JPS649529B2 - - Google Patents

Info

Publication number
JPS649529B2
JPS649529B2 JP57180740A JP18074082A JPS649529B2 JP S649529 B2 JPS649529 B2 JP S649529B2 JP 57180740 A JP57180740 A JP 57180740A JP 18074082 A JP18074082 A JP 18074082A JP S649529 B2 JPS649529 B2 JP S649529B2
Authority
JP
Japan
Prior art keywords
gas
air
temperature
differential pressure
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57180740A
Other languages
Japanese (ja)
Other versions
JPS5969612A (en
Inventor
Hideo Uematsu
Yoshio Yamamoto
Takeshi Natsumeda
Yoshuki Yokoajiro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57180740A priority Critical patent/JPS5969612A/en
Publication of JPS5969612A publication Critical patent/JPS5969612A/en
Publication of JPS649529B2 publication Critical patent/JPS649529B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/02Measuring filling height in burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/18Measuring temperature feedwater temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/14Fuel valves electromagnetically operated

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、負荷に応じて燃焼量を連続可変する
とともに、燃焼量空気量(以下単に空気量とい
う)とガス量の比(以下、空燃比と言う)をほぼ
一定に保ち、燃焼の安定性と高効率を実現するた
めの特に家庭用機器に用いられるガス燃焼制御装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention continuously varies the combustion amount according to the load, and also changes the ratio of the combustion amount air amount (hereinafter simply referred to as the air amount) to the gas amount (hereinafter referred to as the air-fuel ratio). This invention relates to a gas combustion control device used particularly in household appliances to maintain combustion stability and high efficiency by keeping the temperature constant (as described above) almost constant.

従来例の構成とその問題点 従来のこの種のガス燃焼制御装置として第1図
に示す均圧弁方式(あるいはゼロガバナ方式)が
よく知られている。すなわち送風機1により送ら
れた空気は空気絞り2を経て混合部3へ、ガスは
均圧弁4、ガス絞り5を経て混合部3へ入り空気
とガスとが混合され、バーナ6へ導かれて燃焼す
る。
Configuration of Conventional Example and Its Problems The pressure equalization valve system (or zero governor system) shown in FIG. 1 is well known as a conventional gas combustion control device of this type. That is, the air sent by the blower 1 passes through the air throttle 2 to the mixing section 3, and the gas passes through the pressure equalizing valve 4 and the gas throttle 5 to the mixing section 3, where the air and gas are mixed and then led to the burner 6 where they are combusted. do.

均圧弁4の背圧空7には空気絞り2の上流の圧
力が導かれており、均圧弁4は均圧弁出口の圧力
を背圧室7の圧力と等しくなる様に自動調節す
る。ここで空気絞りの上流の圧力をPA、空気量
をQA、ガス絞りの上流の圧力をPG、ガス量をQG
混合部の圧力をPMとすると、空燃比QA/QG (K1,K2はそれぞれ空気絞り、ガス絞りによ
つて決まる定数。) の関係がある。
The pressure upstream of the air throttle 2 is introduced into the back pressure air 7 of the pressure equalizing valve 4, and the pressure equalizing valve 4 automatically adjusts the pressure at the outlet of the pressure equalizing valve to be equal to the pressure in the back pressure chamber 7. Here, the pressure upstream of the air restriction is P A , the air amount is Q A , the pressure upstream of the gas restriction is P G , the gas amount is Q G ,
If the pressure in the mixing section is P M , the air-fuel ratio Q A /Q G is (K 1 and K 2 are constants determined by the air restriction and gas restriction, respectively.) There is the following relationship.

