JPH0143883B2 - - Google Patents

Info

Publication number
JPH0143883B2
JPH0143883B2 JP56143420A JP14342081A JPH0143883B2 JP H0143883 B2 JPH0143883 B2 JP H0143883B2 JP 56143420 A JP56143420 A JP 56143420A JP 14342081 A JP14342081 A JP 14342081A JP H0143883 B2 JPH0143883 B2 JP H0143883B2
Authority
JP
Japan
Prior art keywords
metal wire
series
resistor
voltage
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56143420A
Other languages
Japanese (ja)
Other versions
JPS5845568A (en
Inventor
Kenjiro Matsushita
Koichi Fujiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Denshi Kiki Co Ltd
Original Assignee
Nippon Denshi Kiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Denshi Kiki Co Ltd filed Critical Nippon Denshi Kiki Co Ltd
Priority to JP56143420A priority Critical patent/JPS5845568A/en
Publication of JPS5845568A publication Critical patent/JPS5845568A/en
Publication of JPH0143883B2 publication Critical patent/JPH0143883B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/10Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring thermal variables
    • G01P5/12Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring thermal variables using variation of resistance of a heated conductor

Description

【発明の詳細な説明】 本発明は熱線流量計に関し、特に内燃機関の吸
入空気量を測定するための熱線流量計に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hot wire flowmeter, and more particularly to a hot wire flowmeter for measuring the intake air amount of an internal combustion engine.

燃料噴射弁によつて機関へ燃料を供給する方式
の内燃機関においては、機関に吸入される吸入空
気量に応じて噴射弁の開閉が制御されるようにな
つており、この吸入空気量を測定するために吸入
空気流量計が設けられている。かかる吸入空気流
量計として吸入空気路に所定金属線を張設してこ
れに所定電流を流し、空気流速の変動に応じた金
属線の抵抗変化により吸入空気流量を測定する熱
線流量計がある。
In internal combustion engines that supply fuel to the engine through fuel injection valves, the opening and closing of the injection valves is controlled according to the amount of intake air taken into the engine, and this amount of intake air is measured. An intake air flow meter is provided for this purpose. As such an intake air flowmeter, there is a hot wire flowmeter that measures the intake air flow rate by extending a predetermined metal wire in the intake air path, passing a predetermined current through the wire, and measuring the resistance change of the metal wire in response to fluctuations in air flow velocity.

従来のかかる熱線流量計においては、直列に接
続された第1及び第2抵抗による第1分圧回路と
同様に直列に接続された金属線及び第3抵抗によ
る第2分圧回路とが並列に接続された回路、すな
わちブリツジ回路が形成されている。ブリツジ回
路の第1抵抗を含む辺には金属線の温度補償用抵
抗が第1抵抗に直列に接続されており、温度補償
用抵抗は金属線及び第3抵抗と共に吸入空気路内
に設けられている。金属線は、機関作動中に通電
加熱されて熱線になつており、吸入空気流速に応
じた度合で冷却されて、その抵抗値が変化する。
金属線の抵抗値は金属線を流れる電流に比例して
変化する第3抵抗の両端電圧すなわち第2分圧回
路の出力電圧により検出され、この電圧が吸入空
気流量に対応したものとして出力される。
In such a conventional hot wire flowmeter, a first voltage dividing circuit including a first and second resistor connected in series and a second voltage dividing circuit including a metal wire and a third resistor connected in series are connected in parallel. A connected circuit, or bridge circuit, is formed. A temperature compensation resistor made of a metal wire is connected in series with the first resistor on the side including the first resistor of the bridge circuit, and the temperature compensation resistor is provided in the intake air path together with the metal wire and the third resistor. There is. The metal wire is heated by electricity during engine operation to become a hot wire, and is cooled to a degree according to the intake air flow rate, changing its resistance value.
The resistance value of the metal wire is detected by the voltage across the third resistor, that is, the output voltage of the second voltage dividing circuit, which changes in proportion to the current flowing through the metal wire, and this voltage is output as a value corresponding to the intake air flow rate. .

また第1及び第2分圧回路の出力には電流制御
回路が接続され、電流制御回路は第1及び第2分
圧回路の各分圧出力電圧の電位差に応じた電流を
ブリツジ回路に供給してブリツジ回路の平衝条件
により金属線の抵抗値が常に所定値になるように
動作する。
Further, a current control circuit is connected to the outputs of the first and second voltage divider circuits, and the current control circuit supplies a current to the bridge circuit according to the potential difference between the divided output voltages of the first and second voltage divider circuits. The bridge circuit operates so that the resistance value of the metal wire always becomes a predetermined value due to the equilibrium condition of the bridge circuit.

