることができる
が、これに加えて、本発明における演算式によ
り求められるフイードフオワード量FF′を水量バ
ルブの制御にも用いれば、出湯量特性も向上する
ことができ、これがまた出湯温特性に寄与すると
いう、比喩的に言うと望ましい“正帰還現象”を
期待することができる。
As described above, according to the present invention, it is possible to quickly respond to various transient changes, or to minimize unpleasant temperature fluctuations. If the feed forward amount F F ′ obtained by the calculation formula is also used to control the water flow valve, the hot water flow characteristics can be improved, which also contributes to the hot water temperature characteristics, which is figuratively desirable. We can expect a positive feedback phenomenon.

例えば水量バルブの制御方法には、()給湯
機の能力を中心に上下に所定の幅の所にしきい値
を定め、フイードフオワード量が下側しきい値を
下回つているときには水量バルブを開方向に動作
させ続け、逆に上側しきい値を上回つているとき
には閉方向に動作させ続ける一方、上下しきい値
間にフイードフオワード量が入つた場合には水量
バルブを停止させる“一定しきい値法”や、()
フイードフオワード量の増加方向と減少方向とで
上記上下のしきい値を異ならせた“ヒステリシス
付き一定しきい値法”、()下側しきい値と給湯
機能力との間では一定のデユーテイ比に従つて開
方向への動作指令と停止指令を交互に発し、上側
しきい値と給湯機能力の間では同じく一定のデユ
ーテイ比に従つて閉方向動作指令と停止指令とを
交互に発する“一定しきい値固定デユーテイ制御
法”等があり、さらに今般、別途出願するよう
に、新たに本出願人が開発した手法として、()
デユーテイ制御領域に入つた場合にはそのときど
きのフイードフオワード量と給湯機能力の絶対値
差に応じてデユーテイ比を可変にするという“一
定しきい値可変デユーテイ制御法”もある。
For example, a water flow valve control method involves setting a threshold at a predetermined width above and below the water heater's capacity, and when the feedforward amount is below the lower threshold, the water flow valve is activated. The water flow valve continues to operate in the open direction, and conversely continues to operate in the close direction when the water flow rate exceeds the upper threshold, and stops the water flow valve when the feed forward amount is between the upper and lower thresholds. “Constant threshold method” and ()
"Constant threshold method with hysteresis" in which the upper and lower thresholds are different depending on the direction of increase and decrease in the amount of feed forward; Operation commands in the opening direction and stop commands are issued alternately according to the duty ratio, and operation commands in the closing direction and stop commands are issued alternately according to the same constant duty ratio between the upper threshold value and the hot water supply function. There is a "constant threshold value fixed duty control method", etc., and as a new method newly developed by the applicant, as will be filed separately, ()
There is also a "constant threshold value variable duty control method" in which the duty ratio is made variable in accordance with the absolute value difference between the feed forward amount and the hot water supply function at that time when the duty control region is entered.

特に、最後に述べた本出願人開示になる“一定
しきい値可変デユーテイ制御法”は、常に給湯機
の能力に極めて近い位置に水量バルブの開度を付
けることができ、また実際上、各しきい値および
給湯機能力近傍での流量変動に伴うフイードフオ
ワード量の変動に対しては、水量バルブが実質的
には電気機械要素であつてその応答速度に制限の
あることを利用し、自動的に不感帯を作ることが
できるため、既述した従来の他の水量バルブ制御
方法では起こりがちであつたハンチングのおそれ
等も回避し得る点等で優れている。
In particular, the "constant threshold value variable duty control method" disclosed by the present applicant mentioned at the end can always set the opening of the water flow valve at a position extremely close to the capacity of the water heater, and in practice, each The fact that the water flow valve is essentially an electromechanical element and has a limited response speed can be used to deal with fluctuations in the amount of feed forward due to flow fluctuations near the threshold and hot water supply function. Since it is possible to automatically create a dead zone, this method is superior in that it can avoid the risk of hunting, which tends to occur with the other conventional water flow valve control methods mentioned above.

が、これらいずれの水量バルブ制御法によるに
しても、そのためのフイードフオワード量の演算
式として、本発明におけるフイードフオワード量
の演算式を用いると、その応答特性を向上する
ことができ、さらにその結果、出湯温特性も向上
することができる。
However, regardless of which of these water flow valve control methods is used, the response characteristics can be improved by using the feed forward amount calculation formula of the present invention as the feed forward amount calculation formula for that purpose. Furthermore, as a result, the hot water temperature characteristics can also be improved.