均圧弁4が理想的にPG=PAに調節できれば となり、QAを変化させても空燃比は常に一定と
なるはずである。しかし均圧弁はダイアフラム8
でPAとPGとの差圧を受けて弁9を機械的に動か
すものであるから、ダイアフラムの剛性、変位に
伴うダイアフラムの有効面積の変化、弁9が受け
る均圧弁入口圧力の影響等により、必ず圧力調節
誤差ΔPGを生じる。すなわちPG=PA+ΔPGである
ので、 となり、圧力調節誤差による空燃比の変動はPA
−PMの値が小さくなるほど大きくなる。
If the pressure equalizing valve 4 can ideally adjust P G = P A Therefore, even if Q A is changed, the air-fuel ratio should always remain constant. However, the pressure equalization valve has a diaphragm 8
Since the valve 9 is mechanically moved in response to the differential pressure between P A and P G , the rigidity of the diaphragm, the change in the effective area of the diaphragm due to displacement, the influence of the equalization valve inlet pressure on the valve 9, etc. Therefore, a pressure adjustment error ΔP G is sure to occur. In other words, since P G = P A + ΔP G , Therefore, the fluctuation of air-fuel ratio due to pressure adjustment error is P A
−P The smaller the value of M , the larger it becomes.

したがつて、空燃比誤差を一定の範囲内に保ち
ながら燃焼量調節比を大きくとろうとすれば、
PA−PMの値を大きくするか、ΔPGを小さくしな
ければならなかつた。
Therefore, if you try to increase the combustion amount control ratio while keeping the air-fuel ratio error within a certain range,
Either the value of P A − P M had to be increased or ΔP G had to be decreased.

一方、家庭用のガス燃焼器として給湯用あるい
は暖房用の用途では燃焼量調節比が1/5ないし1/1
0程度必要である。そのためにPA−PMを大きくす
ると送風機がきわめて大きくなるだけでなく、供
給圧の低い都市ガス等ではPAがガス供給圧より
高くなり実現不可能である。また、都市ガス以外
のガスで実現したとしてもガス圧が低下した場合
には、空燃比制御精度が著しく悪化して良好な燃
焼状態が得られなくなるという問題があつた。更
にまたΔPGを小さくするにも均圧弁の大きさから
限度があり、経時変化の影響、調節の困難である
など、家庭用燃焼機器への適用は難しかつた。
On the other hand, when used as a household gas combustor for hot water supply or space heating, the combustion amount adjustment ratio is 1/5 to 1/1.
Approximately 0 is required. For this reason, increasing P A - P M not only makes the blower extremely large, but also makes it impossible to achieve this because P A becomes higher than the gas supply pressure, such as with city gas where the supply pressure is low. Further, even if the method is realized using a gas other than city gas, there is a problem in that when the gas pressure decreases, the accuracy of air-fuel ratio control deteriorates significantly, making it impossible to obtain a good combustion state. Furthermore, there is a limit to reducing ΔP G due to the size of the pressure equalizing valve, and it is difficult to apply to household combustion equipment due to the effects of aging and difficulty in adjustment.

発明の目的 本発明はかかる従来の問題を解消するもので、
送風機や弁装置を大型化することなく、燃焼量調
節比が大きく、かつ空燃比安定性に優れたガス燃
焼制御装置を提供することを目的とするものであ
る。
Purpose of the invention The present invention solves such conventional problems,
It is an object of the present invention to provide a gas combustion control device that has a large combustion amount control ratio and excellent air-fuel ratio stability without increasing the size of a blower or a valve device.

