JPH0231287B2 - - Google Patents

Info

Publication number
JPH0231287B2
JPH0231287B2 JP58136994A JP13699483A JPH0231287B2 JP H0231287 B2 JPH0231287 B2 JP H0231287B2 JP 58136994 A JP58136994 A JP 58136994A JP 13699483 A JP13699483 A JP 13699483A JP H0231287 B2 JPH0231287 B2 JP H0231287B2
Authority
JP
Japan
Prior art keywords
air
gas
amount
fuel ratio
minimum value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58136994A
Other languages
Japanese (ja)
Other versions
JPS6029516A (en
Inventor
Yoshuki Yokoajiro
Hideo Uematsu
Takeshi Natsumeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58136994A priority Critical patent/JPS6029516A/en
Publication of JPS6029516A publication Critical patent/JPS6029516A/en
Publication of JPH0231287B2 publication Critical patent/JPH0231287B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/08Regulating fuel supply conjointly with another medium, e.g. boiler water
    • F23N1/10Regulating fuel supply conjointly with another medium, e.g. boiler water and with air supply or draught
    • F23N1/102Regulating fuel supply conjointly with another medium, e.g. boiler water and with air supply or draught using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
    • F23N5/188Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel using mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/02Measuring filling height in burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/04Measuring pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/18Measuring temperature feedwater temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/19Measuring temperature outlet temperature water heat-exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • F23N2233/08Ventilators at the air intake with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/14Fuel valves electromagnetically operated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2900/00Special features of, or arrangements for controlling combustion
    • F23N2900/05181Controlling air to fuel ratio by using a single differential pressure detector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel

Description

【発明の詳細な説明】 産業上の利用分野 本発明は負荷に応じて燃焼量を連続可変すると
ともに燃焼用空気量(以下単に空気量という)と
ガス量の比(以下空燃比と称す)をほぼ一定に保
ち燃焼の安定性と高効率を実現するための、特に
家庭用機器に用いられるガス燃焼制御装置に関す
る。
[Detailed Description of the Invention] Industrial Application Field The present invention continuously varies the combustion amount according to the load, and also changes the ratio of the combustion air amount (hereinafter simply referred to as the air amount) to the gas amount (hereinafter referred to as the air-fuel ratio). This invention relates to a gas combustion control device used particularly in household appliances to achieve almost constant combustion stability and high efficiency.

従来例の構成とその問題点 従来この種のガス燃焼制御装置として、第1図
に示すものが知られている。
Configuration of Conventional Example and its Problems As a conventional gas combustion control device of this type, the one shown in FIG. 1 is known.

第1図において、空気通路には送風機1と空気
絞り2が、ガス通路にはガス比例制御弁3とガス
絞り4がそれぞれ設けられ、空気絞り2とガス絞
り4の下流に混合部5が設けられる。空気絞り2
の上流の圧力Paとガス絞り4の上流の圧力Pgは
差圧検出器6に導かれている。混合部5の下流に
はバーナ7及び熱交換器8が設けられ、熱交換器
8の出口にはサーミスタ9が設けられる。
In FIG. 1, the air passage is provided with a blower 1 and an air throttle 2, the gas passage is provided with a gas proportional control valve 3 and a gas throttle 4, and a mixing section 5 is provided downstream of the air throttle 2 and gas throttle 4. It will be done. air aperture 2
The pressure Pa upstream of the gas throttle 4 and the pressure Pg upstream of the gas throttle 4 are guided to a differential pressure detector 6. A burner 7 and a heat exchanger 8 are provided downstream of the mixing section 5, and a thermistor 9 is provided at the outlet of the heat exchanger 8.

