JPS59190623A - Heat type air flowmeter - Google Patents

Heat type air flowmeter

Info

Publication number
JPS59190623A
JPS59190623A JP58063682A JP6368283A JPS59190623A JP S59190623 A JPS59190623 A JP S59190623A JP 58063682 A JP58063682 A JP 58063682A JP 6368283 A JP6368283 A JP 6368283A JP S59190623 A JPS59190623 A JP S59190623A
Authority
JP
Japan
Prior art keywords
wire
air
air flow
hot wire
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58063682A
Other languages
Japanese (ja)
Inventor
Mitsukuni Tsutsui
筒井 光圀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58063682A priority Critical patent/JPS59190623A/en
Publication of JPS59190623A publication Critical patent/JPS59190623A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To improve response of the titled device, by providing heating resistor bodies for measuring the flow rate of air and for correcting air temperature in a bypass, into which part of the air flow is divided, so that the longitudinal direction is set at a specified angle with respect to the flowing direction of the air. CONSTITUTION:A hot wire 1 of a heating resistor body, which detects the amount of intake air, and a cold wire 2 of a resistor body, which detects the temperature of the intake air, are formed as follows: platinum wire 102 is wound around an alumina bobbin 101; both ends of the wire are welded to a lead 103; and thereafter a thin glass coating 104 is applied to the surface thereof. Said heating resistor bodies are provided in a bypass 106 of a body 107 at a slant angle theta with respect to the bypass air flow. The length of the hot wire 1 can be made sufficiently large without increasing the diameter of the bypass. Therefore, a hot-wire type air flowmeter having excellent response can be provided.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は熱式空気流量計に係り、特に内燃機関の吸入空
気流量を検出する熱式空気流量計に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a thermal air flow meter, and more particularly to a thermal air flow meter for detecting the intake air flow rate of an internal combustion engine.

〔発明の背景〕[Background of the invention]

測定された吸入空気流量に応じてエンジンに供給する燃
料量を決定するため熱式空気流量計は、エンジンの急加
減速時のような吸入空気流量の急変に対し速かに応答す
ることが必要である。
Since the amount of fuel supplied to the engine is determined according to the measured intake air flow rate, the thermal air flow meter must respond quickly to sudden changes in the intake air flow rate, such as when the engine suddenly accelerates or decelerates. It is.

内燃機関用空気流量計においては、エンジンの吸気バル
ブの開閉による吸気脈動及び吹返しによる影響を受ける
ことが少なく、吸入空気流量の平均値を出力することが
望ましい。これに対処するため、発熱抵抗体を空気流の
一部を分流するようにしたバイパス通路中に設置する方
法が採用されている(例えば、特開昭56−18721
号など)。
It is desirable for an air flow meter for an internal combustion engine to be less affected by intake pulsation and blowback caused by opening and closing of an intake valve of the engine, and to output an average value of the intake air flow rate. To deal with this, a method has been adopted in which a heating resistor is installed in a bypass passage that diverts a part of the airflow (for example, Japanese Patent Laid-Open No. 56-18721
number, etc.).

このバイパス通路中に発熱抵抗体を設置してなる方式に
おいては、全空気量に対するバイパス通路を流れる空気
量の割合を大きくすると、空気流量計全体の通気抵抗が
犬きくなシ、エンジンの吸気損失となシ出力低下をきた
すため、バイパス通路を流れる空気量の割合は小さい方
が良い。
In this system in which a heat generating resistor is installed in the bypass passage, if the ratio of the amount of air flowing through the bypass passage to the total amount of air is increased, the ventilation resistance of the entire air flow meter increases and the intake air loss of the engine increases. This will cause a decrease in output, so the smaller the proportion of air flowing through the bypass passage, the better.

一方、内燃機関用空気流量計においては、エンジンの急
加減速時のような吸入空気流量の急変に速やかに応答す
ることが必要である。
On the other hand, in an air flow meter for an internal combustion engine, it is necessary to quickly respond to sudden changes in the intake air flow rate, such as when the engine suddenly accelerates or decelerates.

この応答速度は、発熱抵抗体の寸法に影響を受け、第1
図に示すような円柱状発熱抵抗体において、外径dと長
さtの比t/dに対し著しく変化する。第2図及び第1
表はとのt/dに対する応答速度の関係の実験結果を示
したものである。
This response speed is affected by the dimensions of the heating resistor, and
In a cylindrical heating resistor as shown in the figure, the ratio t/d of the outer diameter d to the length t changes significantly. Figure 2 and 1
The table shows experimental results regarding the relationship between response speed and t/d.

