JPS59212621A - Gas combustion controller - Google Patents

Gas combustion controller

Info

Publication number
JPS59212621A
JPS59212621A JP58086901A JP8690183A JPS59212621A JP S59212621 A JPS59212621 A JP S59212621A JP 58086901 A JP58086901 A JP 58086901A JP 8690183 A JP8690183 A JP 8690183A JP S59212621 A JPS59212621 A JP S59212621A
Authority
JP
Japan
Prior art keywords
pressure
differential pressure
gas
air
pressure sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58086901A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Yokoajiro
義幸 横網代
Hideo Uematsu
英夫 植松
「なつめ」田 武志
Takeshi Natsumeda
Yoshio Yamamoto
山本 芳雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58086901A priority Critical patent/JPS59212621A/en
Publication of JPS59212621A publication Critical patent/JPS59212621A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/12Integration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/02Measuring filling height in burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/18Measuring temperature feedwater temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/02Air or combustion gas valves or dampers
    • F23N2235/06Air or combustion gas valves or dampers at the air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/14Fuel valves electromagnetically operated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/18Groups of two or more valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

PURPOSE:To increase a combustion amount regulating ratio and to stabilize an air-fuel ratio, by a method wherein either an air amount regulating means or gas amount regulating means is controlled dependently on the load of a burner, and the other is controlled according to a difference between two output signals from a differential pressure signal discriminating circuit. CONSTITUTION:When pressure switching valves 14a and 14b are borught into a first state, PG and PA are applied in pressure guiding holes 13 and 15 respectively, of a differential pressure sensor 12. When the pressure switching valves 14a and 14b are brought into a second state, PA and PG are applied in the pressure guiding holes 13 and 15, respectively, of the differential pressure sensor. Namely, the output of the differential pressure sensor alternately produces an output, corresponding to (PA-PG), and an output corresponding to -(PA-PG) having reverse polarity thereto. A gas pressure proportional valve 10 is controlled by feedback so that an input signal (PA-PG) is brought to zero by means of an air fuel ratio regulating circuit 19 including an integrating computing element. This causes maintaining of PG=PA without being effected by the error of a differential pressure sensor 12 and a differential pressure sensor detecting circuit 16.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、負荷に応じて燃焼量を連続可変するとともに
、燃焼用空気量(以下、単に空気量と言う)とガス量の
比(以下、空燃比と言う)をほぼ一定に保ち、燃焼の安
定性と高効率を実現するだめの、特に家庭用機器に用い
られる高負荷ガス燃焼制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention continuously varies the amount of combustion depending on the load, and also changes the ratio of the amount of combustion air (hereinafter simply referred to as air amount) to the amount of gas (hereinafter referred to as air amount). This invention relates to a high-load gas combustion control device used particularly in household appliances, which maintains a nearly constant fuel ratio (fuel ratio) and achieves combustion stability and high efficiency.

従来例の構成とその問題点 従来のこの種の高負荷ガス燃焼17制御装置として第1
図に示す均圧弁方式(あるいはゼロガバナ一方式)がよ
く知られている。
Configuration of conventional example and its problems This is the first conventional high-load gas combustion 17 control device of this type.
The pressure equalizing valve system (or zero governor one-way system) shown in the figure is well known.

図 において、送風機1により送られた空気は空気絞り
2を経て混合部3へ導かれ、一方ガスは均圧弁4.ガス
絞り5を経て混合部3へ導れ、混合ガスはバーす6へ導
かれて燃焼する。
In the figure, air sent by a blower 1 is guided to a mixing section 3 via an air throttle 2, while gas is passed through a pressure equalizing valve 4. The mixed gas is led to the mixing section 3 through the gas throttle 5, and the mixed gas is led to the bar 6 where it is combusted.

ここで、均圧弁4の背圧室7には空気絞り2の」二流の
圧力PAが導かれており、均圧弁4はその出口圧力pG
が背圧室7の圧力と等しくなるように自動調節する。空
気量をQA、ガス量をQG、混合部の圧力をPMとする
と、空燃比QA/QGば、次の関係がある。
Here, the pressure PA of the second flow of the air restrictor 2 is introduced into the back pressure chamber 7 of the pressure equalization valve 4, and the pressure equalization valve 4 has an outlet pressure pG
is automatically adjusted so that it becomes equal to the pressure in the back pressure chamber 7. When the air amount is QA, the gas amount is QG, and the pressure of the mixing section is PM, the air-fuel ratio QA/QG has the following relationship.

QG   K2 X ’V’ ]れ「ヨーPM(K1.
 K2はそれぞれ空気絞り、ガス絞りの定数)均圧弁に
より理想的にPG−PAに調節できれば、式1は となり、空燃比はQA 、 QGに関係なく常に一定に
なるはずである。
QG K2
(K2 is the constant of air throttling and gas throttling, respectively) If it can be ideally adjusted to PG-PA using a pressure equalization valve, then Equation 1 will become as follows, and the air-fuel ratio should always be constant regardless of QA and QG.