さらに、温度設定器10の信号とサーミスタ9
の信号の差が温度制御演算回路11へ入力され、
回転数最小値規制回路12、回転数調節回路13
を経て送風機1に接続される。一方、差圧検出器
6の信号は空燃比制御回路14を経てガス比例制
御弁3に接続される。
Furthermore, the signal of the temperature setting device 10 and the thermistor 9
The difference between the signals is input to the temperature control calculation circuit 11,
Rotation speed minimum value regulation circuit 12, rotation speed adjustment circuit 13
It is connected to the blower 1 through. On the other hand, the signal from the differential pressure detector 6 is connected to the gas proportional control valve 3 via the air-fuel ratio control circuit 14.

上記の構成により、温度設定器10の信号とサ
ーミスタ9の信号とが比較されサーミスタ9の温
度が低い場合、回転数調節回路により送風機1の
回転数が増加され、バーナ7への空気量が増加す
る。
With the above configuration, the signal of the temperature setting device 10 and the signal of the thermistor 9 are compared, and if the temperature of the thermistor 9 is low, the rotation speed of the blower 1 is increased by the rotation speed adjustment circuit, and the amount of air to the burner 7 is increased. do.

空気量の増加により空気圧力Paが上昇し、差
圧検出器6の信号が増加する。差圧検出器6の信
号は空燃比制御回路14で増幅されガス比例制御
弁3の電流を増加させ、ガス量を増加させる。ガ
ス圧力Pgが空気圧力Paにほぼ等しくなるところ
でバランスする。
Due to the increase in the amount of air, the air pressure Pa increases, and the signal from the differential pressure detector 6 increases. The signal from the differential pressure detector 6 is amplified by the air-fuel ratio control circuit 14 to increase the current of the gas proportional control valve 3, thereby increasing the gas amount. Balance occurs when gas pressure Pg becomes approximately equal to air pressure Pa.

PaとPgがほぼ等しくなると空気とガスの比率
は空気絞り2とガス絞り4の流体抵抗で決まる一
定の比率となる。このように、空気量の変化にガ
ス量が追従し空燃比を一定に保ちながら燃焼量が
変化するいわゆる空気先導型の空燃比制御装置を
構成している。
When Pa and Pg are approximately equal, the ratio of air to gas becomes a constant ratio determined by the fluid resistance of the air restrictor 2 and the gas restrictor 4. In this way, a so-called air-leading type air-fuel ratio control device is constructed in which the gas amount follows changes in the air amount and the combustion amount changes while keeping the air-fuel ratio constant.

ここで空燃比制御回路14は増幅率を大きくし
て常に差圧検出器6の信号がゼロすなわちPaと
Pgが等しくなるように制御しているが、差圧検
出器6にはオフセツト誤差があり差圧検出器6の
信号をゼロになるように制御するとオフセツト誤
差分だけPaとPgの差圧が残る。
Here, the air-fuel ratio control circuit 14 increases the amplification factor so that the signal of the differential pressure detector 6 is always zero, that is, Pa.
Although Pg is controlled to be equal, the differential pressure detector 6 has an offset error, and if the signal of the differential pressure detector 6 is controlled to be zero, a differential pressure between Pa and Pg remains by the offset error. .

第2図aは差圧検出器6のオフセツト誤差をパ
ラメータとして空気量に対するガス量の関係を示
すグラフであり、同図bは空気量に対する空燃比
の関係をしめすグラフである。aはオフセツト誤
差が無い時でガス量は空気量に比例して変化し、
空燃比はdと一定になる。bはオフセツト誤差が
プラスすなわちPa<Pgで差圧検出器6の信号が
ゼロとなる場合で、ガス量が最適値よりも多くな
り、空燃比はeとなる。空気量が少なくなると空
気絞り2の差圧は2乗の関係で小さくなる、これ
に対しオフセツト誤差は空気量に関係無く一定の
値となるので空燃比の誤差は加速度的に大きくな
る。
FIG. 2a is a graph showing the relationship between the amount of gas and the amount of air using the offset error of the differential pressure detector 6 as a parameter, and FIG. 2b is a graph showing the relationship between the amount of air and the air-fuel ratio. a is when there is no offset error, and the gas amount changes in proportion to the air amount,
The air-fuel ratio becomes constant at d. b is a case where the offset error is positive, that is, Pa<Pg, and the signal from the differential pressure detector 6 becomes zero, the gas amount becomes larger than the optimum value, and the air-fuel ratio becomes e. As the amount of air decreases, the differential pressure across the air throttle 2 decreases as a result of the square relationship.On the other hand, the offset error remains constant regardless of the amount of air, so the error in the air-fuel ratio increases with acceleration.