発明の構成 この目的を達成するために本発明は、空気側通
路とガス側通路にそれぞれの流量に応じた圧力損
失を生じさせる空気絞りとガス絞りを設け、その
下流側を合流して共通圧力にするとともに、前記
二つの絞り上流側の圧力を、圧力差に応じて電気
信号を発生する差圧センサに導びくとともに被加
熱体の温度を検出する温度検出器と、温度設定器
と、前記温度検出器の信号と前記温度設定器の信
号との差を増幅演算する温度調節回路と、前記差
圧センサの出力の絶対値が一定値以上のとき出力
を発生する差圧比較器を有し、前記温度調節回路
の出力で前記空気絞り上流に設けられた空気量調
節手段を制御し、前記差圧センサの出力に応じて
ガス絞り上流に設けられたガス量調節手段を制御
するとともに、前記差圧比較器の出力が発生した
時は、前記温度調節回路に優先して差圧センサの
信号に応じた前記空気量調節手段を制御するよう
に構成したものである。
Structure of the Invention In order to achieve this object, the present invention provides an air constriction and a gas constriction that generate pressure loss in accordance with the respective flow rates in the air side passage and the gas side passage, and merges the downstream sides thereof to create a common pressure. and a temperature detector that guides the pressure upstream of the two throttles to a differential pressure sensor that generates an electric signal according to the pressure difference and detects the temperature of the heated object, and a temperature setting device; It has a temperature adjustment circuit that amplifies and calculates the difference between the signal of the temperature detector and the signal of the temperature setting device, and a differential pressure comparator that generates an output when the absolute value of the output of the differential pressure sensor is equal to or higher than a certain value. , controlling the air amount adjusting means provided upstream of the air throttle with the output of the temperature adjusting circuit, controlling the gas amount adjusting means provided upstream of the gas restricting according to the output of the differential pressure sensor, and When an output from the differential pressure comparator is generated, the air amount adjusting means is controlled in accordance with the signal from the differential pressure sensor with priority over the temperature adjusting circuit.

この構成によつて、空気側、ガス側二つの絞り
上流側の差圧を検出する手段に電気的に作用する
差圧センサを備え、この差圧センサ出力に応じて
空燃比が一定になるようにガス量をガス量調節手
段によつて制御し、差圧センサの出力があらかじ
め定められた一定値よりも大きくなつた場合に
は、温度調節回路に優先して、空気量を空気量調
節手段で制御することでガス圧が低下した場合で
も、空燃比を補正制御するので常に安定した燃焼
状態を可能にする。
With this configuration, a differential pressure sensor that electrically acts on the means for detecting the differential pressure upstream of the two throttles on the air side and the gas side is provided, and the air-fuel ratio is kept constant according to the output of this differential pressure sensor. When the output of the differential pressure sensor becomes larger than a predetermined constant value, the air amount is controlled by the air amount adjusting means in priority to the temperature control circuit. Even if the gas pressure decreases, the air-fuel ratio is corrected and a stable combustion condition is maintained at all times.

実施例の説明 以下、本発明の一実施例を第2〜第4図の図面
を用いて説明する。なお、第2図中、第1図と同
一部品については同一番号を付している。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 2 to 4. In FIG. 2, parts that are the same as those in FIG. 1 are given the same numbers.

第2図において、4は差圧センサ、7はガス圧
力比例制御弁等のガス量調節手段(以下7をガス
圧力比例制御弁と呼ぶ)、8は熱交換器、9は出
湯管、10は出湯管上に設置されているサーミス
タ等の温度検出器であり、11及び12はそれぞ
れガス側通路及び空気側通路である。そして、電
気制御系として、温度検出器10の信号に応じて
1の送風機を制御する為に、13の温度検出回
路、14の温度設定器、15の温度調節回路、1
6の回転数調節回路等の空気量調節手段(送風機
1の下流にダンパーを設けて、このダンパーの回
転角度を変える手段も考えられる)から構成する
と共に、4の差圧センサの出力に応じて7のガス
圧力比例制御弁を制御する為に17の差圧センサ
検出回路、18の空燃比調節回路で構成し、更
に、ガス圧が低下した場合に空燃比が許容範囲を
越えないように制御する為の手段として、差圧比
較器19で構成している。
In FIG. 2, 4 is a differential pressure sensor, 7 is a gas amount adjusting means such as a gas pressure proportional control valve (hereinafter 7 is referred to as a gas pressure proportional control valve), 8 is a heat exchanger, 9 is a hot water outlet pipe, and 10 is a It is a temperature detector such as a thermistor installed on the tapping pipe, and 11 and 12 are a gas side passage and an air side passage, respectively. As an electrical control system, in order to control the blower 1 according to the signal from the temperature detector 10, 13 temperature detection circuits, 14 temperature setters, 15 temperature adjustment circuits, 1
It consists of an air amount adjusting means such as a rotational speed adjusting circuit (6) (a damper may be provided downstream of the blower 1 and a means for changing the rotation angle of this damper), and also according to the output of the differential pressure sensor (4). Consists of a differential pressure sensor detection circuit (17) and an air-fuel ratio adjustment circuit (18) to control the gas pressure proportional control valve (7), and further controls the air-fuel ratio so that it does not exceed the allowable range when the gas pressure decreases. A differential pressure comparator 19 is used as a means for this purpose.