しかし均圧弁4はダイアフラム8でPGとPAとの圧力
差を受けて、その圧力差により発生する力で弁9を動か
して出口圧力PGを調節するものであるからPGとPA
の間には必ず定常偏差が生じる上、さらにダイアフラム
の剛性、変位に伴うダイアフラムの有効受圧面積の変化
、弁が受ける均圧弁入口圧力等の影響で圧力調節誤差Δ
pGを生じる。すなわちPQ : PA十ΔPGであり
で表わされる。
However, the pressure equalizing valve 4 receives the pressure difference between PG and PA at the diaphragm 8, and uses the force generated by the pressure difference to move the valve 9 to adjust the outlet pressure PG.
In addition to this, there is always a steady deviation between the two, and the pressure adjustment error Δ is also caused by the effects of the diaphragm's rigidity, changes in the effective pressure-receiving area of the diaphragm due to displacement, and the equalization valve inlet pressure that the valve receives.
Generates pG. That is, PQ:PA+ΔPG is expressed as.

式3より、燃焼量を小さくするために空気量QAを小き
くしていくと(PA−PM)はQAの2乗に比例するた
め、一定のΔPGに対して空燃比の誤差は急激に大きく
なるのである。
From Equation 3, if the air amount QA is decreased in order to reduce the combustion amount, (PA-PM) is proportional to the square of QA, so the error in the air-fuel ratio increases rapidly for a constant ΔPG. It is.

したがって空燃比を一定の誤差範囲に保って燃焼の安定
性と高効率を保ちながら燃焼量調節比を太きくしようと
すれば(PA−PM)の値を充分大きくとるか、ΔPG
を小さくする必要がある二(PA−PG)を大きくする
ことは、空気絞りの開口面積を小さくすることであり送
風機の供給圧力の増加を意味し大きな送風機を必要とす
るばかりでなく、供給圧力の低い家庭用都市ガス等では
PAがガス供給圧より高くなり必要なガス量を得ること
ができない等の問題が生じる。またΔPGを小さくする
ためには、均圧弁のダイアフラムが大きくなり、さらに
経時変化、調整が困難になる等の問題があり現実的では
ない。
Therefore, if you want to increase the combustion amount control ratio while keeping the air-fuel ratio within a certain error range and maintaining combustion stability and high efficiency, you must make the value of (PA-PM) sufficiently large or ΔPG
Increasing (PA-PG) means reducing the opening area of the air throttle, which means increasing the supply pressure of the blower, which not only requires a larger blower, but also increases the supply pressure. With household city gas or the like having a low PA, the PA becomes higher than the gas supply pressure, causing problems such as not being able to obtain the required amount of gas. Further, in order to reduce ΔPG, the diaphragm of the pressure equalizing valve becomes large, and there are also problems such as deterioration over time and difficulty in adjustment, which is not practical.

家庭用のガス燃焼器として給湯あるいは暖房の用途で比
例制御により湯温制御等を行なおうとすれば燃焼量調節
比が115ないし1/10程度必要となり、従来例の方
式の適用は困難であった。
If a gas combustor for home use is used for hot water supply or space heating, and if the temperature of hot water is to be controlled by proportional control, a combustion amount adjustment ratio of about 115 to 1/10 is required, making it difficult to apply conventional methods. Ta.

発明の目的 本発明はかかる従来の問題を解消するもので、送風機や
弁装置を大型化することなく、燃焼量調節比が大きく、
かつ空燃比安定性に優れた高負荷ガス燃焼制御装置を提
供することを目的とするものである。
OBJECT OF THE INVENTION The present invention solves the problems of the conventional technology, and it is possible to achieve a large combustion amount control ratio without increasing the size of the blower or valve device.
Another object of the present invention is to provide a high-load gas combustion control device with excellent air-fuel ratio stability.

