JPH0221483B2 - - Google Patents

Info

Publication number
JPH0221483B2
JPH0221483B2 JP57207906A JP20790682A JPH0221483B2 JP H0221483 B2 JPH0221483 B2 JP H0221483B2 JP 57207906 A JP57207906 A JP 57207906A JP 20790682 A JP20790682 A JP 20790682A JP H0221483 B2 JPH0221483 B2 JP H0221483B2
Authority
JP
Japan
Prior art keywords
air
gas
differential pressure
output
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57207906A
Other languages
Japanese (ja)
Other versions
JPS5997422A (en
Inventor
Hideo Uematsu
Yoshio Yamamoto
Takeshi Natsumeda
Yoshuki Yokoajiro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57207906A priority Critical patent/JPS5997422A/en
Publication of JPS5997422A publication Critical patent/JPS5997422A/en
Publication of JPH0221483B2 publication Critical patent/JPH0221483B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/08Regulating fuel supply conjointly with another medium, e.g. boiler water
    • F23N1/10Regulating fuel supply conjointly with another medium, e.g. boiler water and with air supply or draught
    • F23N1/102Regulating fuel supply conjointly with another medium, e.g. boiler water and with air supply or draught using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/02Measuring filling height in burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/18Measuring temperature feedwater temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/02Air or combustion gas valves or dampers
    • F23N2235/06Air or combustion gas valves or dampers at the air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/16Fuel valves variable flow or proportional valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/18Groups of two or more valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、負荷に応じて燃焼出力を連続可変す
るとともに、燃焼用空気量(以下単に空気量とい
う)とガス量の比(以下空燃比という)をほぼ一
定に保ち、燃焼の安定性と高効率を実現するため
の特に家庭用燃焼機器に用いられるガス燃焼制御
装置に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention continuously varies the combustion output according to the load, and the ratio of the amount of combustion air (hereinafter simply referred to as air amount) to the amount of gas (hereinafter referred to as air-fuel ratio) The present invention relates to a gas combustion control device used particularly in household combustion equipment to maintain combustion stability and high efficiency by keeping the temperature approximately constant.

従来例の構成とその問題点 従来のこの種のガス燃焼制御装置として、第1
図に示す均圧弁方式(あるいはゼロガバナ方式)
がよく知られている。すなわち送風機1により送
られた空気は空気絞り2を経て混合部3へ、ガス
は均圧弁4、ガス絞り5を経て混合部3へ入り空
気とガスとが混合され、バーナ6へ導びかれて燃
焼する。
Configuration of conventional example and its problems As a conventional gas combustion control device of this type, the first
Pressure equalization valve method (or zero governor method) shown in the figure
is well known. That is, the air sent by the blower 1 passes through the air throttle 2 to the mixing unit 3, and the gas passes through the pressure equalizing valve 4 and the gas throttle 5 to the mixing unit 3, where the air and gas are mixed and guided to the burner 6. Burn.

均圧弁4の背圧室7には空気絞り2の上流の圧
力が導びかれており、均圧弁4は均圧弁出口の圧
力を背圧室7の圧力と等しくなる様に自動調節す
る。
The pressure upstream of the air throttle 2 is introduced into the back pressure chamber 7 of the pressure equalizing valve 4, and the pressure equalizing valve 4 automatically adjusts the pressure at the outlet of the pressure equalizing valve to be equal to the pressure in the back pressure chamber 7.

ここで空気絞りの上流の圧力をPA、空気量を
QA、ガス絞りの上流の圧力をPG、ガス量をQG
混合部の圧力をPMとすると、空燃比QA/QG (K1,K2は、それぞれ空気絞り、ガス絞り及
びガス種によつて決まる定数) の関係がある。
Here, the pressure upstream of the air restriction is P A and the air volume is
Q A , the pressure upstream of the gas throttle is P G , the gas amount is Q G ,
If the pressure in the mixing section is P M , the air-fuel ratio Q A /Q G is (K 1 and K 2 are constants determined by the air restriction, gas restriction, and gas type, respectively).

均圧弁4が理想的にPG=PAに調節できれば となり、QAを変化させても空燃比は常に一定と
なるはずである。しかし、均圧弁4はダイアフラ
ム8でPAとPGとの差圧を受けて弁9を機械的に
動かすものであるから、ダイアフラムの剛性、変
位に伴なうダイアフラムの有効面積の変化、弁9
が受ける均圧弁入口圧力の影響等により、必ず圧
力調節誤差ΔPGを生じる。すなわちPG=PA+ΔPG
であるので、 となり、圧力調節誤差による空燃比の変動はPA
−PMの値が小さくなるほど大きくなる。
If the pressure equalizing valve 4 can ideally adjust P G = P A Therefore, even if Q A is changed, the air-fuel ratio should always remain constant. However, since the pressure equalizing valve 4 mechanically moves the valve 9 in response to the differential pressure between P A and P G at the diaphragm 8, the stiffness of the diaphragm, the change in the effective area of the diaphragm due to displacement, 9
A pressure adjustment error ΔP G will always occur due to the influence of the equalization valve inlet pressure. That is, P G = P A + ΔP G
So, Therefore, the fluctuation of air-fuel ratio due to pressure adjustment error is P A
−P The smaller the value of M , the larger it becomes.

