JPS61239119A - Air flow rate detector - Google Patents

Air flow rate detector

Info

Publication number
JPS61239119A
JPS61239119A JP60080181A JP8018185A JPS61239119A JP S61239119 A JPS61239119 A JP S61239119A JP 60080181 A JP60080181 A JP 60080181A JP 8018185 A JP8018185 A JP 8018185A JP S61239119 A JPS61239119 A JP S61239119A
Authority
JP
Japan
Prior art keywords
air
temperature
flow rate
resistor
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60080181A
Other languages
Japanese (ja)
Inventor
Kaoru Uchiyama
薫 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60080181A priority Critical patent/JPS61239119A/en
Publication of JPS61239119A publication Critical patent/JPS61239119A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To detect an air flow rate with a high accuracy, even when a body temperature and a detected air temperature are different from each other, by correcting a difference of an air passage wall temperature and an air temperature by an electronic circuit, and superposing it on an air flow rate output signal. CONSTITUTION:In an engine control system provided with a control device 50 using a microcomputer, an arithmetic processing part 41, a data storage part 42 and an electric power output part 44, when an optimum fuel quantity signal 43 required for an engine is outputted, from a suction air quantity Q of the engine and a revolving speed signal of the engine, first of all, resistance values of a heating resistor 1, an air temperature measuring resistance 2, and a body wall temperature measuring resistance 3 are inputted as an input signal of the suction air quantity Q of the engine to an electronic circuit. Subsequently, electric power is fed back to the resistor 1 through the electric power output part 44, so that a temperature difference of an air temperature and the heating resistor 1 becomes a prescribed value, a correction value which has been stored in advance in the data storage part 42 is added to its output from the resistance value of the resistance 3, and the flow rate Q is calculated by the arithmetic processing part 41. Next, a signal 43 based on its result is outputted.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、自動車のエンジンに吸入される空気量を検出
する空気流量検出器に係り、特に、ホットワイヤと温度
補償用抵抗を用いた熱線式の空気流量検出器に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an air flow rate detector that detects the amount of air taken into an automobile engine, and particularly relates to an air flow rate detector that detects the amount of air taken into an automobile engine, and particularly relates to an air flow rate detector that uses a hot wire and a temperature compensation resistor. relating to air flow rate detectors.

〔発明の背景〕[Background of the invention]

流量を測定する発熱抵抗体が取付けられ、検出空気通路
を構成しているボディの温度が検出空気温度と異なる場
合、空気量の検出誤差を生ずることが経験上知られてい
る。この検出誤差の低減方法として、特開昭56−10
8908号公報、特開昭56−18721号公報に示さ
れるように、発熱抵抗体と全気温度測定抵抗体とを同一
形状、同一支持構造とし空気流量に対して同一直角面上
に対称な位!1に配置するものが知られている。
It is known from experience that if a heating resistor for measuring the flow rate is attached and the temperature of the body forming the detected air passage is different from the detected air temperature, an air amount detection error will occur. As a method for reducing this detection error,
As shown in Publication No. 8908 and Japanese Patent Laid-open No. 18721/1989, the heat generating resistor and the total air temperature measuring resistor are made to have the same shape and the same support structure, and are symmetrically positioned on the same plane perpendicular to the air flow rate. ! 1 is known.

しかし、発熱抵抗体と全気温度測定抵抗体とを近接して
設置すると、発熱抵抗体の輻射熱によって全気温度測定
抵抗体が加熱されたシ、逆に全気温度測定抵抗体によシ
発熱抵抗体部の空気の流れが乱されるといった問題があ
シ、構造設計上大きな制約を受け、時には前記問題点の
両立が不可能な場合もあるといった問題があった。
However, if the heating resistor and the total air temperature measuring resistor are installed close to each other, the total air temperature measuring resistor will be heated by the radiant heat of the heating resistor, and conversely, the total air temperature measuring resistor will generate heat. There are problems in that the flow of air in the resistor section is disturbed, and there are major restrictions on the structural design, and in some cases, it is impossible to simultaneously meet the above problems.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、空気通路を構成しているボディ温度と
、検出空気温度とが異なる場合にも、精度良く空気流量
を検出することのできる空気流量検出器を提供すること
にある。
An object of the present invention is to provide an air flow rate detector that can accurately detect air flow rate even when the temperature of a body constituting an air passage and the detected air temperature are different.