発明の構成 この目的を達成するだめに本発明は、空気通路に送風機
と空気量調節手段と空気絞りとを、ガス通路にガス量調
節手段とガス絞りとをそれぞれ設け、空気絞りの下流と
ガス絞りの下流とを合流する混合する混合部と、圧力差
に応じ/こ電気信号を発生する差圧センサーと、第1の
状態で空気絞り上流の圧力を差圧センサーの第1導圧孔
にガス絞り上流の圧力を差圧センサーの第2導圧孔にそ
れぞれ導き、第2の状態で空気絞り上流の圧力を差圧セ
ンサ〜の第2導圧孔にガス絞り上流の圧力を差圧センサ
ーの第1導圧孔にそれぞれ導く圧力切換弁と、圧力切換
弁に同期して差圧センサーの出力信号から圧力切換弁の
2つの状態に対応する2つの差圧信号を抽出する差圧信
号弁別回路とを設け、バーナの負荷に応じて空気量調節
手段あるいはガス量調節手段のいずれかを制御し、他方
を差圧信号弁別回路の2つの出力信号の差に応じて制御
する様構成したものである。
Structure of the Invention In order to achieve this object, the present invention provides an air blower, an air amount adjusting means, and an air restrictor in the air passage, a gas amount adjusting means and a gas restrictor in the gas passage, and connects the downstream side of the air restrictor with the gas restrictor. A mixing unit that mixes the air constrictor downstream and a differential pressure sensor that generates an electric signal according to the pressure difference; and a differential pressure sensor that generates an electric signal in response to the pressure difference; The pressure upstream of the gas throttle is guided to the second pressure guide hole of the differential pressure sensor, and in the second state, the pressure upstream of the air throttle is transferred to the second pressure guide hole of the differential pressure sensor. and a differential pressure signal discrimination device that extracts two differential pressure signals corresponding to two states of the pressure switching valve from the output signal of the differential pressure sensor in synchronization with the pressure switching valve. A circuit configured to control either the air amount adjusting means or the gas amount adjusting means according to the load of the burner, and the other according to the difference between the two output signals of the differential pressure signal discrimination circuit. It is.

この構成によって、差圧センサ一部で発生する検出誤差
が差圧信号弁別回路の2つの信号の差をとることで相殺
され、空気絞り上流の圧力とガス絞り上流の圧力との圧
力差を正確に検出できるため、前記2圧力を高精度に等
圧死する作用を有する。
With this configuration, the detection error that occurs in a part of the differential pressure sensor is canceled out by taking the difference between the two signals of the differential pressure signal discrimination circuit, and the pressure difference between the pressure upstream of the air throttle and the pressure upstream of the gas throttle is accurately determined. Since it can detect the two pressures, it has the effect of equalizing the two pressures with high accuracy.

実施例の説明 以下、本発明の一実施例を第2図、第3図を用いて詳細
に説明する。第2図において、送風機1の下流に空気絞
り2が、その下流に混合部3が接続される。一方ガス通
路はガス比例制御弁10.ガス絞り5を経て混合部3に
接続される。混合部3の出口はバーナ6に接続され、混
合ガスはバーナ6で燃焼し熱交換器11を通る被・加熱
体を加熱する。差圧センサー12の導圧孔A13は三方
圧力切換弁14−aの共通ボートに接続され、導圧孔8
15は圧力切換弁14−bの共通ボートに接続される。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to FIGS. 2 and 3. In FIG. 2, an air throttle 2 is connected downstream of the blower 1, and a mixing section 3 is connected downstream thereof. On the other hand, the gas passage is connected to the gas proportional control valve 10. It is connected to the mixing section 3 via a gas throttle 5. The outlet of the mixing section 3 is connected to a burner 6, and the mixed gas is combusted by the burner 6 and passes through a heat exchanger 11 to heat an object to be heated. The pressure guiding hole A13 of the differential pressure sensor 12 is connected to the common boat of the three-way pressure switching valve 14-a, and the pressure guiding hole A13 of the differential pressure sensor 12 is connected to the common boat of the three-way pressure switching valve 14-a.
15 is connected to a common boat of the pressure switching valve 14-b.

ガス絞り上流のガス通路は切換弁14−aの第1状態ボ
ート及び切換弁14−bの第2状態ポートに接続され、
空気絞り上流の空気通路は切換弁14−bの第1状態ボ
ート及び切換弁14−aの第2状態ポートに接続される
。切換弁14−aと14−bは同一駆動信号に接続され
る。差圧センサー12の出力信号は差圧センサー検出回
路16を経て差圧信号弁別回路17に入力され、嘔らに
差圧信号弁別回路17の2つの出力信号は差動増幅器1
8の正相、逆相入力端子にそれぞれ加えられる。差動増
幅器18の出力信号は積分演算要素を含む空燃比調節回
路19へ加えられさらにその出力でガス比例制御弁10
を駆動する。差圧信号弁別回路17はm= 畳切換スイノチ20−a、20−bを含み、スイッチ2
0−Δの常閉端子とスイッチ20−bの常閉端子とが差
圧センサー検出回路16の出力に、スイッチ20−aの
常閉端子とスイッチ20−bの常開端子とがアース(信
号基草電位)に、スイッチ20−aの共通端子が差動増
幅器18の正相入力端子に、スイッチ20−bの共通端
子が差動増幅器18の逆相入力端子にそれぞれ接続され
るとともに、タイミング発生回路21の出力は第1状態
の時間と第2状態の時間とが等しくかつ交互に繰り返す
ものであり、圧力切換弁14−a。
The gas passage upstream of the gas throttle is connected to the first state port of the switching valve 14-a and the second state port of the switching valve 14-b,
The air passage upstream of the air throttle is connected to the first state port of the switching valve 14-b and the second state port of the switching valve 14-a. The switching valves 14-a and 14-b are connected to the same drive signal. The output signal of the differential pressure sensor 12 is input to the differential pressure signal discrimination circuit 17 via the differential pressure sensor detection circuit 16, and the two output signals of the differential pressure signal discrimination circuit 17 are input to the differential amplifier 1.
It is applied to the positive phase and negative phase input terminals of 8, respectively. The output signal of the differential amplifier 18 is applied to an air-fuel ratio adjustment circuit 19 including an integral calculation element, and the output signal is applied to the gas proportional control valve 10.
to drive. The differential pressure signal discrimination circuit 17 includes m=tatami switching switches 20-a and 20-b, and a switch 2
The normally closed terminal of 0-Δ and the normally closed terminal of switch 20-b are connected to the output of the differential pressure sensor detection circuit 16, and the normally closed terminal of switch 20-a and the normally open terminal of switch 20-b are connected to ground (signal The common terminal of the switch 20-a is connected to the positive phase input terminal of the differential amplifier 18, and the common terminal of the switch 20-b is connected to the negative phase input terminal of the differential amplifier 18. The output of the generating circuit 21 is such that the first state time and the second state time are equal and repeat alternately, and the pressure switching valve 14-a.