第3図のイに於いて、ABCの直線は異常なガ
ス圧低下等のない場合の空燃比制御特性を示し、
BDEの直線は異常なガス圧低下が発生した場合
に空気量が増加してもGLよりもガス量が増加し
ない状態を示している。また、第3図のロ及びハ
はこのような場合に、空気量に対応して発生する
差圧比較器の出力及び差圧センサの出力の状況を
示している。
In Figure 3 A, the straight line ABC shows the air-fuel ratio control characteristics when there is no abnormal gas pressure drop, etc.
The straight line of BDE indicates a state in which the gas amount does not increase more than G L even if the air amount increases when an abnormal gas pressure drop occurs. 3B and 3C show the state of the output of the differential pressure comparator and the output of the differential pressure sensor that occur in response to the amount of air in such a case.

第4図は、本発明一実施例としてガス給湯機器
に応用した場合に於ける給湯能力特性図を示して
いる。
FIG. 4 shows a hot water supply capacity characteristic diagram when the present invention is applied to a gas hot water supply device as an embodiment of the present invention.

上記構成に於いてすでに、バーナ6には点火さ
れ、そして、出湯管9から流れでる出湯量が第4
図におけるWMINである時に丁度、第3図に於け
るイのA点で制御されているものとする。(すな
わちこの状態は、制御範囲の最小の状態であつて
空気量はAMIN、ガス量はGMINに制御されている。)
このような状態から温度設定器14をそのままに
しておいて、出湯量を増加させていくと出湯温度
が一時降下するように作用するので、13の温度
検出回路と14の温度設定器との間に温度偏差信
号ΔTが発生する。そして、この温度偏差信号
ΔTは15の温度調節回路、16の回転数調節回
路で処理されて1の送風機からの空気量を増加さ
せるように制御する。空気量が刻々変化するこの
ような状態では、4の差圧センサに差圧が発生す
るので、この差圧を差圧センサ検出回路17及び
空燃比調節回路18で電気的に処理して、差圧セ
ンサ4に作用している差圧が零になるように、7
のガス圧力比例制御弁からの流量を増加させるよ
うに制御する。
In the above configuration, the burner 6 is already ignited, and the amount of hot water flowing out from the hot water tap 9 reaches the fourth point.
Assume that control is being performed at point A in FIG. 3 exactly when W MIN in the figure. (In other words, this state is the minimum state of the control range, and the air amount is controlled to A MIN and the gas amount is controlled to G MIN .)
If the temperature setting device 14 is left as it is in such a state and the amount of hot water is increased, the temperature of the hot water will temporarily drop, so that the temperature setting device 14 is A temperature deviation signal ΔT is generated. This temperature deviation signal ΔT is processed by a temperature control circuit 15 and a rotation speed control circuit 16 to control the air amount from the blower 1 to increase. In such a state where the amount of air changes every moment, a differential pressure is generated in the differential pressure sensor 4, so this differential pressure is electrically processed by the differential pressure sensor detection circuit 17 and the air-fuel ratio adjustment circuit 18, and the differential pressure is 7 so that the differential pressure acting on the pressure sensor 4 becomes zero.
control to increase the flow rate from the gas pressure proportional control valve.

この時、第3図イに於いてはAからB(又はC
方向)にむかうほゞ直線に沿つた制御になる。
At this time, in Figure 3 A, from A to B (or C
direction), the control will be along a straight line.

また、第4図に於いては、eからe′にむかう線
上で、出湯温度がほゞTMAX一定に制御されてい
る。
Further, in FIG. 4, the outlet temperature is controlled to be approximately constant T MAX on the line from e to e'.