〔発明の概要〕[Summary of the invention]

本発明は、空気通路中に設けた発熱抵抗体と全気温度測
定抵抗体の他に、空気通路を形成するボディの空気通路
側壁の温度を検出する温度検出抵抗体を設置し、電子回
路により空気通路壁温度と空気温度の差の補正を空気流
量出力信号に重畳することにより、空気通路を構成して
いるボディ温度と、検出空気温度とが異なる場合にも精
度良く空気流量を検出することができるようにしようと
いうものである。
In addition to the heating resistor and the total air temperature measuring resistor provided in the air passage, the present invention includes a temperature detection resistor for detecting the temperature of the side wall of the air passage of a body forming the air passage, and an electronic circuit is used to detect the temperature. By superimposing the correction for the difference between the air passage wall temperature and the air temperature on the air flow rate output signal, the air flow rate can be detected accurately even when the temperature of the body that makes up the air passage and the detected air temperature are different. The aim is to make it possible.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

第1図は本発明の一実施例を示し、第2図は、その平面
図である。M1図において1は発熱抵抗体、2け全気温
度測定抵抗体、3Vi空気通路ボディ20の壁部の温度
を測定する抵抗体である。
FIG. 1 shows an embodiment of the present invention, and FIG. 2 is a plan view thereof. In the diagram M1, reference numeral 1 denotes a heating resistor, a two-piece total air temperature measuring resistor, and a resistor for measuring the temperature of the wall of the 3Vi air passage body 20.

4は発熱抵抗1を支持するピ°/11、空気温度測定抵
抗2を支持するビン12を、モールドしたホルダーで、
電子回路基板5が接着されている。一方ポディ20ば、
メイン通路22とバイパス通路21とから構成されてお
り、下流部に4分の3同のリング状の溝23を形成され
ている。ホルダー4け、ボディ20のバイパス通路21
1’を挿入され、0−リング6により、空気の気密がな
されている。
4 is a holder in which a pin 11 supporting the heat generating resistor 1 and a bottle 12 supporting the air temperature measuring resistor 2 are molded.
An electronic circuit board 5 is bonded. On the other hand, Podi 20ba,
It is composed of a main passage 22 and a bypass passage 21, and a three-quarter ring-shaped groove 23 is formed in the downstream part. 4 holders, bypass passage 21 of body 20
1' is inserted, and the O-ring 6 makes airtight.

発熱抵抗体1、全気温度測定抵抗体2の構造は第3図の
如くなっている。すなわち、セラミックボビン101に
白金線102を巻きつけ、リード103と白金線の両端
をそれぞれ接続した後、ガラス104をコーティングし
たものである。また、この発熱抵抗体1、全気温度測定
抵抗体のリード103と、支持ピン11.12とはそれ
ぞれ溶接で接続されている。さらにボディ壁温検出用抵
抗体は正特性サーミスタを使用したもので、ホルダ4と
一体化している。第4図は、回路基板5の電子回路を示
したものである。51〜53は差動増巾器、Tけトラン
ジスタ、R1〜R3,[1,7〜几s + abo−R
tt  + RX 、 Ry 、 RJtは抵抗器、E
Rけ駆動電圧である。
The structures of the heating resistor 1 and the total air temperature measuring resistor 2 are as shown in FIG. That is, a platinum wire 102 is wound around a ceramic bobbin 101, both ends of the platinum wire are connected to leads 103, and then glass 104 is coated. Further, the heat generating resistor 1, the lead 103 of the total temperature measuring resistor, and the support pins 11 and 12 are connected by welding, respectively. Furthermore, the body wall temperature detection resistor uses a positive temperature coefficient thermistor and is integrated with the holder 4. FIG. 4 shows the electronic circuit of the circuit board 5. As shown in FIG. 51 to 53 are differential amplifiers, T transistors, R1 to R3, [1,7 to S + abo-R
tt + RX, Ry, RJt are resistors, E
R is the drive voltage.