しかしながら、かかる熱線流量計においては、
第1分圧回路の第1及び第2抵抗が電流制御回路
と共に基板上に形成されてケース内に設けられて
いるため、電流制御回路の発熱による温度変化や
ケース周囲の機関等からの熱による温度変化によ
り第1及び第2抵抗の抵抗値が変化してしまう。
よつて、ブリツジ回路が平衝状態になるように制
御されているにもかかわらず金属線の抵抗値が所
定値になるように制御されないという問題点があ
つた。
However, in such a hot wire flowmeter,
Since the first and second resistors of the first voltage divider circuit are formed on the board together with the current control circuit and installed inside the case, temperature changes due to heat generated by the current control circuit and heat from the engine around the case can cause The resistance values of the first and second resistors change due to temperature changes.
Therefore, there was a problem in that although the bridge circuit was controlled to be in a balanced state, the resistance value of the metal wire was not controlled to be a predetermined value.

そこで、本発明の目的は、第1及び第2抵抗の
抵抗値が温度によつて変化しても金属線の抵抗値
が所定値になるように制御する熱線流量計を提供
することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a hot wire flowmeter that controls the resistance value of a metal wire to a predetermined value even if the resistance values of the first and second resistors change depending on the temperature.

本発明による熱線流量計は、第1抵抗(抵抗
値:R1)の温度係数α1と第2抵抗(抵抗値:R2
の温度係数α2との比がα1/α2=R1+RK/R1(RKは温
度 補償用抵抗の抵抗値)を若しくはこの近似値にな
るようになされている。
The hot wire flowmeter according to the present invention has a temperature coefficient α 1 of the first resistance (resistance value: R 1 ) and a second resistance (resistance value: R 2 ).
The ratio of the temperature coefficient α 2 to the temperature coefficient α 2 is α 12 =R 1 +R K /R 1 (R K is the resistance value of the temperature compensation resistor) or an approximate value thereof.

以下、本発明の実施例を図を参照して詳細に説
明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

図において、金属線RHは、好ましくは白金か
らなり、第1、第2及び第3抵抗である抵抗R1
ないしR3と共にブリツジ回路1を形成している。
抵抗R1を含む辺には温度補償用抵抗RKが抵抗R1
に直列に接続されており、抵抗RKは金属線RH
び抵抗R3と共に吸入空気路2内に設けられてい
る。ブリツジ回路1の金属線RHと抵抗RKとの接
続点αは電源端であり、抵抗R2とR3との接続点
bは接地されている。また、金属線RHと抵抗R3
との接続点c及び抵抗R1とR2との接続点dは差
動増幅回路3に接続されている。差動増幅回路3
は、トランジスタQ1と共に電流制御回路4をな
し、接続点cとdとの電位差に比例した電圧を出
力端に発生し、この電圧はトランジスタQ1のベ
ースに印加される。トランジスタQ1のエミツタ
には電源電圧VBが印加され、コレクタは接続点
aに接続されている。
In the figure, the metal wire R H is preferably made of platinum, and the resistors R 1 are the first, second and third resistors.
to R3 together form a bridge circuit 1.
Temperature compensation resistor R K is connected to resistor R 1 on the side that includes resistor R 1 .
The resistor R K is provided in the intake air passage 2 together with the metal wire R H and the resistor R 3 . The connection point α between the metal wire R H and the resistor R K of the bridge circuit 1 is a power supply terminal, and the connection point b between the resistors R 2 and R 3 is grounded. Also, metal wire R H and resistor R 3
The connection point c between the resistors R 1 and R 2 and the connection point d between the resistors R 1 and R 2 are connected to the differential amplifier circuit 3 . Differential amplifier circuit 3
constitutes a current control circuit 4 together with the transistor Q1 , and generates a voltage at the output terminal proportional to the potential difference between the connection points c and d, and this voltage is applied to the base of the transistor Q1 . A power supply voltage V B is applied to the emitter of the transistor Q1 , and the collector is connected to the connection point a.