cはオフセツト誤差がマイナスすなわちPa<
Pgで差圧検出器6の信号がゼロとなる場合で前
記と逆でガス量が最適値よりも少なくなり、空燃
比はeの変化となる。オフセツト誤差がプラスの
時と比べてガス量が少ないため、ガス絞り4の差
圧が小さいので同じ絶対値のオフセツト誤差に対
して空燃比の誤差は大きくなり、同じ空気量Qa1
の時の空燃比がプラスの時は点gに対しマイナス
の時は点hとなる。
c has a negative offset error, that is, Pa<
When the signal from the differential pressure detector 6 becomes zero at Pg, the gas amount becomes less than the optimum value, which is the opposite of the above, and the air-fuel ratio changes by e. Since the gas amount is smaller than when the offset error is positive, the differential pressure at the gas throttle 4 is small, so the air-fuel ratio error becomes larger for the same absolute value of offset error, and the same air amount Qa1
When the air-fuel ratio is positive, it is at point g, and when it is negative, it is at point h.

空気量Qa1は回転数最小値規制回路12によつ
て決められるが、オフセツト誤差の無いときにバ
ーナの最低燃焼量に相当するガス量Qg1となるよ
うに設定すると、上記のようにマイナスのオフセ
ツト誤差が生じた場合にガス量はバーナの最低燃
焼量Qg1より少ないQg2となり失火の危険があ
る。また空燃比が異常に高くなり、バーナの空燃
比上限iを超えリフト燃焼やCOの発生等の危険
がある。
The air amount Qa1 is determined by the rotational speed minimum value regulation circuit 12, but if it is set to the gas amount Qg1 corresponding to the minimum combustion amount of the burner when there is no offset error, a negative offset error will occur as described above. If this occurs, the amount of gas will be Qg2, which is less than the minimum combustion amount Qg1 of the burner, and there is a risk of misfire. In addition, the air-fuel ratio becomes abnormally high, exceeding the burner air-fuel ratio upper limit i, and there is a risk of lift combustion and generation of CO.

これらを防ぐため、オフセツト誤差の最悪時で
も燃焼量の下限及び空燃比の上限を超えないよう
に空気量の最小値をQa2に設定すると、燃焼量が
最小値Qg1まで下られない場合が多くなり、最小
燃焼量がjまで大きくなり燃焼量調節比が小さく
なつてしまう。空気絞り2及びガス絞り4の抵抗
を大きくし差圧を大きくするとオフセツト誤差の
影響を小さくできるが、送風機1が大きくなり、
また高いガスの供給圧が必要となり、現実てきで
はない。
In order to prevent these, if the minimum value of the air amount is set to Qa2 so that the lower limit of the combustion amount and the upper limit of the air-fuel ratio are not exceeded even in the worst case of the offset error, the combustion amount often cannot be reduced to the minimum value Qg1. , the minimum combustion amount increases to j, and the combustion amount adjustment ratio becomes small. If the resistance of the air restrictor 2 and the gas restrictor 4 is increased to increase the differential pressure, the effect of offset error can be reduced, but the blower 1 becomes larger,
Furthermore, a high gas supply pressure is required, which is not practical.

さらには、差圧検出器6の精度をよくしてオフ
セツト誤差を小さくするとこの課題は解消する
が、精度をよくすることは差圧検出器のコスト上
昇となり、限度がある。
Furthermore, this problem can be solved by improving the accuracy of the differential pressure detector 6 and reducing the offset error, but improving the accuracy increases the cost of the differential pressure detector, and there is a limit.