第2図は、空気流量をOの状態から200に9/hに急
変させた時の熱線式空気流量計の出力変化の状態を示し
たものである。空気流量Q=OKg/hの時の出力をV
oとし、Q=200Kg/hの時の出力をV2O0とし
た時、出力変化量が全変化量の90%に達するまでの時
間TRを測定した結果を第1表に示す。
FIG. 2 shows how the output of the hot wire air flow meter changes when the air flow rate is abruptly changed from O to 200/h to 9/h. The output when air flow rate Q = OKg/h is V
Table 1 shows the results of measuring the time TR until the amount of change in output reaches 90% of the total amount of change when the output at Q=200Kg/h is set to V2O0.

第1表 応答速度すなわち立上り時間TRはt/dによシ大きく
変化り、、t/dが大きい程TRは小さくない。応答速
度は早く、内燃機関用空気流量計として望ましいものに
なる。
Table 1 The response speed, that is, the rise time TR varies greatly depending on t/d, and the larger t/d is, the smaller TR is. The response speed is fast, making it desirable as an air flow meter for internal combustion engines.

しかるに、発熱抵抗体の外径dは製造上、強度等の制約
から下限があり、長さtを大きくすることが必要になる
。この長さtを大きくするとバイパス通路径が犬きくな
シ前記したように、通気抵抗が大きくなること及び空気
流量計全体が大きくなる等の欠点を有している。
However, the outer diameter d of the heating resistor has a lower limit due to manufacturing constraints such as strength, and it is necessary to increase the length t. If the length t is increased, the diameter of the bypass passage becomes smaller, which has disadvantages such as an increase in ventilation resistance and an increase in the size of the air flow meter as a whole, as described above.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、応答性の良い熱式空気流量計を提供す
ることにある。
An object of the present invention is to provide a thermal air flow meter with good responsiveness.

〔発明の概要〕[Summary of the invention]

本発明は、バイパス通路の空気流に対し、発熱抵抗体の
長手方向をある角度をもって設置することにより応答性
を良くしようというものである。
The present invention aims to improve responsiveness by installing the heating resistor at a certain angle in the longitudinal direction with respect to the air flow in the bypass passage.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

吸入空気量を感知する発熱抵抗体のホットワイヤl及び
吸入空気温度を感知する抵抗体のコールドワイヤ2はい
ずれも第1図に示す如くアルミナのボビン101に白金
線102を巻線し、その両端をリード103に溶接した
後、表面に薄くガラスコーティング104を行なったも
のである。この発熱抵抗体は第3図に示す如く吸入空気
の大部分が通るメイン通路105及び一部が分流するバ
イパス通路106を有してなるボディ107のバイパス
通路106中にバイパス空気流に対し斜めの角度θで設
置されている。
The hot wire 1 of the heating resistor for sensing the amount of intake air and the cold wire 2 for the resistor for sensing the intake air temperature are both made by winding a platinum wire 102 around an alumina bobbin 101, as shown in FIG. is welded to a lead 103, and then a thin glass coating 104 is applied to the surface. As shown in FIG. 3, this heating resistor is installed in a bypass passage 106 of a body 107, which has a main passage 105 through which most of the intake air passes and a bypass passage 106 through which a portion of the intake air flows. It is installed at an angle θ.

上記したホットワイヤ1、コールドワイヤ2は第4図に
示す如くリード103を駆動回路を収納してなるモジュ
ールのケース108に一体に成形されたビン110,1
11に溶接されている。
As shown in FIG. 4, the hot wire 1 and the cold wire 2 described above are connected to bins 110 and 1 which are integrally formed with a case 108 of a module that houses a lead 103 and a drive circuit.
It is welded to 11.

第5図には、熱線式空気流量計の駆動回路が示されてい
る。
FIG. 5 shows a drive circuit for a hot wire air flowmeter.

図において、駆動回路は、ホットワイヤlと、コールド
ワイヤ2を含んだホットワイヤ駆動部3と、出力段増幅
部4と、定電圧部5とよシ構成されている。
In the figure, the drive circuit includes a hot wire l, a hot wire drive section 3 including a cold wire 2, an output stage amplification section 4, and a constant voltage section 5.