次に動作を説明する。第1図にて、被検出空気Qは%Q
OとQIK分流され、バイパス通路21に流れる空気は
、発熱抵抗体1、全気温度測定抵抗体2を通過し、リン
グi′+423の’Pt、Psを通過し、P4でQ。と
合流する。この空気流fiQ。
Next, the operation will be explained. In Figure 1, the detected air Q is %Q
The air that is divided into O and QIK and flows into the bypass passage 21 passes through the heating resistor 1, the total air temperature measuring resistor 2, passes through 'Pt and Ps of ring i'+423, and Q at P4. join with. This air flow fiQ.

け、第4図で、V2端子の電圧信号に変換される。In FIG. 4, it is converted into a voltage signal at the V2 terminal.

すなわち、差動増巾器51,52、抵抗R7〜R8R?
 、 Rs、トランジスjZTにより、発熱抵抗体1と
、全気温度測定抵抗体2の温度差は常にあるm一定値に
なるように制御されるため、空気流量Q。
That is, differential amplifiers 51 and 52, resistors R7 to R8R?
, Rs, and the transistor JZT so that the temperature difference between the heating resistor 1 and the total air temperature measuring resistor 2 is always kept at a constant value m, so that the air flow rate Q.

、′山対し、発熱抵抗体IVC供給すべき電力は概略(
1)二ノ 式で示される。
, 'The power that should be supplied to the heating resistor IVC is approximately (
1) It is shown by the Nino formula.

Ih2FLh=(A+Bv’頭)(ThTq)・・・(
1) ここで 工h:発熱抵抗体に流れる電流 Rh:発熱抵抗体の抵抗値 A、B:定 数 Th:発熱抵抗体の温度 Tq:空気温度 従って、電子回路の検出電圧v2は、■2=IITXR
,であるから(2)式となり、空気流量信号を得ること
ができる。
Ih2FLh=(A+Bv'head)(ThTq)...(
1) Here, h: Current flowing through the heating resistor Rh: Resistance value of the heating resistor A, B: Constant Th: Temperature of the heating resistor Tq: Air temperature Therefore, the detection voltage v2 of the electronic circuit is =IITXR
, so Equation (2) is obtained, and an air flow signal can be obtained.

(2)式から明らかなように、fPIXの高い信号を得
るKは、(Th  TQ)が高精度であることが必要で
ある。この(Th−TQ)は、第7図に示すように、ボ
ディ20の壁温の影響を受ける。第7図で、ボディ20
と、同温度であるホルダ4から、支持ビン11.12を
介して熱伝導により、伝導される熱量λH1λCけ、発
熱抵抗体1と、空気温度検出抵抗体2では長さLH,L
Cが異なるため(ThTq)が、見かけ上変わってしま
うため、(2)式のV、出力が変化する。またリング溝
23の構造によっては、バイパス通路の空気とメイン通
路の空気とに温度差が生じ、バイパス空気の熱膨張によ
シ、Q、とQ、の分流比の変化も生じ、第8図に示すよ
うに、前述の(’rh  TQの変化と重なシ、大きな
誤差を生ずる。
As is clear from equation (2), K for obtaining a high fPIX signal requires that (Th TQ) be highly accurate. This (Th-TQ) is affected by the wall temperature of the body 20, as shown in FIG. In Figure 7, body 20
The amount of heat λH1λC conducted from the holder 4, which is at the same temperature, by thermal conduction via the support bins 11 and 12, and the lengths LH and L of the heating resistor 1 and the air temperature detection resistor 2.
Since C is different, (ThTq) appears to change, so V in equation (2) and the output change. Furthermore, depending on the structure of the ring groove 23, a temperature difference occurs between the air in the bypass passage and the air in the main passage, and the thermal expansion of the bypass air causes a change in the division ratio between Q and Q. As shown in FIG.