したがつて、空燃比誤差を一定の範囲内に保ち
ながら燃焼出力の調節比を大きくとろうとすれ
ば、PA−PMの値を大きくするか、ΔPGを小さく
しなければならない。
Therefore, in order to increase the combustion output adjustment ratio while keeping the air-fuel ratio error within a certain range, the value of P A - P M must be increased or ΔP G must be decreased.

一方、家庭用のガス燃焼機器として給湯用ある
いは暖房用の用途では燃焼出力の調節比が1/5
ないし1/10程度必要である。そのためにPA
PMを大きくすると送風機がきわめて大きくなる
だけでなく、供給圧の低い都市ガス等ではPA
ガス供給圧より高くなり実現不可能である。ま
た、都市ガス以外のガスで実現したとしても、燃
焼中に何らかの原因で、例えば、ガスボンベを使
用している場合、使用途中にプロパンガスがなく
なりそうだとか、あるいは台風時等の風の強い
時、燃焼機器の排気抵抗が大きくなり、燃焼ガス
が流れにくくなる等のいわゆるガス圧が低下する
場合には、供給空気量に燃焼ガス量が追随出来な
くなる場合が発生する。このような場合には、従
来の機械式の均圧弁では、燃焼出力の大小それぞ
れに対応して、空燃比のバランスが、燃焼安定領
域から逸脱しないように、供給空気量の上限を制
限するという手段がなく、その為に良好な燃焼状
態が得られなくなるという問題があつた。更にま
た均圧弁の機械的精度の限界から定まる圧力調節
誤差ΔPGを小さくするにも均圧弁の大きさから限
度があり、経時変化の影響、調整の困難さがある
など、家庭用燃焼機器への適用は難しかつた。
On the other hand, for household gas combustion equipment used for hot water supply or space heating, the combustion output adjustment ratio is 1/5.
About 1/10 is necessary. For that reason, P A
Increasing P M not only makes the blower extremely large, but also makes P A higher than the gas supply pressure, which is impossible when using city gas, etc., where the supply pressure is low. Even if this is achieved with gas other than city gas, for some reason during combustion, for example, if you are using a gas cylinder, the propane gas is about to run out while you are using it, or if there are strong winds such as during a typhoon. When the exhaust resistance of combustion equipment increases and the so-called gas pressure decreases, such as when it becomes difficult for combustion gas to flow, the amount of combustion gas may not be able to follow the amount of supplied air. In such cases, conventional mechanical pressure equalization valves limit the upper limit of the amount of supplied air to ensure that the air-fuel ratio balance does not deviate from the stable combustion range, depending on the magnitude of the combustion output. There was a problem that a good combustion condition could not be obtained because there was no means to do so. Furthermore, there are limits to reducing the pressure adjustment error ΔP G , which is determined by the limits of the mechanical accuracy of the pressure equalization valve, due to the size of the pressure equalization valve, and there are effects of aging and difficulty in adjustment, making it difficult for household combustion equipment to reduce. was difficult to apply.

発明の目的 本発明は上記従来の問題を解消するもので、送
風機や弁装置を大型化することなく、燃焼出力の
調節比が大きく、かつ万一のガス圧低下時でも空
燃比安定性に優れたガス燃焼制御装置を提供する
ことを目的とするものである。
Purpose of the Invention The present invention solves the above-mentioned conventional problems, and has a large combustion output adjustment ratio without increasing the size of the blower or valve device, and has excellent air-fuel ratio stability even in the unlikely event of a drop in gas pressure. The object of the present invention is to provide a gas combustion control device that has the following characteristics.