発明の目的 本発明は上記の問題を解決するもので、送風機
を大きくしたり、差圧検出器の精度を上げること
なく、低コストで、燃焼量調節比の大きい、かつ
空燃比の安定なガス燃焼制御装置を提供すること
にある。
Purpose of the Invention The present invention solves the above-mentioned problems.It is an object of the present invention to solve the above-mentioned problems. An object of the present invention is to provide a combustion control device.

発明の構成 この目的を達成するために本発明は、空気通路
に空気量の最小値規制手段を有する空気量調節手
段を、ガス通路にガス比例制御弁とを設け、空気
絞りの上流とガス絞りの上流との圧力差に応じた
電気信号を発生する差圧検出器と、前記差圧検出
器の信号を増幅・演算しガス比例制御弁を駆動し
て前記差圧検出器の信号が零になるよう制御する
空燃比制御回路と、前記空燃比制御回路とガス比
例制御弁との中間にガス比例制御弁の駆動信号の
最小値を空気量の最小値規制手段により規制され
る空気量の最小値に対し、最適空燃比となるガス
量を与える値に規制する最小値規制回路を設けた
ものである。この構成によつて、空気量の最小値
が規制されるとともに、このときの差圧検出器の
誤差によるPGの調圧誤差があつても、ガス量は
ガス比例制御弁の駆動信号の最小値規制回路によ
つて定められた一定の値より小さくならないよう
に作用する。
Structure of the Invention In order to achieve this object, the present invention provides an air amount adjusting means having a minimum air amount regulating means in the air passage and a gas proportional control valve in the gas passage, a differential pressure detector that generates an electric signal according to the pressure difference with the upstream of An air-fuel ratio control circuit that controls the air-fuel ratio so that the minimum value of the drive signal of the gas proportional control valve is set between the air-fuel ratio control circuit and the gas proportional control valve to be the minimum value of the air amount regulated by the minimum air amount regulating means. A minimum value regulation circuit is provided to regulate the value to a value that provides the gas amount that provides the optimum air-fuel ratio. With this configuration, the minimum value of the air amount is regulated, and even if there is a pressure adjustment error of P It acts to prevent the value from becoming smaller than a certain value determined by the value regulation circuit.

実施例の説明 以下、本発明の実施例を第3図、第4図、第5
図を使つて詳細に説明する。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be explained as shown in FIGS. 3, 4, and 5.
This will be explained in detail using diagrams.

なお、第1図と同一部には同一符号を付してい
る。
Note that the same parts as in FIG. 1 are given the same reference numerals.

空気通路には送風機1と空気絞り2が、ガス通
路にはガス比例制御弁3とガス絞り4がそれぞれ
設けられ、空気絞り2とガス絞り4の下流に混合
部5が設けられる。空気絞り2の上流の圧力Pa
とガス絞り4の上流の圧力Pgは差圧検出器6に
導かれている。混合部5の下流にはバーナ7及び
熱交換器8が設けられ、熱交換器8の出口にはサ
ーミスタ9が設けられる。
A blower 1 and an air throttle 2 are provided in the air passage, a gas proportional control valve 3 and a gas throttle 4 are provided in the gas passage, and a mixing section 5 is provided downstream of the air throttle 2 and the gas throttle 4. Pressure Pa upstream of air restriction 2
and the pressure Pg upstream of the gas throttle 4 are guided to a differential pressure detector 6. A burner 7 and a heat exchanger 8 are provided downstream of the mixing section 5, and a thermistor 9 is provided at the outlet of the heat exchanger 8.

