JPS649526B2 - - Google Patents
Info
- Publication number
- JPS649526B2 JPS649526B2 JP57107227A JP10722782A JPS649526B2 JP S649526 B2 JPS649526 B2 JP S649526B2 JP 57107227 A JP57107227 A JP 57107227A JP 10722782 A JP10722782 A JP 10722782A JP S649526 B2 JPS649526 B2 JP S649526B2
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- air
- gas
- amount
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000002485 combustion reaction Methods 0.000 claims description 27
- 230000015654 memory Effects 0.000 claims description 15
- 238000011144 upstream manufacturing Methods 0.000 claims description 15
- 239000004065 semiconductor Substances 0.000 claims description 6
- 238000009792 diffusion process Methods 0.000 claims description 4
- 230000004044 response Effects 0.000 claims description 3
- 239000000446 fuel Substances 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000003068 static effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N1/00—Regulating fuel supply
- F23N1/02—Regulating fuel supply conjointly with air supply
- F23N1/022—Regulating fuel supply conjointly with air supply using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2223/00—Signal processing; Details thereof
- F23N2223/04—Memory
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2225/00—Measuring
- F23N2225/02—Measuring filling height in burners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2225/00—Measuring
- F23N2225/04—Measuring pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2225/00—Measuring
- F23N2225/08—Measuring temperature
- F23N2225/19—Measuring temperature outlet temperature water heat-exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2233/00—Ventilators
- F23N2233/06—Ventilators at the air intake
- F23N2233/08—Ventilators at the air intake with variable speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2235/00—Valves, nozzles or pumps
- F23N2235/12—Fuel valves
- F23N2235/14—Fuel valves electromagnetically operated
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2235/00—Valves, nozzles or pumps
- F23N2235/12—Fuel valves
- F23N2235/16—Fuel valves variable flow or proportional valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2900/00—Special features of, or arrangements for controlling combustion
- F23N2900/05181—Controlling air to fuel ratio by using a single differential pressure detector
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Combustion (AREA)
- Regulation And Control Of Combustion (AREA)
Description
【発明の詳細な説明】
本発明は、負荷に応じて燃焼量を自動的に連続
可変するとともに、燃焼用空気量とガス量の比
(以後空燃比という)をほぼ一定に保ち燃焼の安
定性と高効率を保つための、特に家庭用機器に用
いられる高負荷ガス燃焼制御装置に関するもので
ある。Detailed Description of the Invention The present invention automatically and continuously varies the amount of combustion depending on the load, and maintains the ratio of the amount of combustion air to the amount of gas (hereinafter referred to as the air-fuel ratio) almost constant to achieve combustion stability. This invention relates to high-load gas combustion control devices used particularly in household appliances to maintain high efficiency.
従来のこの種の高負荷燃焼器の燃焼制御装置と
して第1図に示す均圧弁方式(あるいはゼロガバ
ナ方式)がよく知られている。すなわち、送風機
1により送られた燃焼用空気は空気側絞り2を経
て混合部3へ、ガスは均圧弁4を通りガス側絞り
5を経て混合部3へ入り空気とガスが混合されバ
ーナ6で燃焼する。 As a conventional combustion control device for this type of high-load combustor, the pressure equalization valve system (or zero governor system) shown in FIG. 1 is well known. That is, the combustion air sent by the blower 1 passes through the air-side throttle 2 and enters the mixing section 3, and the gas passes through the pressure equalization valve 4, passes through the gas-side throttle 5, enters the mixing section 3, and the air and gas are mixed, and then the burner 6 Burn.
均圧弁の背圧空7には空気側絞り2の上流の圧
力が導かれており、均圧弁4は均圧弁出口のガス
圧力を背圧空の圧力と等しくなるように自動調節
する。ここで、空気側絞りの上流の圧力をPA、
空気量をQA、ガス側絞りの上流の圧力をPG、ガ
ス量をQG、混合部の圧力をPMとすると、空気比
QA/QGは
K1,K2は定数
の関係がある。 The pressure upstream of the air-side throttle 2 is introduced to the back pressure air 7 of the pressure equalization valve, and the pressure equalization valve 4 automatically adjusts the gas pressure at the outlet of the pressure equalization valve to be equal to the pressure of the back pressure air. Here, the pressure upstream of the air-side restriction is P A ,
If the air volume is Q A , the pressure upstream of the gas side restriction is P G , the gas volume is Q G , and the pressure in the mixing section is P M , the air ratio is
Q A /Q G is K1 and K2 have a constant relationship.