発明の構成 この目的を達成するために本発明は、空気側通
路とガス側通路にそれぞれの流量に応じた圧力損
失を生じさせる空気絞りとガス絞りを設け、その
下流側を合流して共通圧力にするとともに、前記
二つの絞り上流側の圧力を、圧力差に応じて電気
信号を発生する差圧センサに導びくとともに被加
熱体の温度を検出する温度検出器と、温度設定器
と、前記温度検出器の信号と前記温度設定器の信
号との差を増幅演算する温度調節回路と、前記差
圧センサの出力の絶対値が空気量に対応した形で
あらかじめ比較基準値以上のとき出力を発生する
差圧比較器を有し、前記温度調節回路の出力で前
記空気絞り上流に設けられた空気量調節手段を制
御し、かつ前記差圧センサの出力に応じてガス絞
り上流に設けられたガス量調節手段を制御すると
ともに、前記差圧比較器の出力が発生した時は、
前記温度調節回路に優先して差圧センサの信号に
応じた前記空気量調節手段を制御するように構成
したものである。
Structure of the Invention In order to achieve this object, the present invention provides an air constriction and a gas constriction that generate pressure loss according to the respective flow rates in the air side passage and the gas side passage, and merges the downstream sides thereof to create a common pressure. and a temperature detector that guides the pressure upstream of the two throttles to a differential pressure sensor that generates an electrical signal according to the pressure difference and detects the temperature of the heated object, and a temperature setting device; a temperature control circuit that amplifies and calculates the difference between the signal of the temperature detector and the signal of the temperature setting device; and a temperature control circuit that amplifies and calculates the difference between the signal of the temperature sensor and the signal of the temperature setting device; A differential pressure comparator is provided to generate a differential pressure, and the output of the temperature control circuit controls an air amount adjusting means provided upstream of the air throttle, and the air amount adjusting means provided upstream of the gas throttle is controlled according to the output of the differential pressure sensor. In addition to controlling the gas amount adjusting means, when the output of the differential pressure comparator is generated,
The air amount adjusting means is configured to be controlled in accordance with a signal from a differential pressure sensor in priority to the temperature adjusting circuit.

この構成によつて、空気側、ガス側二つの絞り
上流側の差圧を検出する差圧センサを備え、この
差圧センサ出力に応じて空燃比が一定になるよう
にガス量をガス量調節手段によつて制御し、差圧
センサの出力が空気量に対応した比較基準値より
も大きくなつた場合には、温度調節回路に優先し
て、空気量を空気量調節手段で制御することでガ
ス圧が低下した場合でも、空燃比を補正制御する
ので、常に安定した燃焼状態を可能にする。
With this configuration, it is equipped with a differential pressure sensor that detects the differential pressure upstream of the two throttles on the air side and gas side, and adjusts the gas amount according to the output of this differential pressure sensor so that the air-fuel ratio is constant. If the output of the differential pressure sensor becomes larger than the comparison reference value corresponding to the air amount, the air amount is controlled by the air amount adjusting means in priority to the temperature control circuit. Even when the gas pressure decreases, the air-fuel ratio is corrected and controlled, so a stable combustion state is always possible.

実施例の説明 以下、本発明の一実施例を第2図〜第4図の図
面を用いて説明する。なお、第2図中、第1図と
同一部品については同一番号を付している。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 2 to 4. In FIG. 2, parts that are the same as those in FIG. 1 are given the same numbers.

第2図において、4は差圧センサ、7Gはガス
圧力比例制御弁等のガス量調節手段(以下7Gを
ガス圧力比例制御弁と呼ぶ)、7Aはダンパ等の
空気量調節手段、8は熱交換器、9は出湯管、1
0は出湯管上に設置されているサーミスタ等の温
度検出器であり、11及び12はそれぞれガス側
通路及び空気側通路である。そして、電気制御系
として、温度検出器10の信号に応じて1の送風
機を制御する為に、13の温度検出回路、14の
温度設定器、15の温度調節回路、16の空気量
調節手段回路から構成すると共に、4の差圧セン
サの出力に応じて7Gのガス圧力比例制御弁を制
御する為に17の差圧センサ検出回路、18の空
燃比調節回路で構成し、更に、ガス圧が低下した
場合に空燃比が許容範囲を越えないように制御す
る為の手段として、差圧比較器19で構成してい
る。
In Fig. 2, 4 is a differential pressure sensor, 7G is a gas amount adjusting means such as a gas pressure proportional control valve (hereinafter 7G is referred to as a gas pressure proportional control valve), 7A is an air amount adjusting means such as a damper, and 8 is a heat exchanger. Exchanger, 9 is hot water pipe, 1
0 is a temperature detector such as a thermistor installed on the tapping pipe, and 11 and 12 are a gas side passage and an air side passage, respectively. As an electrical control system, in order to control one blower according to the signal from the temperature detector 10, 13 temperature detection circuits, 14 temperature setting devices, 15 temperature adjustment circuits, and 16 air volume adjustment means circuits are provided. It also consists of 17 differential pressure sensor detection circuits and 18 air-fuel ratio adjustment circuits in order to control the 7G gas pressure proportional control valve according to the output of the 4 differential pressure sensors. A differential pressure comparator 19 is used as a means for controlling the air-fuel ratio so that it does not exceed an allowable range when the air-fuel ratio decreases.