電源端子6にはバッテリの(ト)が、出力端子7には本
空気流量計の出力信号を使ってエンジン制御をするマイ
クロコンピュータの入力端が、アース゛端子8にはバッ
チ、りの(→及び上記したマイクロコンピュータのアー
ス端が接続される。
The power supply terminal 6 is connected to the battery (G), the output terminal 7 is connected to the input terminal of a microcomputer that controls the engine using the output signal of this air flow meter, and the ground terminal 8 is connected to the battery (→ and The ground end of the microcomputer mentioned above is connected.

パワートランジスタ9によってホットワイヤ1に電流を
供給し、ホットワイヤlを加熱しホットワイヤlの温度
を吸入空気温度よシ一定温度高く保つ。この時、コール
ドワイヤ2には発熱が無視できる程度の微少電流しか流
さないようにしであるため、コールドワイヤ2は吸入空
気温度と同一温度であシ、吸入空気温度の補正を行なっ
ている。
A power transistor 9 supplies current to the hot wire 1, heats the hot wire 1, and maintains the temperature of the hot wire 1 at a constant temperature higher than the intake air temperature. At this time, since only a minute current is allowed to flow through the cold wire 2 so that heat generation is negligible, the cold wire 2 is kept at the same temperature as the intake air temperature, and the intake air temperature is corrected.

空気流がホットワイヤ1に当ると、上記したホットワイ
ヤ駆動部の動作によって、常にホットワイヤ1の温度と
吸入空気温度の差が一定になるように制御される。この
動作は、ホットワイヤ1の両端の電位差を抵抗10と1
1で分割した電圧と、ホットワイヤlを流れた電流によ
って生ずる抵抗12の電圧降下をオペアンプで増幅した
電圧とが常に等しくなるように帰還をかけている。
When the airflow hits the hot wire 1, the temperature difference between the temperature of the hot wire 1 and the intake air temperature is controlled to be constant by the operation of the hot wire drive unit described above. This operation reduces the potential difference between the two ends of the hot wire 1 to the resistor 10 and 1
Feedback is applied so that the voltage divided by 1 and the voltage obtained by amplifying the voltage drop across the resistor 12 caused by the current flowing through the hot wire 1 by an operational amplifier are always equal.

空気流量Qとホットワイヤ1を流れる電流Iの関係は(
1)式で表わされる。
The relationship between the air flow rate Q and the current I flowing through the hot wire 1 is (
1) It is expressed by the formula.

I” ・Rio (1+αTi )= (Ct+C+V
’Q)・(THTC)・・・・・・・・・・・・α) Rio:QCのホットワイヤ1の抵抗値α:ホットワイ
ヤ1の抵抗温度係数 TR:ホットワイヤ1の温度(発熱状態)Tc :コー
ルドワイヤ2の温度(即ち、空気温度) C,、C,:定数 ここで、(TH−Tc)が(1+αT■)に比例すれば
ホットワイヤを流れる電流■は空気流量Qのみに依存す
る。本回路はこれを実現した回路で、ホットワイヤ1の
電流工を測定することにより、(抵抗12の電圧降下と
して)空気温度の影響を受けずに空気流量を測定する。
I”・Rio (1+αTi)=(Ct+C+V
'Q)・(THTC)・・・・・・・・・・・・α) Rio: Resistance value of hot wire 1 of QC α: Resistance temperature coefficient of hot wire 1 TR: Temperature of hot wire 1 (heating state ) Tc: Temperature of the cold wire 2 (i.e., air temperature) C,, C,: Constant Here, if (TH-Tc) is proportional to (1+αT■), the current ■ flowing through the hot wire will be limited to the air flow rate Q only. Dependent. This circuit realizes this, and by measuring the current of the hot wire 1, the air flow rate is measured without being affected by the air temperature (as a voltage drop across the resistor 12).