14−b及び切換スイッチ20−a、20−bを駆動す
る。一方熱交換器11の出口に設けられた温度センサー
22の信号と温度設定回路23との差が送風機回転数制
御部を含む温度調節回路24に入力され、温度調節回路
24の出力信号を送風機1に加える。ここでは、送風機
1を回転数制御することで空気量調節手段を構成してい
る。
14-b and the changeover switches 20-a and 20-b. On the other hand, the difference between the signal of the temperature sensor 22 provided at the outlet of the heat exchanger 11 and the temperature setting circuit 23 is input to the temperature adjustment circuit 24 including the blower rotation speed control section, and the output signal of the temperature adjustment circuit 24 is sent to the blower 1. Add to. Here, the air amount adjusting means is configured by controlling the rotation speed of the blower 1.

」1記構成において、圧力切換弁14−a、14−bが
第1状態の時は差圧センサー12の導圧孔A13にPG
導圧孔B15にpAが加えられ、圧力切換弁14−1.
14−bが第2状態のときは差圧センサーの導圧孔A1
3にPA導圧孔B1BにpGが加えられる。すなわち差
圧センサーの出力は(PA−PG)とその逆の極性の−
(PA −PG )に対応した交互の出力が得られる。
1, when the pressure switching valves 14-a and 14-b are in the first state, the PG is connected to the pressure guiding hole A13 of the differential pressure sensor 12.
pA is applied to the pressure guiding hole B15, and the pressure switching valve 14-1.
When 14-b is in the second state, the pressure guiding hole A1 of the differential pressure sensor
3, pG is applied to the PA pressure guiding hole B1B. In other words, the output of the differential pressure sensor is (PA-PG) and the opposite polarity -
Alternate outputs corresponding to (PA - PG) are obtained.

差圧センサー12及び差圧センサー検出回路16には温
度ドリフト、経時変化9組み立てバラツキ等の誤差要因
があり、差圧センサー検出回路16の出力信号ばΔP+
εで表わされる。(ΔP:差圧、ε:誤差)第3図にお
いて(alはタイミング発生回路の出力信号、(blは
差圧検出回路の出力信号であり、誤差を81とすると状
態10時は(PA−PG)+ε1、状態2の時は(PA
−PG)+81となる。Uid差動増幅器18の正相入
力端子の信号で(b)の第1状態の期間のみが加えられ
る。
The differential pressure sensor 12 and the differential pressure sensor detection circuit 16 have error factors such as temperature drift and changes over time 9 assembly variations, and the output signal of the differential pressure sensor detection circuit 16 is ΔP+.
It is expressed as ε. (ΔP: differential pressure, ε: error) In FIG. )+ε1, when state 2 is (PA
-PG)+81. The signal at the positive phase input terminal of the Uid differential amplifier 18 is added only during the first state period (b).