第3図のイに於いて、A,B′,B,Cの直線
は異常なガス圧低下のない場合の空気過剰率(m
とする)一定(本一実施例の場合にはm=1.2)
の空燃比制御特性を示している。
In Figure 3 A, the straight lines A, B', B, and C are the excess air ratio (m) when there is no abnormal gas pressure drop.
) constant (m=1.2 in the case of this first embodiment)
The air-fuel ratio control characteristics of

BDEの直線、及びB′,D′,E′の直線は異常な
ガス圧低下が発生した場合に空気量がA1からA2
へあるいはA′1からA′2へ増加しても、ガス量が、
GLあるいはG′Lより増加しない状態を示してい
る。
The straight line of BDE and the straight lines of B', D', and E' indicate that the air volume changes from A 1 to A 2 when an abnormal gas pressure drop occurs.
Even if the amount of gas increases from A′ 1 to A′ 2 ,
It shows a state in which it does not increase more than G L or G′ L.

そして、O,D′,Dを結ぶ直線は、空気過剰
率mがm=1.2より大きく(本一実施例ではm=
1.6)かつ、バーナの燃焼特性等から決定される
安定燃焼域限界付近にある空燃比制御特性を示
す。逆に、D点及びD′点は、燃焼出力が変化し
た場合でも、空燃比が等しい点を示している。
The straight line connecting O, D', and D indicates that the excess air ratio m is greater than m=1.2 (in this embodiment, m=
1.6) and shows the air-fuel ratio control characteristics near the limit of the stable combustion region determined from the combustion characteristics of the burner. Conversely, points D and D' indicate points where the air-fuel ratio remains the same even when the combustion output changes.

また、第3図のロ及びハはこのような場合に、
空気量に対応して発生する差圧比較器の出力及び
差圧センサの出力の状況を示している。
In addition, in such a case, B and C in Figure 3
It shows the status of the output of the differential pressure comparator and the output of the differential pressure sensor that occur in response to the amount of air.

第4図は、本発明の一実施例としてガス給湯機
器に応用した場合に於ける給湯能力特性図を示し
ている。
FIG. 4 shows a hot water supply capacity characteristic diagram when the present invention is applied to a gas hot water supply device as an embodiment of the present invention.

上記構成に於いてすでに、バーナ6には点火さ
れ、そして出湯管9から流れでる出湯量が第4図
におけるWMINである時に丁度第3図に於けるイ
のA点で制御されているものとする。(すなわち、
この状態は、燃焼可変範囲の最小の状態であつて
空気量はAMIN、ガス量はGMINに制御されている)
このような状態から温度設定器14をTMAXその
ままにしておいて、出湯量を増加させていくと出
湯温度が一時降下するように作用するので、13
の温度検出回路と14の温度設定器との間に温度
偏差信号ΔTが発生する。そして、この温度偏差
信号ΔTは15の温度調節回路、16の空気量調
節手段回路で処理されて、1の送風機からの空気
量を増大させるように制御する。空気量が刻々変
化するこのような状態では、4の差圧センサに、
差圧が発生するので、この差圧を差圧センサ検出
回路17及び、空燃比調節回路18で電気的に処
理して、差圧センサ4に作用している差圧が零に
なるように7Gのガス圧力比例制御弁からの流量
を増加させるように制御する。
In the above configuration, when the burner 6 is already ignited and the amount of hot water flowing out from the hot water tap 9 is W MIN in FIG. 4, it is controlled at point A in FIG. 3. shall be. (i.e.
This state is the minimum state of the combustion variable range, and the air amount is controlled at A MIN and the gas amount is controlled at G MIN .)
If you leave the temperature setting device 14 at T MAX in this state and increase the amount of hot water, the temperature of the hot water will temporarily drop.
A temperature deviation signal ΔT is generated between the temperature detection circuit of 1 and the temperature setter of 14. This temperature deviation signal ΔT is processed by a temperature control circuit (15) and an air volume control means circuit (16) to control the air volume from one blower to be increased. In such a situation where the amount of air changes from moment to moment, the differential pressure sensor (4)
Since differential pressure is generated, this differential pressure is electrically processed by the differential pressure sensor detection circuit 17 and the air-fuel ratio adjustment circuit 18, and the differential pressure acting on the differential pressure sensor 4 is reduced to 7G so that the differential pressure acting on the differential pressure sensor 4 becomes zero. control to increase the flow rate from the gas pressure proportional control valve.

この時、第3図イに於いて空燃比一定の制御す
なわちAからC方向にむかうほゞ直線に沿つた制
御になる。
At this time, in FIG. 3A, the air-fuel ratio is kept constant, that is, the control is carried out along a straight line from direction A to direction C.