したがって、本実施例によれば、ホットワイヤ1の軸方
向をバイパス通路106中に空気流即ち、バイパス通路
方向に対し、斜めの角度θで設定しであるため、バイパ
ス通路径を大きくすることなくホットワイヤ1の長さt
を十分大きくでき、外径dとの比t/dを大きくできる
ため、応答性の良い熱線式空気流量計を提供できる。
Therefore, according to this embodiment, since the axial direction of the hot wire 1 is set at an oblique angle θ with respect to the air flow in the bypass passage 106, that is, with respect to the direction of the bypass passage, there is no need to increase the diameter of the bypass passage. Length t of hot wire 1
can be made sufficiently large, and the ratio t/d to the outer diameter d can be made large, making it possible to provide a hot wire air flow meter with good responsiveness.

ここでホットワイヤ1の軸方向を完全に空気流に一致さ
せるとホットワイヤ1の円筒部外径全面に空気流が当ら
なくなるため、第3図に示した角度θはある程度必要で
ある。
If the axial direction of the hot wire 1 is made to completely match the air flow, the air flow will not hit the entire outer diameter of the cylindrical portion of the hot wire 1, so the angle θ shown in FIG. 3 is required to a certain extent.

また、本実施例によれば、コールドワイヤ2を空気流に
対し、ホットワイヤ1と並列に配置することにより、コ
ールドワイヤ2にホットワイヤ1で加熱された空気が当
らず、吸気温度を正しく計測するという効果もある。
Furthermore, according to this embodiment, by arranging the cold wire 2 in parallel with the hot wire 1 with respect to the air flow, the air heated by the hot wire 1 does not hit the cold wire 2, and the intake air temperature is accurately measured. There is also the effect of

さらに、本実m例によれば、コールドワイヤ2は吸気温
度を計測するものであり、ボディ107や駆動回路のケ
ース108の温度を影響を受けないことが望ましい。こ
のためにはビン110゜112を通してケース108及
びボディ107との熱の授受の影響を小さくすることが
必要で、コールドワイヤ2をt/dを大きくすることは
この効果がある。
Furthermore, according to this example, the cold wire 2 is used to measure the intake air temperature, and it is desirable that the cold wire 2 is not affected by the temperature of the body 107 or the case 108 of the drive circuit. For this purpose, it is necessary to reduce the influence of heat exchange between the case 108 and the body 107 through the bins 110° 112, and increasing the t/d of the cold wire 2 has this effect.

また、本実施例によればコールドワイヤ2の軸方向をホ
ットワイヤエと同様、バイパス通路の通路方向に設置す
ることにより簡単にコールドワイヤ2の長さを増し、コ
ールドワイヤ2へのボディ107及びケース108の温
度の影響を減らし、吸気温を正しく計測できるという効
果がある。
Further, according to this embodiment, the length of the cold wire 2 can be easily increased by installing the cold wire 2 in the axial direction of the bypass passage, similar to the hot wire, and the length of the cold wire 2 can be easily increased. This has the effect of reducing the influence of temperature on the air and allowing accurate measurement of intake air temperature.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、応答性を良くす
ることができる。
As explained above, according to the present invention, responsiveness can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は熱線式流量計の抵抗体の構成図、第2図は応答
速度を示す図、第3図は本発明の実施例を示す図、第4
図は第3図の平面図、第5図は熱線式流量計の駆動回路
図である。 寮1閃 第20 第3閃 第4 η 寮!l; い
Fig. 1 is a diagram showing the configuration of a resistor of a hot wire flowmeter, Fig. 2 is a diagram showing the response speed, Fig. 3 is a diagram showing an embodiment of the present invention, and Fig. 4 is a diagram showing an example of the present invention.
The figure is a plan view of FIG. 3, and FIG. 5 is a drive circuit diagram of the hot wire flowmeter. Dormitory 1 flash 20th 3rd flash 4th η Dormitory! l;

Claims (1)

【特許請求の範囲】 1、空気流量測定用と空気温度補正用の各発熱抵抗体を
空気流の一部を分流するバイノくス通路中に設置してな
る熱式空気流量計において、上記発熱抵抗体の長手方向
を空気の流れ方向に対して所定の角度をもって設置した
ことを特徴とする熱式空気流量計。 2、特許請求の範囲第1項記載の発明において、上記所
定角度は90°よシも小さいことを特徴とする熱式空気
流量計。
[Scope of Claims] 1. A thermal air flowmeter in which heating resistors for measuring air flow rate and for correcting air temperature are installed in a binox passage that divides a part of the air flow. A thermal air flowmeter characterized in that the longitudinal direction of the resistor is installed at a predetermined angle with respect to the air flow direction. 2. The thermal air flow meter according to claim 1, wherein the predetermined angle is smaller than 90°.
JP58063682A 1983-04-13 1983-04-13 Heat type air flowmeter Pending JPS59190623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58063682A JPS59190623A (en) 1983-04-13 1983-04-13 Heat type air flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58063682A JPS59190623A (en) 1983-04-13 1983-04-13 Heat type air flowmeter