(dlは差動増幅器18の逆相入力端子の(M号でtb
+の第2状態の期間のみが加えられる。(el−(i’
)/i差動増幅器18の出力信号であり、ここで第1状
態と第2状態の時間が等しいので」l滑回路等でその平
均値を求めると(e)−(iilの破線で示す(PA−
PG)なる信号が得られる。両状態の誤差成分ε1は互
いに逆相となって打ち消されるのがわかる。第3図右側
のように誤差が82に変化しても同じく(PA −、−
PG )の信号が得られる。よって積分演算要素を含む
空燃比調節回路19でその入力信号すなわち(PA−P
G)を零とする様ガス圧力比例弁10をフィードバック
制御され、差圧センサー12及び差圧センサー検出回路
16の誤差に影響されずにPG:PAに保つことができ
る。
(dl is the negative phase input terminal of the differential amplifier 18 (tb in the M number)
Only the period of the + second state is added. (el-(i'
)/i is the output signal of the differential amplifier 18, and since the time in the first state and the second state are equal, the average value is calculated using a slip circuit or the like, and the result is (e) - (iil shown by the broken line). PA-
PG) is obtained. It can be seen that the error components ε1 in both states have opposite phases and cancel each other out. Even if the error changes to 82 as shown on the right side of Fig. 3, it is the same (PA -, -
PG) signal is obtained. Therefore, the input signal (PA-P
The gas pressure proportional valve 10 is feedback-controlled so as to make G) zero, and can be maintained at PG:PA without being affected by errors of the differential pressure sensor 12 and differential pressure sensor detection circuit 16.

被加熱体の流量、設定温度等が変化すると温度調節回路
24が送風機1の回転数を調節して空気111、を調節
する。このときPAの変化に追従して前述の様に(PA
=PG)となる様ガス量を自動調節するため、従来例で
説明したように空燃比を一定に保ちながら燃焼量が調節
され、熱交換器11出口の温度が設定温度に等しく制御
されるのである。
When the flow rate of the object to be heated, the set temperature, etc. change, the temperature adjustment circuit 24 adjusts the rotation speed of the blower 1 to adjust the air 111. At this time, following the change in PA, as described above (PA
= PG), the combustion amount is adjusted while keeping the air-fuel ratio constant as explained in the conventional example, and the temperature at the outlet of the heat exchanger 11 is controlled to be equal to the set temperature. be.

この時、差圧センサーの誤差に影響されないため燃焼量
調節比を大きくしても空燃比を安定に保てる効果がある
。壕だ空気絞り2両端の圧力差を小さく設定できるので
送風機は小型にでき、寸だ差圧センサーは高精度を要求
されないので、小型にかつ安価にできるという効果があ
る。差圧センサーに温度変動が大きいため従来のこの種
の用途には不向きであった半導体拡散型圧力センサー等
を使用することができる。応答速度か速いだめ短い周期
で圧力を切換えることができ、平滑回路が簡単にでき、
かつ制御系の応答速度に影響を力えることもない。よっ
てコンパクトな装置を提供できる効果がある。
At this time, since it is not affected by the error of the differential pressure sensor, it has the effect of keeping the air-fuel ratio stable even if the combustion amount adjustment ratio is increased. Since the pressure difference between both ends of the trench air throttle 2 can be set small, the blower can be made small, and the differential pressure sensor does not require high precision, so it has the effect of being able to be made small and inexpensive. It is possible to use a differential pressure sensor such as a semiconductor diffusion type pressure sensor, which is conventionally unsuitable for this type of application due to large temperature fluctuations. The response speed is fast and the pressure can be switched in short cycles, making it easy to create a smoothing circuit.
Moreover, it does not affect the response speed of the control system. Therefore, it is possible to provide a compact device.

次に本発明の他の実施例を第4図、第5図を用いて説明
する。第4図において前記実施例と異なる点は、差圧信
号弁別回路17が、第1電圧記憶回路25及び第2電圧
記憶回路26を含み、それぞれの入力端子にセンサ検出
回路16の信号が加えられる。タイミング発生回路21
は圧力切換弁14−a、14−bを駆動するとともに、
第1゜第2電圧記憶回路にそれぞれ記憶更新制御信号を
加える様構成し、第1.第2の電圧記憶回路の出力信号
の差を空燃比調節回路の入力信号としたことである。第
6図において(alは圧力切換弁14−a。
Next, another embodiment of the present invention will be described with reference to FIGS. 4 and 5. The difference in FIG. 4 from the above embodiment is that the differential pressure signal discrimination circuit 17 includes a first voltage storage circuit 25 and a second voltage storage circuit 26, and the signal of the sensor detection circuit 16 is applied to each input terminal. . Timing generation circuit 21
drives the pressure switching valves 14-a and 14-b, and
The first and second voltage storage circuits are configured to apply memory update control signals to the first and second voltage storage circuits, respectively. The difference between the output signals of the second voltage storage circuit is used as the input signal of the air-fuel ratio adjustment circuit. In FIG. 6 (al is the pressure switching valve 14-a).