また、第4図に於いては、eからe′にむかう線
上で、出湯温度がほゞTMAX一定に制御されてい
る。
Further, in FIG. 4, the outlet temperature is controlled to be approximately constant T MAX on the line from e to e'.

さらにまた、湯量をWMIN′になるように絞りさ
らに温度設定器14をTMINになるように設定す
ると、第4図のfの状態を維持する。そして、こ
の状態から出湯量を徐々にWMAX迄増加させると
前記eからe′に制御された場合と同じように、出
湯温度がTMINをほゞ維持しつゝ、fからf′の状態
まで制御される。
Furthermore, when the amount of hot water is reduced to W MIN ' and the temperature setting device 14 is set to T MIN , the state f in FIG. 4 is maintained. Then, if the hot water output amount is gradually increased from this state to W MAX , the hot water temperature will change from f to f' while maintaining T MIN , just as in the case where it was controlled from e to e'. controlled up to.

この状態を第3図イにもとづいて説明すると
ACの線上に沿つて、最大定格値Cの状態、すな
わち空気量がAMAXガス量がGMAXの状態まで空燃
比一定で制御されることになる。
This state can be explained based on Figure 3 A.
Along the AC line, the air-fuel ratio is controlled to be constant until the maximum rated value C is reached, that is, the air amount is A MAX and the gas amount is G MAX .

逆にe′やf′またはその中間の状態から出湯、量
を減少させたり、最低制御温度TMIN以上の状態
から14の温度設定器で設定温度を低くした場合
には逆に、送風機1は空気量を減少するように制
御され、第2図におけるPAの圧力が低下する方
向に作用するので差圧センサ4に差圧が発生す
る。したがつて、この差圧が零になるように7の
ガス圧力比例制御弁はガス量を減少するように自
動制御される。
Conversely, if you reduce the hot water output or amount from a state of e', f' or between them, or lower the set temperature using the temperature setting device 14 from a state above the minimum control temperature T MIN , the blower 1 will Since the air amount is controlled to decrease and the pressure at P A in FIG. 2 acts in the direction of decreasing, a differential pressure is generated in the differential pressure sensor 4. Therefore, the gas pressure proportional control valve 7 is automatically controlled to reduce the gas amount so that this differential pressure becomes zero.

以上がガス圧低下のない正常な制御状態に於け
る作用の説明である。周知の如く家庭用のガス燃
焼機器に使われているガス種は、都市ガス、天然
ガス、プロパンガス等で代表される。これらのい
づれのガスも供給ガス圧が規定されており、例え
ば都市ガスの場合には、標準ガス圧100mmH2O、
最低ガス圧50mmH2O最高ガス圧200mmH2Oと規定
されている。
The above is an explanation of the operation in a normal control state where there is no drop in gas pressure. As is well known, the gas types used in household gas combustion appliances include city gas, natural gas, propane gas, and the like. The supply gas pressure for each of these gases is regulated; for example, in the case of city gas, the standard gas pressure is 100mmH 2 O,
The minimum gas pressure is 50mmH 2 O and the maximum gas pressure is 200mmH 2 O.

燃焼機器の設計は最低ガス圧の時でも燃焼機器
として規定されている燃焼特性・給湯能力等が十
分満足されるように配慮されていることは勿論で
ある。
It goes without saying that the combustion equipment is designed so that the combustion characteristics, hot water supply capacity, etc. specified for the combustion equipment are fully satisfied even at the lowest gas pressure.

ところが、今第3図に於けるAC線上の中間の
燃焼状態、給湯状態、空燃比であるときに何らか
の原因で異常に供給ガス圧が低下した場合には燃
焼出力を増加させようとすると、空気量QAはA1
A2,A3と増加するがガス量はB点に於けるGL
り増加しないので空燃比制御特性は、ABC線上
に沿わないでB点から折り曲がり、ABCEのよう
に制御されることになる。つまり、ガス量が不足
して空燃比が増加するようになる。
However, if the supply gas pressure drops abnormally for some reason when the combustion state, hot water supply state, and air-fuel ratio are intermediate on the AC line in Figure 3, if you try to increase the combustion output, the air The quantity Q A is A 1 ,
A 2 and A 3 increase, but the gas amount does not increase from G L at point B, so the air-fuel ratio control characteristic bends from point B without following the ABC line, and is controlled like ABCE. Become. In other words, the amount of gas becomes insufficient and the air-fuel ratio increases.