上記構成の熱線流量計においては、金属線RH
の抵抗値の変化による接続点c,dの電位差がト
ランジスタQ1のベース電圧を変化せしめ、トラ
ンジスタQ1からブリツジ回路1へ供給される電
流は金属線RHの抵抗値を所定値に保つように増
減する。このような制御を行なうと、ブリツジ回
路1の平衝条件が成り立ち RH=R1+RK/R2×R3 ……(1) (ここでRH,R1,R2,R3及びRKは金属線RH
抵抗R1,R2,R3及びRHの抵抗値である。) となる。しかし、実際には電流制御回路4等の熱
による周囲温度t℃により抵抗R1,R2の抵抗値
が変化するので式(1)より温度t℃のときの金属線
RHの抵抗値は RH=R1(1+α1t)+RK/R2(1+α2t)×R3……(2
) α1:抵抗R1の温度係数 α2:抵抗R2の温度係数 となる。このため、本発明による熱線流量計にお
いては、温度係数α1,α2の比が次式のようになつ
ている。
In the hot wire flowmeter with the above configuration, the metal wire R H
The potential difference between the connection points c and d due to the change in the resistance value changes the base voltage of the transistor Q1 , and the current supplied from the transistor Q1 to the bridge circuit 1 maintains the resistance value of the metal wire RH at a predetermined value. increases or decreases. When such control is performed, the equilibrium condition of the bridge circuit 1 is satisfied, R H = R 1 + R K /R 2 × R 3 ...(1) (Here, R H , R 1 , R 2 , R 3 and R K is metal wire R H ,
These are the resistance values of resistors R 1 , R 2 , R 3 and R H. ) becomes. However, in reality, the resistance values of the resistors R 1 and R 2 change depending on the ambient temperature t°C caused by the heat of the current control circuit 4, etc., so from equation (1), when the metal wire
The resistance value of R H is R H = R 1 (1 + α 1 t) + R K /R 2 (1 + α 2 t) × R 3 ...(2
) α 1 : Temperature coefficient of resistance R 1 α 2 : Temperature coefficient of resistance R 2 . Therefore, in the hot wire flowmeter according to the present invention, the ratio of temperature coefficients α 1 and α 2 is as shown in the following equation.

α1/α2=R1+RK/R1 ……(3) この理由を次に説明する。金属線RHの抵抗値
が抵抗R1,R2の周囲温度t℃に影響されずに常
に所定値になるように制御することは周囲温度0
℃のときの金属線RHの抵抗値と周囲温度t℃の
ときの金属線RHの抵抗値とが等しくなければな
らない。式(2)においてt=0のときは式(1)である
から式(1)=式(2)が成り立つ。従つて、 t{R1α1−α2(R1+RK)}=0 ……(4) となる。周囲温度t℃に影響されないので式(4)よ
り R1α1−α2(R1+RK)=0 ……(5) である。すなわち、抵抗R1の温度係数α1に対す
る抵抗R2の温度係数α2の比が α1/α2=R1+RK/R1 若しくはこの近似値になるように定めると抵抗
R1,R2の周囲温度に影響されずに金属線RHの抵
抗値が常に所定値になるように制御できるのであ
る。
α 12 =R 1 +R K /R 1 (3) The reason for this will be explained next. Controlling the resistance value of the metal wire R H to always be a predetermined value without being affected by the ambient temperature t°C of the resistors R 1 and R 2 means that the resistance value of the metal wire R
The resistance value of the metal wire R H when the ambient temperature is t°C must be equal to the resistance value of the metal wire R H when the ambient temperature is t°C. In equation (2), when t=0, equation (1) holds, so equation (1)=equation (2) holds true. Therefore, t{R 1 α 1 −α 2 (R 1 +R K )}=0 (4). Since it is not affected by the ambient temperature t°C, from equation (4), R 1 α 1 −α 2 (R 1 +R K )=0 (5). In other words, if the ratio of the temperature coefficient α 2 of the resistance R 2 to the temperature coefficient α 1 of the resistance R 1 is determined to be α 12 = R 1 + R K /R 1 or an approximate value thereof, the resistance
The resistance value of the metal wire R H can be controlled to always be a predetermined value without being affected by the ambient temperature of R 1 and R 2 .

このように、本発明の熱線流量計によれば、ブ
リツジ回路の第1抵抗R1の温度係数α1に対する
第2抵抗R2の温度係数α2の比が R1+RK/R1若しくはこの近似値になるようになさ れているため、第1及び第2抵抗R1,R2の抵抗
値が周囲温度によつて変化しても金属線の抵抗値
が常に所定値に制御されるのである。
As described above, according to the hot wire flowmeter of the present invention, the ratio of the temperature coefficient α 2 of the second resistor R 2 to the temperature coefficient α 1 of the first resistor R 1 of the bridge circuit is R 1 +R K /R 1 or this ratio. Since the values are approximate, even if the resistance values of the first and second resistors R 1 and R 2 change depending on the ambient temperature, the resistance value of the metal wire is always controlled to a predetermined value. .