Publications (1)

Publication Number Publication Date
JPS59190623A true JPS59190623A (en) 1984-10-29

Family

ID=13236377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58063682A Pending JPS59190623A (en) 1983-04-13 1983-04-13 Heat type air flowmeter

Country Status (1)

Country Link
JP (1) JPS59190623A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008000864A1 (en) 2007-03-29 2008-10-23 Denso Corp., Kariya-shi Flowmeter
JP2009184487A (en) * 2008-02-06 2009-08-20 Honda Motor Co Ltd Front part air guide structure for automobile
JP2010181354A (en) * 2009-02-09 2010-08-19 Denso Corp Airflow rate measuring device
US20110035959A1 (en) * 2009-08-13 2011-02-17 Maguire Products, Inc. Gas flow rate determination method and apparatus and granular material dryer and method for control thereof
US10539366B2 (en) 2014-04-30 2020-01-21 Stephen B. Maguire Method and apparatus for vacuum drying granular resin material
US11203133B2 (en) 2018-04-04 2021-12-21 Novatec, Inc. Method and apparatus for polymer drying using inert gas
US11364657B2 (en) 2018-04-04 2022-06-21 Novatec, Inc. Reducing moisture in granular resin material using inert gas

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008000864A1 (en) 2007-03-29 2008-10-23 Denso Corp., Kariya-shi Flowmeter
US7661303B2 (en) 2007-03-29 2010-02-16 Denso Corporation Flow measuring device having heating resistor in inclined position with respect to the flow direction
DE102008000864B4 (en) * 2007-03-29 2016-02-25 Denso Corporation Flowmeter
JP2009184487A (en) * 2008-02-06 2009-08-20 Honda Motor Co Ltd Front part air guide structure for automobile
JP2010181354A (en) * 2009-02-09 2010-08-19 Denso Corp Airflow rate measuring device
US20110035959A1 (en) * 2009-08-13 2011-02-17 Maguire Products, Inc. Gas flow rate determination method and apparatus and granular material dryer and method for control thereof
US8141270B2 (en) * 2009-08-13 2012-03-27 Maguire Products, Inc. Gas flow rate determination method and apparatus and granular material dryer and method for control thereof
US10539366B2 (en) 2014-04-30 2020-01-21 Stephen B. Maguire Method and apparatus for vacuum drying granular resin material
US11203133B2 (en) 2018-04-04 2021-12-21 Novatec, Inc. Method and apparatus for polymer drying using inert gas
US11364657B2 (en) 2018-04-04 2022-06-21 Novatec, Inc. Reducing moisture in granular resin material using inert gas

Similar Documents

Publication Publication Date Title
JPH0232563B2 (en)
US4783996A (en) Direct-heated flow measuring apparatus
US4283944A (en) Apparatus for measuring the mass of a fluid medium
JPH0330091B2 (en)
US4279146A (en) Apparatus for measuring the air quantity supplied to an internal combustion engine
JPS59104513A (en) Thermal flow meter
JPH0256611B2 (en)
EP1742025B1 (en) Thermal type flow measuring apparatus
JPH0132419B2 (en)
US20080229818A1 (en) Thermal flowmeter
JPS6283622A (en) Heat-sensitive air flow meter
US5209113A (en) Air flow meter
JPS59190623A (en) Heat type air flowmeter
JPH0462005B2 (en)
JPH07103797A (en) Heat ray type measuring instrument for air flow rate
JPH0151129B2 (en)
JPS611847A (en) Internal-combustion engine control apparatus
US4261199A (en) Air flow measurement apparatus
EP0542490A2 (en) Hot wire flow rate measuring circuit
JPH06265385A (en) Air flow rate measuring instrument
JPH0143883B2 (en)
JPS6013446B2 (en) Gas flow measuring device
JP3095322B2 (en) Thermal air flow detector
JP2944890B2 (en) Thermal air flow detector
JP2511425B2 (en) Thermal air flow meter