さらに、温度設定器10の信号とサーミスタ9
の信号の差が温度制御演算回路11へ入力され、
回転数最小値規制回路12、回転数調節回路13
を経て送風機1に接続される。一方、差圧検出器
6の信号は空燃比制御回路14および駆動電流最
小値規制回路15を経てガス比例制御弁3に接続
される。また回転数最小値規制回路12から駆動
電流最小値規制回路15には最小値設定信号が送
られ駆動電流の最小値は回転数の最小値の設定に
応じて設定される。
Furthermore, the signal of the temperature setting device 10 and the thermistor 9
The difference between the signals is input to the temperature control calculation circuit 11,
Rotation speed minimum value regulation circuit 12, rotation speed adjustment circuit 13
It is connected to the blower 1 through. On the other hand, the signal from the differential pressure detector 6 is connected to the gas proportional control valve 3 via an air-fuel ratio control circuit 14 and a minimum drive current value regulation circuit 15. Further, a minimum value setting signal is sent from the rotation speed minimum value regulation circuit 12 to the drive current minimum value regulation circuit 15, and the minimum value of the drive current is set in accordance with the setting of the minimum value of the rotation speed.

上記構成において、駆動電流最小値規制回路1
5は回転数最小値規制回路12で設定された空気
量の最低値に対して、最適なガス量を最小値とし
て規制する。
In the above configuration, the drive current minimum value regulation circuit 1
5 regulates the optimum gas amount as the minimum value with respect to the minimum value of the air amount set by the rotation speed minimum value regulating circuit 12.

第4aはガス比例制御弁3の電磁コイル電流と
ガス量の関係を示すグラフであり、バーナ7の最
小燃焼量に相当するQg1となるIc1である。同図
bは空燃比制御回路14からの駆動電流最小値規
制回路15の入力信号に対する出力電流の関係を
示すグラフであり、入力信号がk以下になると出
力電流をIc1の一定値に保つように構成される。
4a is a graph showing the relationship between the electromagnetic coil current of the gas proportional control valve 3 and the gas amount, and Ic1 is Qg1 corresponding to the minimum combustion amount of the burner 7. Figure b is a graph showing the relationship between the output current and the input signal of the minimum drive current regulation circuit 15 from the air-fuel ratio control circuit 14. When the input signal becomes below k, the output current is kept at a constant value of Ic1. configured.

第5図aは差圧検出器6のオフセツト誤差をパ
ラメータとして空気量に対するガス量の関係を示
すグラフであり、同図bは空気量に対する空燃比
の関係をしめすグラフである。同図mはオフセツ
ト誤差がゼロのとき、nはオフセツト誤差がプラ
スのとき、pはオフセツト誤差がマイナスのとき
の特性である。回転数最小値規制回路12はバー
ナ7の最小燃焼量に相当するガス量Qg1で最適空
燃比となる空気量Qa1となるように設定される。
一方駆動電流最小値規制回路15は回転数最小値
規制回路12の最小値の設定値と連動して最小電
流がQg1となるよう設定される。空気先導型の空
燃比制御装置であるため最小燃焼量の規制はまず
空気量の規制でおこなわれる。
FIG. 5a is a graph showing the relationship between the amount of gas and the amount of air using the offset error of the differential pressure detector 6 as a parameter, and FIG. 5b is a graph showing the relationship between the amount of air and the air-fuel ratio. In the figure, m is the characteristic when the offset error is zero, n is the characteristic when the offset error is positive, and p is the characteristic when the offset error is negative. The rotational speed minimum value regulation circuit 12 is set so that the gas amount Qg1 corresponding to the minimum combustion amount of the burner 7 becomes the air amount Qa1 that provides the optimum air-fuel ratio.
On the other hand, the drive current minimum value regulation circuit 15 is set in conjunction with the minimum setting value of the rotation speed minimum value regulation circuit 12 so that the minimum current becomes Qg1. Since this is an air-leading type air-fuel ratio control device, the minimum combustion amount is first regulated by regulating the amount of air.