均圧弁が理想的にPG=PAに調節できれば上式
より
となりQAを変化させても空燃比は常に一定とな
るが、しかし均圧弁はダイアフラム8でPAとPG
の差圧を受けて弁9を機械的に動かすものである
から、ダイアフラムの剛性、変位に伴うダイアフ
ラムの有効面積変化などにより必ず圧力設定誤差
ΔPGが生じる。すなわち、PG=PA+ΔPGであるの
で
となる。すなわち誤差ΔPGによる空燃比の誤差は
PA−PMの絶対値が小さくなるほど大きくなる。
したがつて、一定の空燃比誤差の範囲で燃焼量調
節比を大きくするためには、PA−PMを大きくす
るか、または均圧弁のダイアフラムを大きくして
ΔPGを小さくしなければならない。 If the pressure equalizing valve can ideally adjust P G = P A , then from the above equation Therefore , even if Q A is changed, the air-fuel ratio will always remain constant .
Since the valve 9 is mechanically moved in response to a differential pressure of In other words, since P G = P A + ΔP G becomes. In other words, the air-fuel ratio error due to the error ΔP G is
The smaller the absolute value of P A − P M becomes, the larger it becomes.
Therefore, in order to increase the combustion amount control ratio within a certain air-fuel ratio error range, it is necessary to increase P A - P M or make the diaphragm of the pressure equalizing valve larger to decrease ΔP G. .
このため、燃焼量調節比を1/5ないし1/10
に取ろうとすれば、きわめて大きな送風機や均圧
弁が必要となり、機器が大型になり、また燃焼量
調節範囲を大きくし、空気側絞りの発生差圧
(PA−PM)を大きくすると、ガス供給圧力の低い
特に都市ガス等の家庭用ガス燃料では使えないな
ど、家庭用燃焼装置への適用は難しかつた。 For this reason, the combustion amount adjustment ratio should be adjusted to 1/5 to 1/10.
If you try to achieve this, you will need an extremely large blower and pressure equalizing valve, which will increase the size of the equipment, and if you widen the combustion amount adjustment range and increase the differential pressure (P A − P M ) generated at the air side restriction, the gas It has been difficult to apply it to household combustion equipment, as it cannot be used with household gas fuels such as city gas, which have low supply pressure.
本発明はそのような従来の欠点を除去するもの
で、送風機や弁装置を大型化することなく、燃焼
量調節比が大きく、かつ空燃比安定性の良い燃焼
制御装置を提供することを目的とする。 The present invention eliminates such conventional drawbacks, and aims to provide a combustion control device with a large combustion amount control ratio and good air-fuel ratio stability without increasing the size of the blower or valve device. do.
この目的を達成するために本発明は、温度検出
器で検出した被加熱体の温度に応じた電気信号に
よりガス比例弁を制御し燃焼量を調節するととも
に、混合部の上流にそれぞれ設けられた空気側絞
りとガス側絞りのそれぞれの上流の圧力を圧力切
替器を介して絶対圧型または相対圧型圧力検出器
で交互に測定し、圧力検出器の信号を圧力切替器
の動作に連動させて切替え空気圧メモリおよびガ
ス圧メモリーにそれぞれの信号を記憶させておき
各メモリーから読み出したそれぞれの信号の差か
ら求められる圧力差信号に応じてその圧力差信号
が零となるように空気量可変機構を制御するもの
である。 In order to achieve this objective, the present invention controls a gas proportional valve to adjust the combustion amount using an electric signal according to the temperature of the heated body detected by a temperature detector, and also uses a gas proportional valve provided upstream of the mixing section. The pressure upstream of the air-side restriction and the gas-side restriction is alternately measured with an absolute pressure type or relative pressure type pressure sensor via a pressure switch, and the signal from the pressure detector is switched in conjunction with the operation of the pressure switch. Each signal is stored in the air pressure memory and the gas pressure memory, and the air volume variable mechanism is controlled so that the pressure difference signal becomes zero according to the pressure difference signal obtained from the difference between the respective signals read from each memory. It is something to do.