14−bの駆動信号、(blは差圧センサー検出回路の
出力信号である。(C)及び(dlはそれぞれ第1及び
第2電圧記憶回路に加えられる記憶更新制御信号であり
、第1電圧記憶回路の出力電圧は(PA −PG )+
どの連続信号((eン一(it)、第2電圧記憶回路の
出力電圧は−(PA −PG、 )+εの連続信号(t
el −tii) )となる。この2つの信号を差動増
幅器で減算してtelの斜線で示しだ2X(PA−PG
)のみが取り出され、前記実施例と同様に誤差εが打ち
消されているのがわかる。よって前記実施例と同等の効
果が得られるとともに、電圧記憶回路はアナロクメモリ
ー回路でもデジタルメモリー回路でもよく、特にマイク
ロコンピータを使って構成した場合、タイミング発生回
路、電圧記憶回路。
14-b drive signal, (bl is the output signal of the differential pressure sensor detection circuit. (C) and (dl are the memory update control signals applied to the first and second voltage storage circuits, respectively, and the first voltage The output voltage of the memory circuit is (PA - PG) +
Which continuous signal ((e-1(it)), the output voltage of the second voltage storage circuit is -(PA -PG, )+ε continuous signal (t
el-tii) ). These two signals are subtracted by a differential amplifier and are shown as 2X (PA-PG
) is extracted, and it can be seen that the error ε is canceled out as in the previous example. Therefore, the same effect as the above embodiment can be obtained, and the voltage storage circuit may be an analog memory circuit or a digital memory circuit, and especially when configured using a microcomputer, the voltage storage circuit can be used as a timing generation circuit or a voltage storage circuit.

差動増幅回路、空燃比調節回路も含めてマイクロコンピ
ュータ内部回路及びソフトウェアによって実現できるた
め、電気回路の簡略化、低コスト化が容易である・ 以上の実施例は、温度調節回路の出力で空気」11調節
手段を、空燃比調節回路の出力でガス量調節回路の出力
でガス量調節手段をそれぞれ制御するものを説明したが
、逆に温度調節回路の出力でガス量調節手段を、空燃比
調節回路の出力で空気量調節手段をそれぞれ制御しても
全く同様の効果を有するものである。
Since the differential amplifier circuit and the air-fuel ratio adjustment circuit can be realized using the internal circuits of a microcomputer and software, it is easy to simplify the electric circuit and reduce costs. 11 has been explained in which the output of the air-fuel ratio adjustment circuit controls the gas amount adjustment means with the output of the gas amount adjustment circuit, but conversely, the output of the temperature adjustment circuit controls the gas amount adjustment means, and the air-fuel ratio Exactly the same effect can be obtained even if the air amount adjusting means are individually controlled by the output of the adjusting circuit.

発明の効果 以上の様に本発明のガス燃焼制御装置によれば次の効果
が得られる。
Effects of the Invention As described above, the gas combustion control device of the present invention provides the following effects.

(1)空気通路に送風機と空気量調節手段と空気絞りと
、ガス通路にガス量調節手段とガス絞りと、前記空気絞
り下流とガス絞り下流とを合流する混合部と、差圧セン
サーと、第1の状態で前hピ空気絞り上流の圧力を前記
差圧センサーの第1導圧孔に、前記ガス絞り上流の圧力
を差圧センサーの第2導圧孔に導き、第2の状態で逆に
空気量り上流の圧力を差圧センサーの第2導圧孔にガス
絞り上流の圧力を差圧センサーの第1導圧孔にそれぞれ
導く圧力切換弁と、前記圧力切換弁に同期して前記差圧
センサーから前記切換弁の第1.第2の状態にそれぞれ
対応する2つの差圧信号を抽出する差圧信号弁別回路を
有し、バーナーの負荷に応じて前記空気量調節手段を制
御し、前記差圧信号弁別回路の2つの出力の差に応じて
他方を制御するよう構成したことにより、負荷に応じて
燃焼量が自動調節されるとともに、差圧センサーの誤差
が相殺されて、空気絞p′上流の圧力とガス絞り上流の
圧力とが高精度に等圧死されるので空燃比が一定に保た
れる効果がある。
(1) A blower, an air amount adjusting means, and an air restrictor in an air passage, a gas amount adjusting means and a gas restrictor in a gas passage, a mixing section that joins the downstream of the air restricting and the downstream of the gas restricting, and a differential pressure sensor; In the first state, the pressure upstream of the air throttle is guided to the first pressure guide hole of the differential pressure sensor, the pressure upstream of the gas throttle is guided to the second pressure guide hole of the differential pressure sensor, and in the second state Conversely, a pressure switching valve that guides the pressure upstream of the air meter to the second pressure guiding hole of the differential pressure sensor and the pressure upstream of the gas throttle to the first pressure guiding hole of the differential pressure sensor, respectively; from the differential pressure sensor to the first one of the switching valves. It has a differential pressure signal discrimination circuit that extracts two differential pressure signals respectively corresponding to the second state, and controls the air amount adjusting means according to the load of the burner, and controls the two outputs of the differential pressure signal discrimination circuit. By controlling the other according to the difference between the two, the combustion amount is automatically adjusted according to the load, and the error of the differential pressure sensor is canceled out, so that the pressure upstream of the air throttle p' and the pressure upstream of the gas throttle are Since the pressure is equalized with high precision, the air-fuel ratio is kept constant.