さらにまた、湯量をW′MINになるように絞りさ
らに温度設定器14をTMINになるように設定す
ると、第4図のfの状態を維持する。そして、こ
の状態から出湯量を徐々にWMAX迄増加させると、
eからe′に制御された上述の場合と同じように、
出湯温度がTMINをほゞ維持しつゝ、fからf′の状
態まで制御される。
Furthermore, when the amount of hot water is reduced to W' MIN and the temperature setting device 14 is set to T MIN , the state f in FIG. 4 is maintained. Then, if you gradually increase the amount of hot water from this state to W MAX ,
As in the above case where e is controlled from e′,
The tapping temperature is controlled from f to f' while maintaining approximately T MIN .

この状態を第3図イにもとづいて説明するとA
とCの途中の状態からACの線上に沿つて、最大
定格値Cの状態、すなわち空気量がAMAX、ガス
量がGMAXの状態まで空燃比一定で制御されるこ
とになる。
This state can be explained based on Figure 3 A.
The air-fuel ratio is controlled at a constant value along the line AC from the state halfway between and C to the state of the maximum rated value C, that is, the state where the air amount is A MAX and the gas amount is G MAX .

逆にe′やf′またはその中間の状態から出湯量を
減少させたり、最低制御温度TMIN以上の状態か
ら14の温度設定器で設定温度を低くした場合に
は、上述とは逆に、送風機1は空気量を減少する
ように制御され、第2図におけるPAの圧力が低
下する方向に作用するので差圧センサ4に見かけ
上差圧が発生する。したがつて、この差圧が零に
なるように7のガス圧力比例制御弁はガス量を減
少するように自動制御される。
On the other hand, if you reduce the hot water output from a state of e', f' or between them, or lower the set temperature using the temperature setting device 14 from a state of the minimum control temperature T MIN or higher, contrary to the above, The blower 1 is controlled to reduce the amount of air, which acts in the direction of decreasing the pressure at P A in FIG. 2, so that an apparent pressure difference is generated in the pressure difference sensor 4. Therefore, the gas pressure proportional control valve 7 is automatically controlled to reduce the gas amount so that this differential pressure becomes zero.

以上がガス圧の低下等のない正常な制御状態に
於ける作用の説明である。周知の如く家庭用のガ
ス燃焼機器に使われているガス種は、都市ガス、
天然ガス、プロパンガス等で代表される。これら
のいずれのガスも供給ガス圧が規定されており、
例えば、都市ガスの場合には、標準ガス圧100mm
H2O、最低ガス圧50mmH2O、最高ガス圧200mm
H2Oと規定されている。
The above is an explanation of the operation in a normal control state where there is no drop in gas pressure. As is well known, the types of gases used in household gas combustion appliances are city gas,
Typical examples include natural gas and propane gas. The supply gas pressure for each of these gases is specified,
For example, in the case of city gas, the standard gas pressure is 100mm.
H2O , minimum gas pressure 50mmH2O , maximum gas pressure 200mm
It is specified as H 2 O.

燃焼機器の設計は最低ガス圧の時でも燃焼機器
として規定されている燃焼特性、給湯能力等が十
分満足されるように配慮されていることは勿論で
ある。
It goes without saying that the combustion equipment is designed so that the combustion characteristics, hot water supply capacity, etc. specified for the combustion equipment are fully satisfied even at the lowest gas pressure.

ところが今第3図に於けるABの中間の燃焼状
態、給湯状態、空燃比であつたとき、異常に供給
ガス圧が低下している場合には前述と同様に、燃
焼出力を増加させようとすると空気量QAはA1
A2,A3と増加するがガス量はB点に於けるGL
り増加しないので空燃比制御特性は、ABC線に
沿わないでB点から折り曲がり、ABDEの如く
制御されることになる。つまり、ガス量が不足し
て空燃比が増加するようになる。つまり燃焼特性
等から定まる許容空燃比の限界点がD点である。
However, when the combustion state, hot water supply state, and air-fuel ratio are intermediate between AB in Fig. 3, and the supply gas pressure is abnormally low, an attempt is made to increase the combustion output as described above. Then, the air amount Q A is A 1 ,
A 2 and A 3 increase, but the gas amount does not increase more than G L at point B, so the air-fuel ratio control characteristic bends from point B without following the ABC line, and is controlled like ABDE. . In other words, the amount of gas becomes insufficient and the air-fuel ratio increases. In other words, point D is the limit point of the allowable air-fuel ratio determined from combustion characteristics and the like.