一方、このような状態にあるとき、燃焼出力を
可変させると、AB線上では所定の空燃比で制御
されているので差圧センサ4の出力は零になるよ
うに制御されるので、a1〜a2の線に沿い、又差圧
比較器19からの出力はb1〜b2の線に沿つて(す
なわち見かけ上出力零の状態)制御される。
On the other hand, in such a state, if the combustion output is varied, the output of the differential pressure sensor 4 is controlled to be zero because it is controlled at a predetermined air-fuel ratio on the AB line, so a 1 ~ The output from the differential pressure comparator 19 is controlled along the line a 2 and along the line b 1 to b 2 (that is, the output is apparently zero).

そして、ガス圧が低下している制御域B〜Dに
入いると、差圧センサ4からa2〜a3線上に沿う出
力が発生し、更にD点から空気量が増加すると、
a3〜a4線上に沿う出力が発生する。このときDE
の線に沿つて更に空燃比が増加する方向に変ろう
とするが、一方、D点を越えて、すなわち空気量
が、A2から増加しようとすると、差圧センサ4
の出力が空気量A2によつて定まる比較基準値a3
の点を越えるので、差圧比較器19からb3〜b4
上に沿つた出力が発生する。このような場合には
圧圧センサ4の出力または差圧比較器19の出力
により温度調節回路15に優先して送風機1の回
転数を減少させるように、すなわちE点からD点
へひき戻すように制御するものである。
Then, when the gas pressure enters the control range B to D where it is decreasing, the differential pressure sensor 4 generates an output along line a2 to a3 , and when the air amount further increases from point D,
Output along lines a3 to a4 is generated. At this time DE
On the other hand, if the air-fuel ratio attempts to increase further along the line of
Comparison reference value a 3 whose output is determined by the air amount A 2
, the differential pressure comparator 19 generates an output along line b 3 to b 4 . In such a case, the output of the pressure sensor 4 or the output of the differential pressure comparator 19 is used to prioritize the temperature control circuit 15 and reduce the rotational speed of the blower 1, that is, to return it from point E to point D. It is something to control.

また、上記の場合よりも低燃焼域で、ガス圧が
低下してしまい、第3図イのG′Lよりガス量が増
大しない場合には、同様にして、その空燃比制御
特性は、B′点から折り曲がり、A,B′,D′,
E′のように制御されようとするが、この場合にも
E′点が許容空燃比の限界値m=1.6よりも増大す
る方向にあるので空気量A′2に対応した比較基準
値a′3点を越えると同様にして圧力センサ4の出
力または差圧比較器19の出力により、温度調節
回路15に優先して、E′点からD′点へすなわちm
=1.6になるように制御されるものである。なお、
第3図に示した一例では、高燃焼域及び低燃焼域
共m=1.6(一定値)以下で制御される場合である
が、これをバーナの燃焼特性に対応させて、例え
ば空燃比mを低燃焼域より高燃焼域が小さくなる
ように制御することもできる。(この場合には、
比較基準値が空気量QAに対して正比例の関係に
はない。) ガス圧が異常に低下する場合として、供給圧そ
のものが低下する以外に次のものがある。すなわ
ち燃焼機器の排気系路の圧力が強風等の為に上昇
すると、ガス量が減少するので、供給ガス圧が低
下した場合と同じになる。
In addition, if the gas pressure decreases in the lower combustion range than in the above case and the gas amount does not increase from G' L in Figure 3 A, the air-fuel ratio control characteristic will be changed to B in the same way. Bend from point ′, A, B′, D′,
It tries to be controlled like E′, but in this case also
Since point E' is in the direction of increasing more than the limit value m = 1.6 of the allowable air-fuel ratio, the comparison reference value a' corresponding to the air amount A' 2 is exceeded. The output of the comparator 19 gives priority to the temperature control circuit 15 and moves from point E' to point D', that is, m
= 1.6. In addition,
In the example shown in Fig. 3, both the high combustion region and the low combustion region are controlled at m = 1.6 (constant value) or less. It is also possible to control the high combustion range to be smaller than the low combustion range. (In this case,
The comparison reference value is not directly proportional to the air amount Q A. ) In addition to a drop in the supply pressure itself, cases where the gas pressure drops abnormally include the following: That is, if the pressure in the exhaust system of the combustion equipment increases due to strong winds or the like, the amount of gas decreases, which is the same as when the supply gas pressure decreases.