この構成によつて、負荷に応じた燃焼量に自動
調節され、かつ空燃比も安定に保たれる。また、
2つの圧力を同一の圧力検出器で測定しそれぞれ
記憶された圧力信号の差をとることで、その圧力
差信号から温度検出器自身の温度ドリフト、バラ
ツキ等の誤差分が相殺される。 With this configuration, the combustion amount is automatically adjusted according to the load, and the air-fuel ratio is also kept stable. Also,
By measuring two pressures with the same pressure detector and calculating the difference between the stored pressure signals, errors such as temperature drift and variation in the temperature detector itself are canceled out from the pressure difference signal.
以下本発明の実施例を図面を使つて詳細に説明
する。なお、図中第1図と同一部品については同
一番号を付している。 Embodiments of the present invention will be described in detail below with reference to the drawings. Note that parts in the figure that are the same as those in FIG. 1 are given the same numbers.
第2図は本発明の一実施例を示す構成図であ
り、主要部分のみ詳細な断面図を示した。 FIG. 2 is a block diagram showing one embodiment of the present invention, and only the main parts are shown in detail in cross section.
図において、1は燃焼用空気を供給する送風機
でここでは送風機の回転数を制御することにより
風量可変機構を構成している。2は空気通路に設
けられた空気側絞りであり、その両端に空気量に
応じた差圧を発生する。5はガス通路に設けられ
たガス側絞りであり、その両端にガス量に応じた
差圧を発生する。3は空気とガスの合流する混合
部でガスと空気が混合されバーナ6に混合ガスを
導く。11は熱交換器でそのパイプに通された水
を加熱する。12はサーミスタで熱交換器の出湯
温度に応じた電気信号を発生する。13はガス比
例弁でありガス側絞りの上流のガス通路に置か
れ、電磁コイルに流す電流に応じてコイル中に置
かれた可動鉄芯がガス弁の開度を連続的に調節す
る。14は温度設定器であり可変抵抗を手動回動
することにより出湯温度を設定する。15は出湯
温度制御回路であり、サーミスタ12と温度設定
器14との信号の差を増幅しガス比例弁の電磁コ
イルの電流を加減して出湯温度が設定温度と等し
くなるようガス量を自動調節する。16は半導体
拡散型の圧力センサであり、圧力導入口21が圧
力切換器17の出力孔22と連結される。圧力切
換器17は電磁コイル23に電流を流すことによ
り板バネ24を介してケース25に支持された可
動鉄片26が固定鉄芯27に吸着され、板バネの
先端に取付けられた弾性弁体28によりガス圧導
入孔29が閉止され、空気圧導入孔30が開放さ
れる。電磁コイル非通電時には板バネ24の復元
力により反対に空気圧導入孔30が閉止されガス
圧導入孔29が開放される。ガス圧導入孔にはガ
ス側絞りの上流の圧力が、空気圧導入孔には空気
側絞りの上流の圧力がそれぞれ導かれており、電
磁コイル23への通電タイミングに合わせて前記
2つの圧力が交互に圧力センサ16に導かれる。 In the figure, reference numeral 1 denotes a blower that supplies combustion air, and here a variable air volume mechanism is constructed by controlling the rotational speed of the blower. Reference numeral 2 denotes an air-side throttle provided in the air passage, which generates a pressure difference between both ends of the throttle in accordance with the amount of air. Reference numeral 5 denotes a gas-side throttle provided in the gas passage, which generates a pressure difference between both ends of the throttle in accordance with the amount of gas. Reference numeral 3 denotes a mixing section where air and gas meet, where the gas and air are mixed and the mixed gas is guided to the burner 6. A heat exchanger 11 heats the water passed through the pipe. 12 is a thermistor that generates an electric signal according to the hot water temperature of the heat exchanger. A gas proportional valve 13 is placed in the gas passage upstream of the gas-side throttle, and a movable iron core placed in the coil continuously adjusts the opening degree of the gas valve in accordance with the current flowing through the electromagnetic coil. Reference numeral 14 denotes a temperature setting device, and the hot water temperature is set by manually rotating a variable resistor. Reference numeral 15 denotes a hot water outlet temperature control circuit, which amplifies the difference between the signals between the thermistor 12 and the temperature setting device 14, adjusts the current of the electromagnetic coil of the gas proportional valve, and automatically adjusts the gas