このボディ壁部の温度影響は、第9図に示すような今後
、エンジンの小形化のために展開が予想されるスロット
ルボディ集積方式では特に問題となる。第9図で、31
はスロットルバルブ30、図示してないスロット)v開
度センサ、燃料噴射弁等を集積したスロットルボディで
、エンジンの吸気管32に直付したシステムである。
This temperature effect on the body wall becomes a particular problem in the throttle body integrated system, which is expected to be developed in the future due to the miniaturization of engines, as shown in FIG. 9. In Figure 9, 31
1 is a throttle body that integrates a throttle valve 30, a slot (not shown) opening sensor, a fuel injection valve, etc., and is a system that is directly attached to the intake pipe 32 of the engine.

第8図で誤差が、高流量で少ないのは、空気によシ、ボ
ディ20の壁面が冷却あるいは加熱され、空気温度とボ
ディ20の温度差が小さくなるからである。
The reason why the error in FIG. 8 is small at a high flow rate is because the wall surface of the body 20 is cooled or heated by the air, and the difference in temperature between the air temperature and the body 20 becomes small.

次にこのボディ壁温影響の補正動作を説明する。Next, the correction operation for this body wall temperature influence will be explained.

、       第4図で、検出電圧V、と出力電圧V
。の関係は(3)式で示される。
, In Fig. 4, the detection voltage V and the output voltage V
. The relationship is shown by equation (3).

ここで Rw:ボディ壁温測定抵抗3の抵抗値 従ってZを変えることによ多温度補正が可能であること
がわかる。一方(2)式で示した空気流量とv2端子電
圧の関係は第5図のようになるから、第8図に示した誤
差の最も小さい流量点、すなわち流量Qの最大点Qma
xの出力電圧V、と(3)式のKER3−!−を等しく
設定することによシ低流量域の補正のみを行うことがで
きる。
Here, Rw is the resistance value of the body wall temperature measuring resistor 3. It can be seen that multi-temperature correction is possible by changing Z. On the other hand, since the relationship between the air flow rate and the v2 terminal voltage shown in equation (2) is as shown in Figure 5, the flow rate point with the smallest error shown in Figure 8, that is, the maximum point of the flow rate Q, Qma
x's output voltage V, and KER3-! of equation (3). By setting - to the same value, it is possible to correct only the low flow rate region.

この動作を示したのが第6図である。FIG. 6 shows this operation.

すなわち、QmaxKおける出力電圧v0の変化はなく
、■、が小さくなる程補正が加わることがわかる。
That is, it can be seen that there is no change in the output voltage v0 at QmaxK, and the correction is added as ■ becomes smaller.

第10図は、ボディ20の壁温測定センサをボディ2(
l直接装着した例を示したものである。
FIG. 10 shows the wall temperature measurement sensor of the body 20 in the body 2 (
1 This shows an example of direct attachment.

この例でも全く同一の効果がある。This example has exactly the same effect.

第11図は別の実施例である。この例はエンジン制御シ
ステムでの例である。40は、マイクロコンピュータを
用いた制御装置であり、演算処理部41、データ記憶部
42および電力出力部44を備えている。このシステム
は、エンジンの吸込空気量Qと図示していない、エンジ
ンの回転数信号から、エンジンに要求される最適燃料量
信号43を出力するものである。
FIG. 11 shows another embodiment. This example is in an engine control system. 40 is a control device using a microcomputer, and includes an arithmetic processing section 41, a data storage section 42, and a power output section 44. This system outputs an optimal fuel amount signal 43 required for the engine from the engine intake air amount Q and an engine rotational speed signal (not shown).