特に例えば、第1図中、先に説明した時刻T2
におけるように、設定温Tsの変化に伴い要求燃
焼量Fの演算式中における補正積項の値が過
渡的に大きくなると、対応するフイードフオワー
ド量FF′もこの瞬間、大きくなり、したがつて当
該フイードフオワード量FF′により水量バルブが
制御される場合には、第1図中、記号cで示され
るように僅かな期間、水量バルブは閉方向に動作
され、したがつてその分、記号dで示されるよう
に出湯量の低減を生み、ために出湯温Tpの増加
を早める一方、当該出湯温Tpの増加にしたがつ
ての望ましい範囲内の若干オーバシユートに伴つ
ては逆に開方向に動作した後、停止指令を受けて
安定流量に入るという動作をなし得る。
In particular, for example, in FIG.
As shown in , when the value of the correction product term in the calculation formula for the required combustion amount F increases transiently as the set temperature T s changes, the corresponding feed forward amount F F ′ also increases at this moment, Therefore, when the water flow valve is controlled by the feed forward amount F F ', the water flow valve is operated in the closing direction for a short period of time as shown by symbol c in FIG. Therefore, as shown by the symbol d, the amount of hot water discharged is reduced, and therefore the hot water temperature T p increases faster, but as the hot water temperature T p increases, there is a slight overshoot within the desired range. Conversely, after operating in the opening direction, it is possible to perform an operation of receiving a stop command and entering a stable flow rate.

これに対し、従来方式の演算によるフイードフ
オワード量FFに従つて制御される場合には、第
1図中、記号gで示される仮想線曲線のように、
出湯量の変化はなく、したがつてこの出湯温の変
化を利用して早目に設定温Tsにまで出湯温Tp
引き込むという動作は期待できない。なお、この
実施例では、すでにこの種の給湯機において採用
されているように、各給湯機の最大能力を越える
要求燃焼量に対してはリミツタが掛かる場合を想
定しているが、もし仮に、このようなリミツタが
ない場合には、当該時刻T2における要求燃焼量
に関する波形は、既述した演算式に従い、一点鎖
線で示す曲線a′のようになる。
On the other hand, when the control is performed according to the feed forward amount F F calculated by the conventional method, as shown in the virtual line curve indicated by the symbol g in Fig. 1,
There is no change in the amount of hot water dispensed, and therefore it cannot be expected to use this change in hot water temperature to quickly draw the hot water supply temperature T p to the set temperature T s . In addition, in this example, it is assumed that a limiter is applied to the required combustion amount exceeding the maximum capacity of each water heater, as has already been adopted in this type of water heater, but if In the absence of such a limiter, the waveform related to the required combustion amount at the time T2 will be a curve a' shown by a dashed-dotted line according to the above-mentioned arithmetic expression.

以上、本発明につき説明したが、なお、先に作
用の項においても述べた通り、本発明により定義
される要求燃焼量Fの演算式中、それぞれの項
における定数項KI、KP、αは、設計的、実験的
に各々適当値に定め得るものである。
The present invention has been explained above, but as mentioned earlier in the section of operation, in the calculation formula for the required combustion amount F defined by the present invention, the constant terms K I , K P , α in each term are can be set to appropriate values both by design and experiment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に従つて構成された給湯機にお
ける燃焼制御方法の適用動作例の説明図、第2図
は本発明を適用可能な給湯機の概念的な説明図、
である。 図中、1は水量バルブ、2は蛇口、3は熱交換
器、4はガスバーナ、5はマイクロコンピユー
タ、8は水量センサ、9は給水温センサ、10は
出湯温センサ、Swは流量、Tsは設定温、Tcは給
水温、Tpは出湯温、である。
FIG. 1 is an explanatory diagram of an example of an application operation of the combustion control method in a water heater constructed according to the present invention, and FIG. 2 is a conceptual diagram of a water heater to which the present invention can be applied.
It is. In the figure, 1 is a water flow valve, 2 is a faucet, 3 is a heat exchanger, 4 is a gas burner, 5 is a microcomputer, 8 is a water flow sensor, 9 is a water supply temperature sensor, 10 is a hot water temperature sensor, S w is a flow rate, and T s is the set temperature, T c is the water supply temperature, and T p is the hot water temperature.