amount so that the hot water outlet temperature becomes equal to the set temperature. do. 16 is a semiconductor diffusion type pressure sensor, and a pressure inlet 21 is connected to an output hole 22 of a pressure switching device 17. In the pressure switching device 17, by applying current to the electromagnetic coil 23, the movable iron piece 26 supported by the case 25 via the plate spring 24 is attracted to the fixed iron core 27, and the elastic valve body 28 attached to the tip of the plate spring is attached. The gas pressure introduction hole 29 is closed and the air pressure introduction hole 30 is opened. When the electromagnetic coil is de-energized, the air pressure introduction hole 30 is closed by the restoring force of the leaf spring 24, and the gas pressure introduction hole 29 is opened. The pressure upstream of the gas-side restriction is introduced into the gas pressure introduction hole, and the pressure upstream of the air-side restriction is introduced into the air pressure introduction hole. is guided to the pressure sensor 16.
31は空燃比制御回路であり、圧力センサーの
出力信号を増幅する増幅器32の出力は切替信号
発生器33によつて切替えられる切替スイツチを
経て空気圧力アナログメモリー34およびガス側
圧力アナログメモリ35とに導かれ切替信号に同
期してそれぞれの値が記憶・更新される。切替信
号発生器からは圧力切替器17の電磁コイル23
にも電流が供給される。各メモリ34,35から
の出力信号の差が回転数制御回路36で積分演算
増幅されメモリ34,35の出力信号の差が零と
なるようにフアンモーターの回転数がフイードバ
ツク制御される。 31 is an air-fuel ratio control circuit, and the output of an amplifier 32 that amplifies the output signal of the pressure sensor is sent to an air pressure analog memory 34 and a gas side pressure analog memory 35 via a changeover switch that is changed over by a changeover signal generator 33. Each value is stored and updated in synchronization with the guided switching signal. From the switching signal generator, the electromagnetic coil 23 of the pressure switching device 17
Current is also supplied to the The difference between the output signals from the memories 34 and 35 is integrally and operationally amplified by the rotation speed control circuit 36, and the rotation speed of the fan motor is feedback-controlled so that the difference between the output signals from the memories 34 and 35 becomes zero.
第3図は半導体拡散型圧力センサの印加圧力対
出力電圧の一例を示すグラフである。 FIG. 3 is a graph showing an example of applied pressure versus output voltage of a semiconductor diffusion type pressure sensor.
同図aは定常時の印加圧力に対する出力の関係
でbはオフセツトであり印加圧力が零の時の出力
電圧である。この値の圧力センサー製品間でのバ
ラツキがある。同図cは圧力センサの周囲温度が
変化したときの特性の一例でオフセツトおよび圧
力に対する感度も変化する。これは半導体素子の
温度特性に依存するもので、ここで測定しようと
している圧力差のレベルに対してはるかに大きな
変動をするのが一般である。外部回路や内部素子
のトリミング等によりある程度補正できるがコス
トアツプの割には完全に補正できるものではな
い。 In the figure, a shows the relationship between the output and the applied pressure in steady state, and b shows the offset, which is the output voltage when the applied pressure is zero. There is variation in this value between pressure sensor products. Figure c shows an example of the characteristics of the pressure sensor when the ambient temperature changes, and the sensitivity to offset and pressure also changes. This depends on the temperature characteristics of the semiconductor element, and generally varies much more greatly than the level of the pressure difference that we are trying to measure. This can be corrected to some extent by trimming external circuits or internal elements, but it cannot be completely corrected considering the increased cost.