エンジンの吸入空気量Qの入力信号として、発熱抵抗体
1、空気温度測定抵抗2、ボディ壁温測定抵抗3の抵抗
値を入力し、空気温度と発熱抵抗体1の温度差が一定値
となるように発熱抵抗体1に電力を電力出力部44で帰
還し、その出力にボディ壁温測定抵抗3の抵抗値より、
あらかじめデータ記憶部42VC記憶した補正値を加え
て、演算処理部で流量Qを算出し、その結果に基づいた
燃料量43を出力するものである。
Input the resistance values of heating resistor 1, air temperature measuring resistor 2, and body wall temperature measuring resistor 3 as the input signal for the intake air amount Q of the engine, and the temperature difference between the air temperature and heating resistor 1 becomes a constant value. As shown in FIG.
A correction value stored in advance in the data storage section 42VC is added to calculate the flow rate Q in the arithmetic processing section, and a fuel amount 43 based on the result is output.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、空気通路のボデ
ィ壁温度と空気温度に差がある場合でも、高精度の流量
検出を得ることができ、構造設計の、韮 度が拡大するため、小形化に効果がある。
As explained above, according to the present invention, even if there is a difference between the body wall temperature of the air passage and the air temperature, highly accurate flow rate detection can be obtained, and the dwarfness of the structural design is expanded. Effective in downsizing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す図、第2図は第1図の平
面図、第3図は発熱抵抗体、温度測定抵抗体の構成図、
第4図は実施例の回路図、第5図は出力電圧%性図、第
6図は補正%注口、第7図は第1図の部分拡大図、第8
図はボディ加熱時の特性図、第9図はエンジン塔載例を
示す図、第10図は本発明の他の実施例を示す図、第1
1図は本発明の別な実施例を示す図である。 1・・・発熱抵抗体、2・・・全気温度測定抵抗体、3
・・・空気通路ボディ壁温測定抵抗体、4・・・ホルダ
、5・・・電子回路基板。
FIG. 1 is a diagram showing an embodiment of the present invention, FIG. 2 is a plan view of FIG. 1, and FIG. 3 is a configuration diagram of a heating resistor and a temperature measuring resistor.
Fig. 4 is a circuit diagram of the embodiment, Fig. 5 is an output voltage percentage diagram, Fig. 6 is a correction percentage spout, Fig. 7 is a partially enlarged view of Fig. 1, and Fig. 8
Figure 9 is a characteristic diagram during body heating, Figure 9 is a diagram showing an example of mounting an engine, Figure 10 is a diagram showing another embodiment of the present invention, Figure 1
FIG. 1 is a diagram showing another embodiment of the present invention. 1... Heat generating resistor, 2... Total air temperature measuring resistor, 3
...Air passage body wall temperature measuring resistor, 4...Holder, 5...Electronic circuit board.

Claims (1)

【特許請求の範囲】[Claims] 1.エンジンの吸入空気流路中に設置された発熱抵抗体
と全気温度測定抵抗体とからなる空気流量検出器におい
て、上記発熱抵抗体と空気温度測定抵抗体の空気通路壁
面に該壁面の温度を検出する温度検出抵抗体を配設し、
前記発熱抵抗体と前記空気温度測定抵抗体とによつて検
出される空気流量を前記温度検出抵抗体によつて検出さ
れる温度で補正する手段を設けたことを特徴とする空気
流量検出器。
1. In an air flow rate detector consisting of a heat generating resistor and a total air temperature measuring resistor installed in the intake air flow path of an engine, the temperature of the wall surface of the air passage wall of the heat generating resistor and the air temperature measuring resistor is measured. A temperature detection resistor is installed to detect the temperature.
An air flow rate detector comprising means for correcting the air flow rate detected by the heating resistor and the air temperature measuring resistor with the temperature detected by the temperature detecting resistor.
JP60080181A 1985-04-17 1985-04-17 Air flow rate detector Pending JPS61239119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60080181A JPS61239119A (en) 1985-04-17 1985-04-17 Air flow rate detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60080181A JPS61239119A (en) 1985-04-17 1985-04-17 Air flow rate detector