Claims (1)

【特許請求の範囲】 1 給水温、水量、出湯温を各検出するセンサを
有し、それら情報と使用者により設定される設定
温情報とから、フイードフオワード制御と比例、
積分制御とに基づき、そのときどきで要求される
要求燃焼量を演算する給湯機における燃焼制御方
法であつて; 上記フイードフオワード量を (設定温−給水温)×(水量)×(設定温−出湯温)×
α にて定義し、もつて上記要求燃焼量を (設定温−給水温)×(水量)×(設定温−出湯温)×
α +(設定温−出湯温)×(水量)×KP+Σ(設定温−
出湯温)×KI により求めることを特徴とする給湯機における燃
焼制御方法。
[Claims] 1. It has a sensor that detects each of the water supply temperature, water volume, and hot water temperature, and performs feed forward control and proportional control based on these information and set temperature information set by the user.
A combustion control method in a water heater that calculates the required combustion amount at any given time based on integral control; - Hot water temperature)×
The above required combustion amount is defined as (set temperature - water supply temperature) x (water amount) x (set temperature - hot water temperature) x
α + (Set temperature - hot water temperature) x (Water amount) x K P + Σ (Set temperature -
A combustion control method in a water heater, characterized in that it is determined by (outlet hot water temperature) x K I.
JP61293376A 1986-12-11 1986-12-11 Combustion control method for water heater Granted JPS63148050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61293376A JPS63148050A (en) 1986-12-11 1986-12-11 Combustion control method for water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61293376A JPS63148050A (en) 1986-12-11 1986-12-11 Combustion control method for water heater

Publications (2)

Publication Number Publication Date
JPS63148050A JPS63148050A (en) 1988-06-20
JPH0343542B2 true JPH0343542B2 (en) 1991-07-02

Family

ID=17793974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61293376A Granted JPS63148050A (en) 1986-12-11 1986-12-11 Combustion control method for water heater

Country Status (1)

Country Link
JP (1) JPS63148050A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH081329B2 (en) * 1988-09-02 1996-01-10 リンナイ株式会社 Water heater controller
JPH0718588B2 (en) * 1988-09-06 1995-03-06 リンナイ株式会社 Water heater controller
JP2917288B2 (en) * 1989-03-31 1999-07-12 東陶機器株式会社 Oil hot water heater
JPH037809A (en) * 1989-06-02 1991-01-16 Matsushita Electric Ind Co Ltd Control device of hot water maker
JPH0325244A (en) * 1989-06-20 1991-02-04 Paloma Ind Ltd Temperature control device
FR2741939B1 (en) * 1995-12-01 1998-02-20 Gaz De France INSTALLATION FOR PRODUCING DOMESTIC HOT WATER BY GAS BOILER AND METHOD FOR CONTROLLING THE TEMPERATURE OF DOMESTIC HOT WATER IN SUCH AN INSTALLATION
EP2049839B1 (en) * 2006-08-02 2018-06-13 Glutz AG Method for the regulation of a burner
EP2052187B1 (en) * 2006-08-10 2017-06-14 Glutz AG Method for controlling a burner

Also Published As

Publication number Publication date
JPS63148050A (en) 1988-06-20

Similar Documents

Publication Publication Date Title
JPH0343542B2 (en)
JPS6144111Y2 (en)
JPH04126951A (en) Hot water temperature control device for hot water feeder
CN111912117A (en) Constant temperature control method of gas water heater
JP3169785B2 (en) Hot water supply control device
JP3798075B2 (en) Combustion equipment
JPH01203844A (en) Hot-water apparatus
JP3380047B2 (en) Water heater
JP3300150B2 (en) Combustion apparatus and method for updating combustion capacity
JP2808736B2 (en) Water heater control device
JP3291104B2 (en) Combustion device and combustion capacity updating operation method thereof
JPS6020043A (en) Device to control combustion
JP2820583B2 (en) Water heater temperature control device
JP2726547B2 (en) Fluid heating controller
JP3172600B2 (en) Water heater combustion control method
JP2669662B2 (en) Water heater control device
JPH0450498B2 (en)
JPH0615254Y2 (en) Blower fan controller for water heater
JPH0481087B2 (en)
JPH0339227B2 (en)
JPH0616290Y2 (en) Blower fan controller for water heater
JPH08159460A (en) Hot-water supply apparatus
JP3517287B2 (en) Water heater
JPH0145542B2 (en)
JP3271830B2 (en) Water heater and method for setting initial water flow of water control valve