一方、このような状態にあるとき、燃焼状態を
可変させると、AB線上では所定の空燃比で制御
されているので差圧センサ4の出力は零になるよ
うに制御されるので、a1〜a2の線に沿い、又差圧
比較器19からの出力はb1〜b2の線に沿つて(す
なわち出力零)制御される。
On the other hand, in such a state, if the combustion state is varied, the output of the differential pressure sensor 4 is controlled to be zero because the air-fuel ratio is controlled at a predetermined value on the AB line, so a 1 ~ The output from the differential pressure comparator 19 is controlled along the line a 2 and along the line b 1 to b 2 (that is, the output is zero).

そして、ガス圧が低下している制御域B〜Dに
入いると、差圧センサ4からa2〜a3線に沿う出力
が発生し、更にD点から燃焼出力が増加するとa3
〜a4線に沿う出力が発生する。このときDEの線
に沿つて更に空燃比が増加する方向に変ろうとす
るが、一方、D点を越えて、すなわち空気量が
A2から増加しようとすると、差圧センサ4の出
力が一定値a3の点を越えるので、差圧比較器19
からb3〜b4に沿つた出力が発生する。このような
場合には差圧比較器19の出力により温度調節回
路15に優先して送風機1の回転数を減少させる
ように、すなわちE点からD点へひき戻すように
制御するものである。
Then, when the gas pressure enters the control range B to D where it is decreasing, the differential pressure sensor 4 generates an output along line a2 to a3 , and when the combustion output further increases from point D, a3
~a Output along 4 lines is generated. At this time, the air-fuel ratio tends to increase further along the DE line, but on the other hand, beyond point D, that is, the air amount increases.
When attempting to increase from A 2 , the output of the differential pressure sensor 4 exceeds the constant value a 3 , so the differential pressure comparator 19
From this, an output along b 3 to b 4 is generated. In such a case, the output of the differential pressure comparator 19 is used to control the temperature control circuit 15 so as to reduce the number of revolutions of the blower 1, that is, to bring it back from point E to point D.

ガス圧が異常に低下する場合として、供給圧そ
のものが低下する以外に次のものがある。すなわ
ち燃焼機器の排気系路の圧力が強風等の為に上昇
すると、ガス量が減少するので、供給ガス圧が低
下した場合と同じになる。
In addition to a drop in the supply pressure itself, there are other cases where the gas pressure drops abnormally: That is, if the pressure in the exhaust system of the combustion equipment increases due to strong winds or the like, the amount of gas decreases, which is the same as when the supply gas pressure decreases.

このように、ガス燃焼機器のガス供給圧が低下
した場合に、差圧センサ4の出力が一定値を越え
ると、差圧比較器19の出力により空気量を減少
させるような出力を送風機1に与えることで、空
燃比のバラツキを許容範囲内に入るような制御が
可能になる。したがつて一酸化炭素やススが発生
するような燃焼特性を悪化させることもなくな
る。
In this way, when the gas supply pressure of the gas combustion equipment decreases and the output of the differential pressure sensor 4 exceeds a certain value, the output of the differential pressure comparator 19 causes the blower 1 to receive an output that reduces the amount of air. By giving this, it becomes possible to control the air-fuel ratio so that the variation falls within the permissible range. Therefore, deterioration of combustion characteristics such as generation of carbon monoxide and soot is avoided.

発明の効果 以上のように、本発明のガス燃焼制御装置によ
れば、次の効果が得られるものである。
Effects of the Invention As described above, the gas combustion control device of the present invention provides the following effects.