(2)空気絞りの両端の圧力差を小さく設定できるので
送風機の発生圧力が小さくてすみ小型化できる効果があ
る。
(2) Since the pressure difference between both ends of the air restrictor can be set small, the pressure generated by the blower can be reduced, resulting in an effect of miniaturization.

(3)  差圧センサーはその誤差が相殺されるため、
高精度が要求されないため、小型に壕だ安価にてきまた
初期零調整も不要になる効果がある。
(3) Differential pressure sensors cancel out their errors, so
Since high precision is not required, it is small and inexpensive, and has the advantage of eliminating the need for initial zero adjustment.

(4)  以」二により、燃焼量調節比が大きく、高効
率な家庭用燃焼機をコンパクトにまだ安価に提供できる
効果がある。
(4) As a result of the above, it is possible to provide a compact and inexpensive household combustion machine with a large combustion amount control ratio and high efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のガス燃焼制御装置のブロック図、第2図
は本発明のガス燃焼制御装置の一実施例のブロック図、
第3図はその動作波形図、第4図は本発明の他の実施例
のブロック図、第5図はその動作波形図である。 1・・・・・・送風機、2 ・・・・空気絞り、3・・
・・混合部、5・・・・・ガス絞り、12・・・・・・
差圧センサー、14−a。 14−b・・・・・・圧力切換弁、16・・・・・・差
圧センサー検出回路、17・・・・・・差圧信号弁別回
路、18・・・・・・差動増幅器、20−a 、 20
−b・・・・・・切換スイッチ、21・・・タイミング
発生回路、25・・・第1電圧記憶回路、26・・・・
・・第2電圧記憶回路。 代理人の氏名 弁理士 中 尾 敏 男 はが1名第1
図 第2図 第3図 (pA−ル)−εf          (1’/l鳴
)−と。 ii (++A−1’cy+ 第4図
FIG. 1 is a block diagram of a conventional gas combustion control device, FIG. 2 is a block diagram of an embodiment of the gas combustion control device of the present invention,
FIG. 3 is an operational waveform diagram, FIG. 4 is a block diagram of another embodiment of the present invention, and FIG. 5 is an operational waveform diagram. 1...Blower, 2...Air throttle, 3...
...Mixing section, 5...Gas throttle, 12...
Differential pressure sensor, 14-a. 14-b...Pressure switching valve, 16...Differential pressure sensor detection circuit, 17...Differential pressure signal discrimination circuit, 18...Differential amplifier, 20-a, 20
-b... Changeover switch, 21... Timing generation circuit, 25... First voltage storage circuit, 26...
...Second voltage storage circuit. Name of agent: Patent attorney Toshio Nakao (1st person)
Figure 2 Figure 3 (pA-le) - εf (1'/l sound) - and. ii (++A-1'cy+ Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)空気通路に燃焼用空気を供給する送風機と空気−
II:調節手段と空気絞りとを有し、ガス通路にガス量
調節手段とガス絞りとを有し、前記空気絞りの下流と前
記ガス絞りの下流とを合流し空気とガスとを混合する混
合部と、導かれた2つの圧力の圧力差に応じた電気信号
を発生する差圧センサーと、2つの切換状態を持ちその
第1の状態て前記空気絞シ上流の圧力を前記差圧センサ
ーの第1の導圧孔に前記ガス絞シ上流の圧力をT)j記
差圧センザの第2の導圧孔にそれぞれ導き第2の状態で
前記空気絞り上流の圧力を前記差圧センサの第2の導圧
孔に前記ガス絞り上流の圧力を前記差圧センサーの第1
の導圧孔にそれぞれ導く様構成された圧力切換弁と、前
記月力切換力゛に同期して前記切換弁の2つの状態 3
に対応した2つの差圧信号を抽出する差圧信号弁別回路
とを有し、バーナの負荷に応じて前記空気量調節手段あ
るいは前記ガス量調節手段のいずれかを制御し、他方を
前記差圧信号弁別回路の2つの出力信号の差に応じて制
御したガス燃焼制御装置。
(1) Blower and air supplying combustion air to the air passage
II: A mixing device that has an adjusting means and an air restrictor, has a gas amount adjusting means and a gas restrictor in the gas passage, and mixes air and gas by merging downstream of the air restrictor and downstream of the gas restrictor. a differential pressure sensor that generates an electrical signal in accordance with the pressure difference between the two introduced pressures; and a differential pressure sensor that has two switching states and in its first state changes the pressure upstream of the air throttle to the differential pressure sensor. The pressure upstream of the gas throttle is introduced into the first pressure guide hole to the second pressure guide hole of the differential pressure sensor T)j, and in the second state, the pressure upstream of the air throttle is transferred to the pressure upstream of the differential pressure sensor. The pressure upstream of the gas throttle is input to the first pressure guiding hole of the differential pressure sensor.
a pressure switching valve configured to lead the pressure to the respective pressure guiding holes; and two states of the switching valve in synchronization with the monthly power switching force.
and a differential pressure signal discrimination circuit that extracts two differential pressure signals corresponding to A gas combustion control device that performs control according to the difference between two output signals of a signal discrimination circuit.
(2)圧力切換弁が第1.第2の状態に等時間ずつ交互
に切換わるとともに、差圧信号弁別回路が111記圧力
切換弁の動作に同期して前記差圧センサーの信号を2つ
の出力端子に切換接続するスイッチ回路で構成され、前
記スイッチ回路の2つの出力信号の差信号の平均値を制
御信号とした特許M!!I求の範囲第1項記載のガス燃
焼制御装置。
(2) The pressure switching valve is the first. The switch circuit alternately switches to the second state at equal time intervals, and the differential pressure signal discrimination circuit switches and connects the signal of the differential pressure sensor to two output terminals in synchronization with the operation of the pressure switching valve No. 111. Patent M!, in which the average value of the difference signal between the two output signals of the switch circuit is used as the control signal! ! 1. The gas combustion control device according to item 1.
(3)差圧信号弁別回路が差圧センサーの信号をn己憶
する第1.第2の電圧記憶回路を有し、その記憶更新動
作を圧力切換弁の2つの切換状態にそれぞれ同期させる
様構成した特許請求の範囲第1項記載のガス燃焼制御装
置。
(3) The first circuit in which the differential pressure signal discrimination circuit memorizes the signal of the differential pressure sensor. 2. The gas combustion control device according to claim 1, further comprising a second voltage storage circuit, the memory updating operation of which is synchronized with the two switching states of the pressure switching valve.
JP58086901A 1983-05-18 1983-05-18 Gas combustion controller Pending JPS59212621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58086901A JPS59212621A (en) 1983-05-18 1983-05-18 Gas combustion controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58086901A JPS59212621A (en) 1983-05-18 1983-05-18 Gas combustion controller