オフセツト誤差がゼロおよびプラスの場合は従
来例と同様の動作となり、空燃比は同図qおよび
rの特性となる。これらのときはガス量がQg1よ
りも小さくなろうとすることは無いので駆動電流
最小値規制回路15の規制は働かない。
When the offset error is zero or positive, the operation is similar to that of the conventional example, and the air-fuel ratio has the characteristics q and r in the figure. In these cases, the gas amount does not try to become smaller than Qg1, so the regulation by the minimum drive current regulation circuit 15 does not work.

オフセツト誤差がマイナスの場合、空燃比はs
の特性となる。オフセツト誤差がマイナスすなわ
ちPa<Pgで差圧検出器6の信号がゼロとなる場
合で、空燃比制御回路14は差圧検出器6の信号
がゼロとなるようにガス比例制御弁3を制御して
いる。空気量が多いところから少なくなつていく
と、点tでガス量がQa1に達し駆動電流最小値規
制回路15が働いて空気量が少なくなつてもガス
比例制御弁3の電流はIc1に保たれ、その結果ガ
ス量はQa1を保つ。点tに対応する空燃比はuと
なり空燃比上限値i以下となる。さらに送風機1
の回転数が小さくなり点vで回転数最小値規制回
路12が働き空気量はQa1で規制される。点tか
ら点vまではガス量がQg1で一定のため空気量の
減少に従つて空燃比は下降し、点wでは空気量及
びガス量はそれぞれ回転数最小値規制回路12お
よび駆動電流最小値規制回路15とで規制された
最小値となる。これらの最小値はバーナの最小燃
焼量において最適空燃比となるよう設定したもの
であるから当然ながら点wの空燃比は最適空燃比
m1とすることができる。
If the offset error is negative, the air-fuel ratio is s
It is a characteristic of When the offset error is negative, that is, Pa<Pg, and the signal from the differential pressure detector 6 becomes zero, the air-fuel ratio control circuit 14 controls the gas proportional control valve 3 so that the signal from the differential pressure detector 6 becomes zero. ing. As the amount of air decreases from a large amount, the gas amount reaches Qa1 at point t, and the drive current minimum value regulation circuit 15 operates to maintain the current of the gas proportional control valve 3 at Ic1 even if the amount of air decreases. , as a result, the gas amount maintains Qa1. The air-fuel ratio corresponding to point t is u, which is less than the air-fuel ratio upper limit value i. Furthermore, blower 1
The rotational speed decreases and at point v, the rotational speed minimum value regulation circuit 12 operates and the air amount is regulated at Qa1. From point t to point v, the gas amount is constant at Qg1, so as the air amount decreases, the air-fuel ratio decreases, and at point w, the air amount and gas amount are the minimum rotational speed regulation circuit 12 and the minimum drive current value, respectively. This is the minimum value regulated by the regulation circuit 15. These minimum values are set to be the optimum air-fuel ratio at the minimum combustion amount of the burner, so naturally the air-fuel ratio at point w is the optimum air-fuel ratio.
It can be m1.

オフセツト誤差の全域を想定した空燃比の変動
は、同図で明らかなように従来例がgからhの範
囲であるのに対し本実施例ではgからiの範囲と
なり、特にリフト燃焼となる空燃比の高い領域を
有効に防ぐことができる。
As is clear from the figure, the fluctuation of the air-fuel ratio assuming the entire range of offset errors is in the range from g to h in the conventional example, but in the present example it is in the range from g to i, especially in the air-fuel ratio that causes lift combustion. A high fuel ratio region can be effectively prevented.