空気側及びガス側の両通路に空気絞り及びガス
絞りを設け、その下流側を合流して共通圧力にす
るとともに、前記二つの絞り上流側の圧力を差圧
センサで検出し、燃焼出力に対応して発生する差
圧センサの出力で、空燃比が一定になるように制
御するので、従来のような機械式の均圧弁制御に
比較して、圧力調節誤差が小さくなり燃焼制御精
度が向上するばかりでなく、差圧センサの差圧を
小さくして制御することが出来るので送風機等が
小型化され、かつ、都市ガス等の供給ガス圧が低
い場合の家庭用燃焼機器への適用を可能にするも
のである。
An air throttle and a gas throttle are installed on both the air and gas side passages, and the downstream sides of these are merged to create a common pressure, and the pressure upstream of the two throttles is detected by a differential pressure sensor and corresponds to the combustion output. Since the air-fuel ratio is controlled to be constant using the output of the differential pressure sensor generated by the engine, pressure adjustment errors are reduced and combustion control accuracy is improved compared to conventional mechanical pressure equalization valve control. In addition, since the differential pressure of the differential pressure sensor can be controlled by reducing it, blowers, etc. can be made smaller, and it can be applied to household combustion equipment when the supply gas pressure, such as city gas, is low. It is something to do.

そしてまた、差圧センサの出力が一定値以上の
とき出力を発生する差圧比較器を備えたことによ
り、供給ガス圧が低下したり、燃焼機器に強風が
作用した場合には、ガス量調節手段に優先して空
気量調節手段を制御するようにしたことにより、
空燃比変動を一定範囲内になるように制御でき
る。したがつて、常に燃焼状態を安定させること
が出来るので安全性の高い燃焼機器の実現を可能
にするものである。
In addition, by equipping a differential pressure comparator that generates an output when the output of the differential pressure sensor is above a certain value, the gas amount can be adjusted when the supplied gas pressure decreases or strong winds act on the combustion equipment. By giving priority to controlling the air volume adjustment means,
Air-fuel ratio fluctuations can be controlled to within a certain range. Therefore, the combustion state can be stabilized at all times, making it possible to realize highly safe combustion equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のガス燃焼制御装置の構成説明
図、第2図は本発明のガス燃焼制御装置の一実施
例を示す構成及びブロツク説明図、第3図は本発
明の上記一実施例に於ける制御動作説明図、第4
図は本発明上記一実施例に於けるガス給湯機器の
給湯能力特性図である。 1……送風機、2……空気絞り、3……混合
部、4……差圧センサ、5……ガス絞り、6……
バーナ、7……ガス量調節手段、10……温度検
出器、11……ガス側通路、12……空気側通
路、14……温度設定器、15……温度調節回
路、16……空気量調節手段、19……差圧比較
器。
Fig. 1 is an explanatory diagram of the configuration of a conventional gas combustion control device, Fig. 2 is an explanatory diagram of the configuration and blocks of an embodiment of the gas combustion control device of the present invention, and Fig. 3 is an explanatory diagram of the above-mentioned embodiment of the gas combustion control device of the present invention. Control operation explanatory diagram, 4th
The figure is a hot water supply capacity characteristic diagram of the gas hot water supply equipment in the above-described embodiment of the present invention. 1...Blower, 2...Air throttle, 3...Mixing section, 4...Differential pressure sensor, 5...Gas throttle, 6...
Burner, 7...Gas amount adjustment means, 10...Temperature detector, 11...Gas side passage, 12...Air side passage, 14...Temperature setter, 15...Temperature adjustment circuit, 16...Air amount Adjustment means, 19...differential pressure comparator.