Publications (1)

Publication Number Publication Date
JPS61239119A true JPS61239119A (en) 1986-10-24

Family

ID=13711188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60080181A Pending JPS61239119A (en) 1985-04-17 1985-04-17 Air flow rate detector

Country Status (1)

Country Link
JP (1) JPS61239119A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02281108A (en) * 1989-04-21 1990-11-16 Hitachi Ltd Sensor
US7269999B2 (en) 2003-06-18 2007-09-18 Hitachi, Ltd. Thermal airflow meter
JP2007271557A (en) * 2006-03-31 2007-10-18 Denso Corp Apparatus for measuring air flow rate
JP2009020127A (en) * 2003-07-16 2009-01-29 Avl List Gmbh Method of detecting cross-flow gas using ultrasonic gas flowmeter
DE10393185B4 (en) * 2002-08-29 2013-01-31 Azbil Corporation Calorimetric flowmeter
CN105008870A (en) * 2013-03-05 2015-10-28 日立汽车系统株式会社 Hot-type fluid measurement device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02281108A (en) * 1989-04-21 1990-11-16 Hitachi Ltd Sensor
DE10393185B4 (en) * 2002-08-29 2013-01-31 Azbil Corporation Calorimetric flowmeter
US7269999B2 (en) 2003-06-18 2007-09-18 Hitachi, Ltd. Thermal airflow meter
JP2009020127A (en) * 2003-07-16 2009-01-29 Avl List Gmbh Method of detecting cross-flow gas using ultrasonic gas flowmeter
JP2007271557A (en) * 2006-03-31 2007-10-18 Denso Corp Apparatus for measuring air flow rate
CN105008870A (en) * 2013-03-05 2015-10-28 日立汽车系统株式会社 Hot-type fluid measurement device
EP2966419A4 (en) * 2013-03-05 2016-11-09 Hitachi Automotive Systems Ltd Hot-type fluid measurement device
US9939300B2 (en) 2013-03-05 2018-04-10 Hitachi Automotive Systems, Ltd. Hot-type fluid measurement device with electronic elements
CN105008870B (en) * 2013-03-05 2019-10-01 日立汽车系统株式会社 Heat type fluid measuring device

Similar Documents

Publication Publication Date Title
JP4177183B2 (en) Thermal air flow meter
JPS5858417A (en) Method and device for measuring quantity of fluid medium, which flow through fluid section and change in pulsatile form
JPS6213605B2 (en)
EP0387025B1 (en) Temperature compensating circuit
JPWO2003016833A1 (en) Thermal flow meter
EP1657532A1 (en) Thermal mass flow sensor
US20050075804A1 (en) Optimized convection based mass airflow sensor circuit
JPH01185416A (en) Thermal flowmeter for internal combustion engine
JPH0690062B2 (en) Thermal flow velocity detector
JPS61239119A (en) Air flow rate detector
WO2002103301A1 (en) Heating resistor flow rate measuring instrument
US6386030B1 (en) Balanced bridge temperature regulator for an air-mass flow meter
JP3706283B2 (en) Flow sensor circuit
JPH0356409B2 (en)
JP3675721B2 (en) Thermal air flow meter
KR19990067365A (en) Device for measuring the flow rate of a fluid
JPS5845568A (en) Hot-wire flowmeter
JPH0552625A (en) Thermal type air flowmeter and engine control device
JPH11351930A (en) Heating resistor type air flowmeter
JPH01245119A (en) Hot-wire type flow rate measuring instrument
JP2003315129A (en) Thermal flow measuring instrument
JPH07261846A (en) Mass flow controller
JP2610580B2 (en) Thermal flow velocity detector
JPS6013446B2 (en) Gas flow measuring device
JPS60100720A (en) Hot wire type flow meter