本実施例では印加圧力dおよびeの圧力差を検
出する場合、同一圧力センサで短い時間の間に交
互切替えて検出するためメモリ回路の出力信号の
差は同図fおよびgとなり、オフセツトbもその
変動も相殺される。さらに積分要素を持つた空燃
比制御回路により、fおよびgが限りなく小さく
なるよう制御されるので圧力センサの印加圧力の
変動や、直線性の変動等にもほとんど影響されな
くなる。 In this embodiment, when detecting the pressure difference between the applied pressures d and e, the same pressure sensor detects them by switching them alternately over a short period of time, so the difference between the output signals of the memory circuit is f and g in the figure, and the offset b is also The fluctuations are also canceled out. Further, since f and g are controlled to be as small as possible by the air-fuel ratio control circuit having an integral element, they are almost unaffected by fluctuations in the pressure applied to the pressure sensor, fluctuations in linearity, etc.
以上の構成により差圧検出の精度を高くするこ
とができ、空気およびガス側絞りの圧力差を大き
くすることなく、燃焼量調節比を大きくとつても
空熱比を安定に保つことができる。 With the above configuration, the accuracy of differential pressure detection can be increased, and the air-to-heat ratio can be kept stable even when the combustion amount adjustment ratio is increased, without increasing the pressure difference between the air and gas side throttles.
さらに本実施例では負荷に応じたガス量を供給
し、ガス量に応じた空気量が供給される構成であ
るため、ガス供給圧が低下したり、強風により機
器内部の静圧が上昇して必要なガス量が供給でき
なくなつても、実際に供給されたガス量に応じた
空気量しか供給されないので、空燃比は安定であ
り、燃焼が不安定になることはない。 Furthermore, in this embodiment, the amount of gas is supplied according to the load, and the amount of air is supplied according to the amount of gas, so the gas supply pressure may decrease or the static pressure inside the equipment may increase due to strong winds. Even if the required amount of gas cannot be supplied, only the amount of air corresponding to the amount of gas actually supplied is supplied, so the air-fuel ratio is stable and combustion does not become unstable.
以上のように本発明のガス燃焼制御装置によれ
ば、空気ガス混合部の上流にそれぞれ空気側絞り
とガス側絞りを設け、それぞれの絞りの上流の圧
力を圧力切換器を介して同一の圧力検出器で交互
に検出してそれぞれの圧力信号をそれぞれメモリ
ーに記憶させその出力信号の差を零とするよう空
気量制御機構を制御することによつて、
(1) 圧力検出器の誤差成分が相殺されるので、誤
差補正をしない安価な圧力検出器を使つて精度
の高い空燃比制御が可能であり、燃焼量調節比
が大きくとれる。圧力検出器は差圧型の必要が
ないので構造が簡単にできる。 As described above, according to the gas combustion control device of the present invention, an air-side throttle and a gas-side throttle are provided upstream of the air-gas mixing section, and the pressure upstream of each throttle is adjusted to the same pressure via a pressure switch. By controlling the air flow control mechanism to alternately detect the pressure signals with the detector, store each pressure signal in memory, and make the difference between the output signals zero, (1) the error component of the pressure detector can be reduced. Since they are canceled out, highly accurate air-fuel ratio control is possible using an inexpensive pressure detector that does not perform error correction, and a large combustion amount control ratio can be achieved. The pressure detector does not need to be a differential pressure type, so the structure can be simplified.
(2) 前記により空気およびガス通路の絞りの発生
圧力を小さくできるため、変風機を小型化で
き、かつガス供給圧力の低い家庭用ガス燃料に
も適用が可能になる。(2) Since the pressure generated by the restriction of the air and gas passages can be reduced as described above, the air converter can be downsized and can also be applied to household gas fuels with low gas supply pressure.
(3) 積分要素を付加することによりさらに上記の
効果は増大する。(3) The above effect is further enhanced by adding an integral element.