Publications (1)

Publication Number Publication Date
JPS59212621A true JPS59212621A (en) 1984-12-01

Family

ID=13899732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58086901A Pending JPS59212621A (en) 1983-05-18 1983-05-18 Gas combustion controller

Country Status (1)

Country Link
JP (1) JPS59212621A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0614046A1 (en) * 1993-03-05 1994-09-07 Landis & Gyr Technology Innovation AG Control device for gas burner automats of heating installations
FR2775782A1 (en) * 1998-03-06 1999-09-10 Theobald Sa A DIFFERENTIAL PRESSURE MEASURING DEVICE AND DEVICE FOR ACTIVE REGULATION OF THE AIR / GAS RATIO OF A BURNER USING SUCH A MEASURING DEVICE

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0614046A1 (en) * 1993-03-05 1994-09-07 Landis & Gyr Technology Innovation AG Control device for gas burner automats of heating installations
US5513979A (en) * 1993-03-05 1996-05-07 Landis & Gyr Business Support A.G. Control or regulating system for automatic gas furnaces of heating plants
FR2775782A1 (en) * 1998-03-06 1999-09-10 Theobald Sa A DIFFERENTIAL PRESSURE MEASURING DEVICE AND DEVICE FOR ACTIVE REGULATION OF THE AIR / GAS RATIO OF A BURNER USING SUCH A MEASURING DEVICE
WO1999045325A1 (en) * 1998-03-06 1999-09-10 A. Theobald S.A. Device for actively regulating air/gas ratio in a burner comprising a differential pressure measuring device
US6533574B1 (en) 1998-03-06 2003-03-18 A Theobald Sa System for active regulation of the air/gas ratio of a burner including a differential pressure measuring system

Similar Documents

Publication Publication Date Title
JPH03102153A (en) Temperature control method for cooling device
JPS59212621A (en) Gas combustion controller
JPS58224226A (en) Combustion control device
JPS62121843A (en) Air-fuel ratio controller
JPH0158412B2 (en)
JPS59212622A (en) Gas combustion controller
JPS58224227A (en) Combustion control device
JPS649525B2 (en)
JPS59142329A (en) Combustion control device
JPH033847B2 (en)
JPS59125322A (en) Gas combustion controlling device
JPS6080018A (en) Gas burning control device
JPH033848B2 (en)
JPS60211A (en) Gas burning control device
JPS5969612A (en) Gas combustion control device
JPS60134121A (en) Combustion controlling device
JPH0456221B2 (en)
JPS5969613A (en) Combustion control device
JPS5997421A (en) Combustion controlling device
JPH0244117A (en) Combustion device
JPH0213855Y2 (en)
JPS63311041A (en) Hot water feeding control apparatus
JPS6091132A (en) Controller of gas combustion
JPS59134420A (en) Gas combustion control device
JPS60105821A (en) Burning control device