Claims (1)

【特許請求の範囲】[Claims] 1 空気側通路には燃焼用空気を供給する送風機
と空気量調節手段と空気絞りとを、ガス側通路に
はガス量調節手段とガス絞りを配設し、この空気
絞りとガス絞りとの下流を合流し空気とガスを混
合する混合部と、前記空気絞りの上流とガス絞り
の上流との圧力差に対応した電気信号を発生する
差圧センサを具備すると共に、バーナにより加熱
される被加熱体の温度を検出する温度検出器と、
被加熱体の出口温度を設定する温度設定器と、前
記温度検出器の信号と前記温度設定器の信号との
差を増幅演算する温度調節回路と、前記差圧セン
サの出力の絶対値が一定値以上のとき出力を発生
する差圧比較器を有し、前記温度調節回路からの
出力で前記空気量調節手段を制御し、前記差圧セ
ンサの出力に応じて前記ガス量調節手段を制御す
るとともに、前記差圧比較器の出力が発生した時
は、前記温度調節回路に優先して前記差圧センサ
の信号に応じた前記空気量調節手段を制御するガ
ス燃焼制御装置。
1 The air side passage is provided with a blower for supplying combustion air, an air amount adjustment means, and an air throttle, and the gas side passage is provided with a gas amount adjustment means and a gas restriction, and the downstream side of the air restriction and the gas restriction is installed. a mixing unit that mixes air and gas; a differential pressure sensor that generates an electric signal corresponding to the pressure difference between the upstream of the air throttle and the upstream of the gas throttle; and a heated target heated by a burner. A temperature detector that detects body temperature;
a temperature setting device that sets the outlet temperature of the heated object; a temperature adjustment circuit that amplifies and calculates the difference between the signal of the temperature detector and the signal of the temperature setting device; It has a differential pressure comparator that generates an output when the temperature is equal to or greater than a value, the air amount adjusting means is controlled by the output from the temperature adjusting circuit, and the gas amount adjusting means is controlled according to the output of the differential pressure sensor. and a gas combustion control device that controls the air amount adjusting means in accordance with the signal of the differential pressure sensor with priority over the temperature adjusting circuit when the output of the differential pressure comparator is generated.
JP57180740A 1982-10-14 1982-10-14 Gas combustion control device Granted JPS5969612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57180740A JPS5969612A (en) 1982-10-14 1982-10-14 Gas combustion control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57180740A JPS5969612A (en) 1982-10-14 1982-10-14 Gas combustion control device

Publications (2)

Publication Number Publication Date
JPS5969612A JPS5969612A (en) 1984-04-19
JPS649529B2 true JPS649529B2 (en) 1989-02-17

Family

ID=16088477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57180740A Granted JPS5969612A (en) 1982-10-14 1982-10-14 Gas combustion control device

Country Status (1)

Country Link
JP (1) JPS5969612A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011117736A1 (en) * 2011-11-07 2013-05-08 Honeywell Technologies Sarl Method for operating a gas burner
CN109519962B (en) * 2018-12-28 2023-12-01 启明星宇节能科技股份有限公司 Low-nitrogen combustion air quantity adjusting equipment for boiler

Also Published As

Publication number Publication date
JPS5969612A (en) 1984-04-19

Similar Documents

Publication Publication Date Title
US5685707A (en) Integrated burner assembly
US20080057451A1 (en) Boiler and combustion control method
EP3404326B1 (en) System and approach for controlling a combustion chamber
JPS649529B2 (en)
JPS5843655B2 (en) combustion device
JPH0221483B2 (en)
JPS649527B2 (en)
JP2003042444A (en) Water heater
JPS60122818A (en) Device for controlling combustion of gas
JP7413145B2 (en) combustion device
US20230112151A1 (en) Premixing Apparatus
JPH033848B2 (en)
JPS6029516A (en) Gas combustion controller
JP7257898B2 (en) Oxygen ratio control system
JP7073025B1 (en) Combustion equipment
JP2669662B2 (en) Water heater control device
JP2946279B2 (en) Control method of gas combustion device and gas combustion device
JPS59142329A (en) Combustion control device
JP2021025722A (en) Premixing device
JPS649525B2 (en)
JP3018811B2 (en) Combustion control device
JPS5997421A (en) Combustion controlling device
JPH033852B2 (en)
JPS6026219A (en) Gas combustion controller
JPH0449478Y2 (en)