このように、ガス燃焼機器の力で供給圧が低下
した場合に、差圧センサ4の出力が空気量によつ
て定まる比較基準値を越えると、差圧比較器19
の出力により空気量を減少させるような出力を送
風機1に与えることで燃焼可変範囲全域にわたつ
て許容空燃比の上限値すなわちm=1.6を越える
ことがないような制御が可能になる。したがつて
一酸化炭素が許容限界値以上発生したり、異常燃
焼音が発生したりあるいは燃焼炎が吹消えしたり
することがなくなる。
In this way, when the supply pressure decreases due to the force of the gas combustion equipment, if the output of the differential pressure sensor 4 exceeds the comparison reference value determined by the amount of air, the differential pressure comparator 19
By giving the blower 1 an output that reduces the amount of air by the output of , it becomes possible to perform control such that the upper limit of the allowable air-fuel ratio, that is, m=1.6, is not exceeded over the entire variable combustion range. Therefore, carbon monoxide will not be generated in excess of the allowable limit, abnormal combustion noise will not be generated, or the combustion flame will not blow out.

発明の効果 以上のように、本発明のガス燃焼制御装置によ
れば、次の効果が得られるものである。
Effects of the Invention As described above, the gas combustion control device of the present invention provides the following effects.

空気側及びガス側の両通路に空気絞り及びガス
絞りを設け、その下流側を合流して共通圧力にす
るとともに、前記二つの絞り上流側の圧力を差圧
センサで検出し、燃焼出力に対応して発生する差
圧センサの出力で、空燃比が一定になるように制
御するので、従来のような機械式の均圧弁制御に
比較して圧力調節誤差が小さくなり燃焼制御精度
が向上するばかりでなく、差圧センサの差圧を小
さくして制御することが出来るので、送風機等が
小型化され、かつ都市ガス等の供給ガス圧が低い
場合の家庭用燃焼機器への適用を可能にするもの
である。
An air throttle and a gas throttle are installed on both the air and gas side passages, and the downstream sides of these are merged to create a common pressure, and the pressure upstream of the two throttles is detected by a differential pressure sensor and corresponds to the combustion output. Since the air-fuel ratio is controlled to be constant using the output of the differential pressure sensor generated by the engine, pressure adjustment errors are reduced and combustion control accuracy is improved compared to conventional mechanical pressure equalization valve control. Instead, it can be controlled by reducing the differential pressure of the differential pressure sensor, making it possible to downsize blowers and apply it to household combustion equipment when the supply gas pressure, such as city gas, is low. It is something.

そしてまた、差圧センサの出力が空気量に対応
した比較基準値以上のとき出力を発生する差圧比
較器を備えたことにより、供給ガス圧が低下した
り、燃焼機器に強風が作用した場合でも、ガス量
調節手段に優先して空気量調節手段を制御するよ
うにしたことにより燃焼可変範囲全域にわたつて
許容空燃比の上限値を越えることがないように制
御できる。したがつて、常に燃焼状態を安定させ
ることが出来るので安全性の高い燃焼機器の実現
を可能にするものである。
Additionally, by installing a differential pressure comparator that generates an output when the output of the differential pressure sensor is equal to or higher than the comparison reference value corresponding to the air amount, it can be used even if the supply gas pressure decreases or strong winds act on the combustion equipment. However, by controlling the air amount adjusting means with priority over the gas amount adjusting means, it is possible to control the air-fuel ratio so that the upper limit of the allowable air-fuel ratio is not exceeded over the entire variable combustion range. Therefore, the combustion state can be stabilized at all times, making it possible to realize highly safe combustion equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のガス燃焼制御装置の構成説明
図、第2図は本発明のガス燃焼制御装置の一実施
例を示す構成及びブロツク説明図、第3図は本発
明の上記一実施例に於ける制御動作説明図、第4
図は本発明上記一実施例に於けるガス給湯機器の
給湯能力特性図である。 1……送風機、2……空気絞り、3……混合
部、4……差圧センサ、5……ガス絞り、6……
バーナ、7G……ガス量調節手段、7A……空気
量調節手段、10……温度検出器、11……ガス
側通路、12……空気側通路、14……温度設定
器、15……温度調節回路、19……差圧比較
器。
Fig. 1 is an explanatory diagram of the configuration of a conventional gas combustion control device, Fig. 2 is an explanatory diagram of the configuration and blocks of an embodiment of the gas combustion control device of the present invention, and Fig. 3 is an explanatory diagram of the above-mentioned embodiment of the gas combustion control device of the present invention. Control operation explanatory diagram, 4th
The figure is a hot water supply capacity characteristic diagram of the gas hot water supply equipment in the above-described embodiment of the present invention. 1...Blower, 2...Air throttle, 3...Mixing section, 4...Differential pressure sensor, 5...Gas throttle, 6...
Burner, 7G...Gas amount adjustment means, 7A...Air amount adjustment means, 10...Temperature detector, 11...Gas side passage, 12...Air side passage, 14...Temperature setting device, 15...Temperature Adjustment circuit, 19... Differential pressure comparator.