また最小燃焼量の変動も小さくなり、ガス量が
バーナ7の最小燃焼量であるQg1を下回ることが
なくなるので失火の危険がなくなる。よつて燃焼
の安全性、安全性を保ちながら燃焼量調節範囲が
大きくとれるので、本実施例の燃焼制御装置を使
つた燃焼器具においては被加熱体の流量、設定温
度の広い範囲で安定した温度制御がかのうになる
のである。
Further, fluctuations in the minimum combustion amount are also reduced, and the gas amount does not fall below Qg1, which is the minimum combustion amount of the burner 7, so there is no risk of misfire. Therefore, the combustion amount can be adjusted over a wide range while maintaining the safety and security of combustion, so the combustion appliance using the combustion control device of this embodiment can maintain a stable temperature over a wide range of the flow rate and set temperature of the heated object. This is how the control becomes.

発明の効果 以上のように本発明の燃焼制御装置は、空気通
路に設けた送風機と、最小値規制回路を有する空
気量調節手段と、ガス通路に設けたガス比例制御
弁と、空気絞りとガス絞りのそれぞれの上流の間
の圧力差を検出する差圧検出器と、差圧検出器の
信号を増幅し差圧検出器の信号が零になるよう制
御する空燃比制御回路と、ガス比例制御弁の駆動
信号の最小値を規制する最小値規制回路とで構成
したことにより、最小空気量における差圧検出器
のオフセツト誤差による空燃比の上昇及び燃焼量
の過小状態を防止するよう作用し、COの発生や
リフト燃焼および失火の危険のない安全で安定な
燃焼装置を低コストで実現できる。また、燃焼量
調節範囲を大きくとることが可能となる。
Effects of the Invention As described above, the combustion control device of the present invention includes a blower provided in the air passage, an air amount adjusting means having a minimum value regulation circuit, a gas proportional control valve provided in the gas passage, an air throttle and a gas A differential pressure detector that detects the pressure difference between each upstream side of the throttle, an air-fuel ratio control circuit that amplifies the signal of the differential pressure detector and controls the signal of the differential pressure detector to become zero, and gas proportional control. By being configured with a minimum value regulation circuit that regulates the minimum value of the valve drive signal, it acts to prevent an increase in the air-fuel ratio and an excessively small combustion amount due to the offset error of the differential pressure detector at the minimum air amount. A safe and stable combustion device without the risk of CO generation, lift combustion, or misfire can be realized at a low cost. Furthermore, it is possible to widen the combustion amount adjustment range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のガス燃焼制御装置の構成図、第
2図は従来例の空気量に対するガス量及び空燃比
の変化を示す特性図、第3図は本発明の一実施例
のガス燃焼制御装置の構成図、第4図は同実施例
のガス比例制御弁の特性図、第5図は同実施例の
空気量に対するガス量及び空燃比の変化を示す特
性図である。 1……送風機、2……空気絞り、3……ガス比
例制御弁、4……ガス絞り、5……混合部、6…
…差圧検出器、12……回転数最小値規制回路、
13……回転数調節回路、14……空燃比制御回
路、15……駆動電流最小値規制回路。
Fig. 1 is a configuration diagram of a conventional gas combustion control device, Fig. 2 is a characteristic diagram showing changes in gas amount and air-fuel ratio with respect to air amount in the conventional example, and Fig. 3 is a gas combustion control according to an embodiment of the present invention. FIG. 4 is a diagram showing the configuration of the device, FIG. 4 is a characteristic diagram of the gas proportional control valve of the same embodiment, and FIG. 5 is a characteristic diagram showing changes in gas amount and air-fuel ratio with respect to air amount in the same embodiment. 1...Blower, 2...Air throttle, 3...Gas proportional control valve, 4...Gas throttle, 5...Mixing section, 6...
... Differential pressure detector, 12 ... Minimum rotational speed regulation circuit,
13... Rotation speed adjustment circuit, 14... Air-fuel ratio control circuit, 15... Drive current minimum value regulation circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 空気通路に設けた燃焼用空気を供給する送風
機と、空気量の最小値規制手段を有する空気量調
節手段と空気絞りと、ガス通路に設けたガス比例
制御弁とガス絞りと、前記空気絞りと前記ガス絞
りとの下流で空気とガスを混合する混合部と、前
記空気絞りの上流の圧力と前記ガス絞りの上流の
圧力との差圧に応じた電気信号を発生する差圧検
出器と、前記差圧検出器の信号を増幅・演算し前
記差圧検出器の信号が零になるよう前記ガス比例
制御弁を制御する空燃比制御回路と、前記空燃比
制御回路と前記ガス比例制御弁の中間に設けられ
ガス比例制御弁の駆動信号の最小値を前記空気量
最小値規制手段により規制される空気量の最小値
に対し最適空燃比となるガス量を与える値に規制
する最小値規制回路とで構成したガス燃焼制御装
置。
1. A blower for supplying combustion air provided in an air passage, an air amount adjusting means having a minimum value regulating means for air amount, an air throttle, a gas proportional control valve and a gas throttle provided in the gas passage, and the air restrictor. and a mixing unit that mixes air and gas downstream of the gas throttle; and a differential pressure detector that generates an electrical signal in accordance with the differential pressure between the pressure upstream of the air throttle and the pressure upstream of the gas throttle. , an air-fuel ratio control circuit that amplifies and calculates a signal from the differential pressure detector and controls the gas proportional control valve so that the signal from the differential pressure detector becomes zero; the air-fuel ratio control circuit and the gas proportional control valve; a minimum value regulation that regulates the minimum value of the drive signal of the gas proportional control valve to a value that provides a gas amount that provides an optimal air-fuel ratio with respect to the minimum value of the air amount regulated by the air amount minimum value regulating means; A gas combustion control device consisting of a circuit.
JP58136994A 1983-07-26 1983-07-26 Gas combustion controller Granted JPS6029516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58136994A JPS6029516A (en) 1983-07-26 1983-07-26 Gas combustion controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58136994A JPS6029516A (en) 1983-07-26 1983-07-26 Gas combustion controller