前記の理由で、特性変動の大きい半導体圧力セ
ンサーを使えるため圧力センサーの寸法が極めて
小型になり、機器の小型化ができ部品配置の自由
度が増大される。被加熱体の温度に応じてガス比
例弁を制御し、空気側とガス側の絞りの上流の圧
力差信号に応じて空気量可変機構を制御すること
により、ガス供給圧力が低下したり、強風により
機器の内部の静圧が上昇した場合に、必要なガス
量が供給できなくても、実際に供給されたガス量
に応じた空気量が供給されるので、空燃比は安定
であり燃焼が不安定になることもない。 For the above-mentioned reasons, since a semiconductor pressure sensor with large characteristic fluctuations can be used, the dimensions of the pressure sensor can be extremely small, allowing the device to be downsized and increasing the degree of freedom in arranging components. The gas proportional valve is controlled according to the temperature of the heated object, and the air amount variable mechanism is controlled according to the pressure difference signal upstream of the air and gas side throttles. Even if the required amount of gas cannot be supplied when the static pressure inside the equipment increases, the air amount corresponding to the amount of gas actually supplied will be supplied, so the air-fuel ratio will be stable and combustion will not occur. It doesn't become unstable.
第1図は従来のガス燃焼制御装置を示す構成
図、第2図は本発明の一実施例のガス燃焼制御装
置を示す構成図、第3図は本発明の一実施例に使
用の半導体拡散形圧力センサの印加圧力対出力電
圧特性を示すグラフである。
1……送風機、3……混合部、2……空気側絞
り、5……ガス側絞り、6……バーナ、11……
熱交換器、13……ガス比例弁、12……サーミ
スタ、16……圧力センサ、17……圧力切換
器、34……空気圧メモリー、35……ガス圧メ
モリ、36……回転数制御回路。
Fig. 1 is a block diagram showing a conventional gas combustion control device, Fig. 2 is a block diagram showing a gas combustion control device according to an embodiment of the present invention, and Fig. 3 is a semiconductor diffusion diagram used in an embodiment of the present invention. 2 is a graph showing applied pressure versus output voltage characteristics of a type pressure sensor. 1...Blower, 3...Mixing section, 2...Air side throttle, 5...Gas side throttle, 6...Burner, 11...
Heat exchanger, 13... Gas proportional valve, 12... Thermistor, 16... Pressure sensor, 17... Pressure switch, 34... Air pressure memory, 35... Gas pressure memory, 36... Rotation speed control circuit.
Claims (1)
用空気とを混合する混合部と、バーナと、被加熱
体を加熱する熱交換器とを有し、混合部の上流の
空気通路およびガス通路にそれぞれ空気側絞りと
ガス側絞りと、さらにガス通路に電気信号に応じ
てガス供給量を連続可変するガス比例弁と、電気
信号に応じて空気量を連続可変する空気量可変機
構と、絶対圧型または相対圧型の圧力検出器と、
空気側絞りの上流の圧力とガス側圧力とを交互に
切替えて前記圧力検出器に導く圧力切替器と、前
記圧力切換器の動作に連動して空気側絞り上流圧
力信号とガス側絞り上流圧力信号とをそれぞれ電
気的に記憶する空気圧メモリーとガス圧メモリー
と、熱交換器出口の被加熱体の温度を検出する温
度検出器と、被加熱体の熱交換器出口温度を設定
する温度設定器とを有し、前記温度検出器の信号
と温度信号との差に応じて前記ガス比例弁を制御
し、前記空気圧メモリーの信号とガス圧メモリー
の信号との差に応じてその差が零となるように前
記空気量可変機構を制御する燃焼制御装置。 2 圧力検出器を半導体拡散型圧力センサーとし
た特許請求の範囲第1項記載の燃焼制御装置。 3 空気量可変機構を、積分要素を介して制御し
た特許請求の範囲第1項または第2項記載の燃焼
制御装置。[Claims] 1. A blower that supplies combustion air, a mixing section that mixes gas and combustion air, a burner, and a heat exchanger that heats an object to be heated; The air passage and the gas passage have an air side restriction and a gas side restriction, respectively, and the gas passage has a gas proportional valve that continuously varies the amount of gas supplied in response to an electrical signal, and an air valve that continuously varies the amount of air supplied in response to an electrical signal. a variable amount mechanism, an absolute pressure type or relative pressure type pressure detector,