Claims (1)

【特許請求の範囲】[Claims] 1 空気側通路には燃焼用空気を供給する送風機
と空気量調節手段と空気絞りとを、ガス側通路に
はガス量調節手段とガス絞りを配設し、この空気
絞りと前記ガス絞りとの下流を合流して空気とガ
スを混合する混合部と、前記空気絞りの上流と前
記ガス絞りの上流との圧力差に対応した電気信号
を発生する差圧センサを具備すると共に、バーナ
により加熱される被加熱体の温度を検出する温度
検出器と、被加熱体の出口温度を設定する温度設
定器と、前記温度検出器の信号と前記温度設定器
の信号との差を増巾演算する温度調節回路と、ガ
ス圧低下時に空気過剰により生じる前記差圧セン
サの出力の絶対値が前記バーナの燃焼特性に影響
する空気量に対応した形であらかじめ比較基準値
として設定され、この比較基準値以上のとき出力
を発生する差圧比較器を有し、前記温度調節回路
からの出力で前記空気量調節手段を制御し、か
つ、前記差圧センサの出力に応じて前記ガス量調
節手段を制御するとともに、前記差圧比較器の出
力が発生した時は、前記温度調節回路に優先して
前記差圧センサの出力に応じて前記空気量調節手
段を制御するガス燃焼制御装置。
1 A blower for supplying combustion air, an air amount adjusting means, and an air restrictor are provided in the air side passage, and a gas amount adjusting means and a gas restrictor are provided in the gas side passage, and the air restrictor and the gas restrictor are provided in the gas side passage. It is equipped with a mixing section that mixes air and gas by merging downstream, and a differential pressure sensor that generates an electric signal corresponding to the pressure difference between the upstream of the air throttle and the upstream of the gas throttle, and is heated by a burner. a temperature detector for detecting the temperature of the heated body, a temperature setting device for setting the outlet temperature of the heated body, and a temperature for amplifying the difference between the signal of the temperature detector and the signal of the temperature setting device. The absolute value of the output of the differential pressure sensor caused by excess air when the gas pressure decreases is set in advance as a comparison reference value in the adjustment circuit and in a form corresponding to the amount of air that affects the combustion characteristics of the burner, and the absolute value of the output of the differential pressure sensor is set in advance as a comparison reference value in a form that corresponds to the amount of air that affects the combustion characteristics of the burner, and the absolute value of the output of the differential pressure sensor that occurs due to excess air when the gas pressure decreases is set in advance as a comparison reference value in a form that corresponds to the amount of air that affects the combustion characteristics of the burner. and a differential pressure comparator that generates an output when and a gas combustion control device that controls the air amount adjusting means in accordance with the output of the differential pressure sensor with priority over the temperature adjusting circuit when the output of the differential pressure comparator is generated.
JP57207906A 1982-11-27 1982-11-27 Gas combustion control device Granted JPS5997422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57207906A JPS5997422A (en) 1982-11-27 1982-11-27 Gas combustion control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57207906A JPS5997422A (en) 1982-11-27 1982-11-27 Gas combustion control device

Publications (2)

Publication Number Publication Date
JPS5997422A JPS5997422A (en) 1984-06-05
JPH0221483B2 true JPH0221483B2 (en) 1990-05-15

Family

ID=16547524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57207906A Granted JPS5997422A (en) 1982-11-27 1982-11-27 Gas combustion control device

Country Status (1)

Country Link
JP (1) JPS5997422A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2765313B1 (en) * 1997-06-27 1999-09-17 Europ Equip Menager TOTAL PREMIX GAS BURNER FOR DOMESTIC COOKING

Also Published As

Publication number Publication date
JPS5997422A (en) 1984-06-05

Similar Documents

Publication Publication Date Title
US10094593B2 (en) Combustion blower control for modulating furnace
US9032950B2 (en) Gas pressure control for warm air furnaces
JPH0221483B2 (en)
JPS5843655B2 (en) combustion device
JPS649529B2 (en)
JPH0158412B2 (en)
JPS649527B2 (en)
US20230112151A1 (en) Premixing Apparatus
JPS6029516A (en) Gas combustion controller
JPH033847B2 (en)
JP7413145B2 (en) combustion device
JP2669662B2 (en) Water heater control device
JPH033848B2 (en)
JP7073025B1 (en) Combustion equipment
JPS6026219A (en) Gas combustion controller
JPH033853B2 (en)
JP3769660B2 (en) Water heater
JP2946279B2 (en) Control method of gas combustion device and gas combustion device
JPH033852B2 (en)
JPS6080018A (en) Gas burning control device
JPS646363B2 (en)
JPS6091132A (en) Controller of gas combustion
JPH0236857B2 (en)
JPS649525B2 (en)
JPS5926849B2 (en) Forced supply/exhaust type combustion control device