Publications (2)

Publication Number Publication Date
JPS6029516A JPS6029516A (en) 1985-02-14
JPH0231287B2 true JPH0231287B2 (en) 1990-07-12

Family

ID=15188298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58136994A Granted JPS6029516A (en) 1983-07-26 1983-07-26 Gas combustion controller

Country Status (1)

Country Link
JP (1) JPS6029516A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07114863B2 (en) * 1989-09-19 1995-12-13 三菱電機株式会社 XY table drive
GB2323662B (en) * 1995-11-29 1999-12-08 Powertech Ind Inc Pulse combustor and boiler for same
DE19824521B4 (en) * 1998-06-02 2004-12-23 Honeywell B.V. Control device for gas burners
US6537060B2 (en) 2001-03-09 2003-03-25 Honeywell International Inc. Regulating system for gas burners

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4996331A (en) * 1973-01-18 1974-09-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4996331A (en) * 1973-01-18 1974-09-12

Also Published As

Publication number Publication date
JPS6029516A (en) 1985-02-14

Similar Documents

Publication Publication Date Title
JPH0231287B2 (en)
JPH0158412B2 (en)
JPH033847B2 (en)
JPH033848B2 (en)
JPS6080018A (en) Gas burning control device
JPS60164115A (en) Gas burning control device
JPS6091132A (en) Controller of gas combustion
JPS5969612A (en) Gas combustion control device
US20230112151A1 (en) Premixing Apparatus
JPS649527B2 (en)
JPS6410734B2 (en)
JPH0221483B2 (en)
JPS6026219A (en) Gas combustion controller
JPH033853B2 (en)
JPH0215772B2 (en)
JP2669662B2 (en) Water heater control device
JPH033852B2 (en)
JPS646363B2 (en)
JPS63189649A (en) Speed control device for internal combustion engine
KR880004145Y1 (en) Combustion control device
JPH0449478Y2 (en)
JPS60263201A (en) Temperature control device
JPS59219622A (en) Gas combustion controller
JPS5946417A (en) Combustion controller
JPS5934843B2 (en) steam generator