A pressure switch that alternately switches the pressure upstream of the air-side throttle and the gas-side pressure and guides it to the pressure detector; and a pressure switch that alternately switches the pressure upstream of the air-side throttle and the gas-side pressure and guides it to the pressure detector; and the air-side throttle upstream pressure signal and the gas-side throttle upstream pressure in conjunction with the operation of the pressure switch. an air pressure memory and a gas pressure memory that electrically store signals, a temperature detector that detects the temperature of the heated body at the outlet of the heat exchanger, and a temperature setting device that sets the temperature of the heated body at the heat exchanger outlet. and controlling the gas proportional valve according to the difference between the signal of the temperature sensor and the temperature signal, and adjusting the difference to zero according to the difference between the signal of the air pressure memory and the signal of the gas pressure memory. A combustion control device that controls the air amount variable mechanism so that the amount of air changes. 2. The combustion control device according to claim 1, wherein the pressure detector is a semiconductor diffusion type pressure sensor. 3. The combustion control device according to claim 1 or 2, wherein the air amount variable mechanism is controlled via an integral element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57107227A JPS58224227A (en) | 1982-06-21 | 1982-06-21 | Combustion control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57107227A JPS58224227A (en) | 1982-06-21 | 1982-06-21 | Combustion control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58224227A JPS58224227A (en) | 1983-12-26 |
JPS649526B2 true JPS649526B2 (en) | 1989-02-17 |
Family
ID=14453708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57107227A Granted JPS58224227A (en) | 1982-06-21 | 1982-06-21 | Combustion control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58224227A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT202200002768A1 (en) | 2022-02-15 | 2023-08-15 | Cnh Ind Italia Spa | CONFIGURABLE WORK VEHICLE IN A LOCKED STATE |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2171246T3 (en) * | 1997-03-05 | 2002-09-01 | Siemens Building Tech Ag | CONTROL AND REGULATION DEVICE FOR A GAS BURNER. |
US9528712B2 (en) * | 2012-11-05 | 2016-12-27 | Pat Caruso | Modulating burner system |
US10274195B2 (en) * | 2016-08-31 | 2019-04-30 | Honeywell International Inc. | Air/gas admittance device for a combustion appliance |
-
1982
- 1982-06-21 JP JP57107227A patent/JPS58224227A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT202200002768A1 (en) | 2022-02-15 | 2023-08-15 | Cnh Ind Italia Spa | CONFIGURABLE WORK VEHICLE IN A LOCKED STATE |
Also Published As
Publication number | Publication date |
---|---|
JPS58224227A (en) | 1983-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2704048B2 (en) | Current difference type thermal mass flow transducer | |
JPH06173725A (en) | Control system for supplying gas flow to gas comsuming device | |
KR20050047079A (en) | Variable resistance sensor with common reference leg | |
US4677357A (en) | Furnace draft control with remote control feature | |
CA1139398A (en) | Regulating circuit for the valve of a refrigeration plant | |
JPS649528B2 (en) | ||
JPS649526B2 (en) | ||
US6539792B2 (en) | Method and apparatus for balancing resistance | |
US4384484A (en) | Gas flow measuring device | |
JPH033847B2 (en) | ||
JPH033848B2 (en) | ||
JPS5885016A (en) | Combustion control device | |
JPH0158412B2 (en) | ||
JPH02256856A (en) | Heating device for external combustion engine | |
JPS649525B2 (en) | ||
JPH0229931B2 (en) | ||
JPH0236857B2 (en) | ||
JPS6080018A (en) | Gas burning control device | |
JPS5828621A (en) | Thermal flow meter | |
JPS5896920A (en) | Control device for gas combustion quantity | |
JPS6314366B2 (en) | ||
JPS649527B2 (en) | ||
JPH0143883B2 (en) | ||
KR880004145Y1 (en) | Combustion control device | |
JPS5969612A (en) | Gas combustion control device |