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の熱線流量計の実施例を示す回路図
である。 主要部分の符号の説明、1……ブリツジ回路、
2……吸入空気路、3……差動増幅回路、4……
電流制御回路。
The figure is a circuit diagram showing an embodiment of the hot wire flowmeter of the present invention. Explanation of symbols of main parts, 1...Bridge circuit,
2...Intake air path, 3...Differential amplifier circuit, 4...
Current control circuit.

Claims (1)

【特許請求の範囲】 1 直列に接続された第1抵抗(抵抗値:R1
と第2抵抗とによる第1分圧回路と、気体通路に
設けられかつ直列に接続された金属線と第3抵抗
とによる第2分圧回路と、前記気体通路に設けら
れかつ前記第1抵抗に直列に接続された前記金属
線の温度補償用抵抗(抵抗値:RK)と、前記第
1及び第2分圧回路の分圧電圧の電位差を検出す
る電位差検出手段と、前記第1及び第2分圧回路
の一端に直列に接続され前記電位差検出手段の出
力信号に応じて作動する能動素子と、前記第1及
び第2分圧回路と前記能動素子との直列回路の両
端間に電圧を供給する電源とからなり、前記第1
抵抗の温度係数α1に対する前記第2抵抗の温度係
数α2の比がR1+RK/R1若しくはこの近似値になるよ うになされていることを特徴とする熱線流量計。
[Claims] 1. First resistor connected in series (resistance value: R 1 )
a first voltage dividing circuit including a metal wire and a third resistor provided in the gas passage and connected in series; and a second voltage dividing circuit including a metal wire and a third resistor provided in the gas passage and connected in series; a temperature-compensating resistor (resistance value: R K ) of the metal wire connected in series with the voltage difference detecting means for detecting a potential difference between the divided voltages of the first and second voltage dividing circuits; An active element connected in series to one end of the second voltage divider circuit and activated according to the output signal of the potential difference detection means, and a voltage between both ends of the series circuit of the first and second voltage divider circuits and the active element. and a power source that supplies the first
A hot wire flowmeter characterized in that the ratio of the temperature coefficient α 2 of the second resistance to the temperature coefficient α 1 of the resistance is R 1 +R K /R 1 or an approximate value thereof.
JP56143420A 1981-09-11 1981-09-11 Hot-wire flowmeter Granted JPS5845568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56143420A JPS5845568A (en) 1981-09-11 1981-09-11 Hot-wire flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56143420A JPS5845568A (en) 1981-09-11 1981-09-11 Hot-wire flowmeter

Publications (2)

Publication Number Publication Date
JPS5845568A JPS5845568A (en) 1983-03-16
JPH0143883B2 true JPH0143883B2 (en) 1989-09-25

Family

ID=15338328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56143420A Granted JPS5845568A (en) 1981-09-11 1981-09-11 Hot-wire flowmeter

Country Status (1)

Country Link
JP (1) JPS5845568A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0675247B2 (en) * 1983-11-04 1994-09-21 株式会社日立製作所 Air flow detector
JPS60149922A (en) * 1984-01-17 1985-08-07 Japan Electronic Control Syst Co Ltd Hot wire type flowmeter
JP2631481B2 (en) * 1987-12-08 1997-07-16 株式会社 リンテック Mass flow meter and its measurement method

Also Published As

Publication number Publication date
JPS5845568A (en) 1983-03-16

Similar Documents

Publication Publication Date Title
US4283944A (en) Apparatus for measuring the mass of a fluid medium
US4562731A (en) Air flow meter
US4344322A (en) Device for air flow rate measurement in the air intake tube of an internal combustion engine
US4587843A (en) Thermocouple-type gas-flow measuring apparatus
US4409828A (en) Gas flow measuring device
US4384484A (en) Gas flow measuring device
JPS6140924B2 (en)
US4437345A (en) Gas flow measuring device
JPH0143883B2 (en)
US5394746A (en) Hot wire flow rate measuring circuit
US4571991A (en) Air flow measuring apparatus
JP2957769B2 (en) Thermal air flow meter and engine controller
JPS59190623A (en) Heat type air flowmeter
JPS6013446B2 (en) Gas flow measuring device
JP2944890B2 (en) Thermal air flow detector
JP3095322B2 (en) Thermal air flow detector
JP3184402B2 (en) Thermal air flow detector
JP3133609B2 (en) Thermal air flow detector
JPS60100720A (en) Hot wire type flow meter
JPH0351710Y2 (en)
JP2515018Y2 (en) Intake air flow rate measuring device for internal combustion engine
JPH0843162A (en) Thermal air flow rate detector
JPH0477254B2 (en)
JP3133617B2 (en) Thermal air flow detector
JPH01100423A (en) Operating condition detector for internal combustion engine