JPH01185416A - Thermal flowmeter for internal combustion engine - Google Patents

Thermal flowmeter for internal combustion engine

Info

Publication number
JPH01185416A
JPH01185416A JP63011271A JP1127188A JPH01185416A JP H01185416 A JPH01185416 A JP H01185416A JP 63011271 A JP63011271 A JP 63011271A JP 1127188 A JP1127188 A JP 1127188A JP H01185416 A JPH01185416 A JP H01185416A
Authority
JP
Japan
Prior art keywords
resistor
resistors
flow
heating resistor
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63011271A
Other languages
Japanese (ja)
Inventor
Koji Tanimoto
考司 谷本
Mikio Bessho
別所 三樹生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63011271A priority Critical patent/JPH01185416A/en
Publication of JPH01185416A publication Critical patent/JPH01185416A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accurately measure a suction amount of air by eliminating the detection error caused by the back flow of an air stream generated at the time of pulsation, by providing heat generating resistors each composed of a temp.-sensitive resistance film to a substrate on the upstream and downstream sides thereof. CONSTITUTION:A Wheatstone bridge is constituted of the heat generating resistor 11a on the upstream side, the temp. compensating resistor 12a on the upstream side and fixed resistors 13a, 14a, 15a and the potential difference between the middle point of the resistors 13a, 15a and the middle point of the resistors 14a, 11a is detected by a differential amplifier 16a. The signal from said amplifier 16a is inputted to the base of a transistor (Tr) 17a and closed loop control is performed so as to make the potentials at the middle points of the bridge equal. The current allowed to flow to the bridge is controlled by the amplifier 16a and the Tr 17a so as to make the resistance value of the resistor 11a constant regardless of a flow rate. By detecting the current flowing to the resistor 11a as the voltage drop in the resistor 14a, a flow rate of air can be calculated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、内燃機関の吸入空気jjLを計測する内燃
機関用熱式流量計に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a thermal flowmeter for an internal combustion engine that measures intake air jjL of the internal combustion engine.

〔従来の技術〕[Conventional technology]

自動車の内燃機関における吸入空気量を計測するための
空気流量計として、吸入空気流の動圧を可動ベーンで感
受し、この可動ベーンの開き角度に応じた電気信号から
吸入空気量を検出するベーン式が主流であったが、最近
、小を、高応答性の利点を有する熱式流量計が実用化さ
れている。
As an air flow meter for measuring the amount of intake air in internal combustion engines of automobiles, this vane senses the dynamic pressure of the intake air flow with a movable vane and detects the amount of intake air from an electrical signal corresponding to the opening angle of this movable vane. Thermal type flowmeters have been the mainstream, but recently thermal type flowmeters, which have the advantages of small size and high response, have been put into practical use.

第5図はたとえば特開昭56−7018号公報に示され
た従来の内燃機関用熱式流量計における熱式流量計発熱
抵抗体と温度補償用抵抗体から成る流量検出部を示す平
面図である。図においてlは合成樹脂箔から成る薄い基
板で、この基板1は補強材2と材料的に一体に結合され
ている。
FIG. 5 is a plan view showing a flow rate detection section consisting of a thermal flowmeter heating resistor and a temperature compensation resistor in a conventional thermal flowmeter for internal combustion engines disclosed in, for example, Japanese Unexamined Patent Publication No. 56-7018. be. In the figure, reference numeral 1 denotes a thin substrate made of synthetic resin foil, and this substrate 1 is integrally connected to a reinforcing member 2 in terms of material.

補強板2は抵抗11および12の範囲に孔3を有する。The reinforcing plate 2 has holes 3 in the region of the resistors 11 and 12.

この孔3により熱容量が小さくなり応答時間の短い流量
計が得られる。発熱抵抗体11と温度補償用抵抗体12
はニッケル箔から成り、公知の箔蒸着とフォトエツチン
グにより形成されている。
This hole 3 reduces the heat capacity and provides a flowmeter with a short response time. Heat generating resistor 11 and temperature compensation resistor 12
is made of nickel foil and is formed by conventional foil deposition and photoetching.

発熱抵抗体11は温度補償用抵抗12に比べて1/lo
以下の抵抗値になるように設計されている。
The heating resistor 11 is 1/lo smaller than the temperature compensation resistor 12.
It is designed to have the following resistance value.

電源供給は接続面5,6を介して行なわれる。4は中間
橋絡部で、発熱抵抗体11と温度補償用抵抗体12の熱
的な相互影響を防止する。
The power supply takes place via the connection surfaces 5, 6. Reference numeral 4 denotes an intermediate bridge portion that prevents mutual thermal influence between the heating resistor 11 and the temperature compensating resistor 12.

第6図に示す流量計の測定ブリッジ回路図で発熱抵抗体
11.温度補償用抵抗体12お工び固定抵抗13〜15
によりホイストンプリツノが構成されている。ホイスト
ンプリツノの出力は差動増巾器16に入力され、差動増
巾器16の出力はパワートランソスタ17のペースに入
力されている。
In the measuring bridge circuit diagram of the flowmeter shown in FIG. 6, the heating resistor 11. Temperature compensation resistor 12 Fixed resistor 13 to 15
Whiston Pritzno is composed of: The output of the Whiston Pritzno is input to a differential amplifier 16, and the output of the differential amplifier 16 is input to the pace of a power transformer 17.

/#ワートランジスタ17のエミッタはホイストンプリ
ツノの入力端に接続され、コレクタは電源に接続されて
いる。
/#The emitter of the power transistor 17 is connected to the input terminal of the whistle transistor 17, and the collector is connected to the power supply.

以上のように構成された流重訂の測定プリツノ回路にお
ける差動増巾器16とノゼワートランソスタ17とによ
るフィードバック回路にエリ、発熱抵抗体11は常に吸
気温エリ一定温度高くなるように構成されている。
In addition to the feedback circuit of the differential amplifier 16 and the nosewort transformer 17 in the flow rate measurement circuit configured as described above, the heating resistor 11 is designed so that the intake temperature is constantly raised to a constant temperature. It is configured.

このとき、発熱抵抗体に流れる電流は流量の関数となる
ため抵抗14における電圧降下にエリ吸入空気tを検出
するものである・ 一般に、発熱抵抗体11と温度補償用抵抗体12を有す
る平版状基板lは吸入空気の流れ方向に対し平行になる
ように、また、温度補償用抵抗体12が上流側になる工
うに配設される。
At this time, the current flowing through the heat generating resistor is a function of the flow rate, so the intake air t is detected by the voltage drop across the resistor 14.Generally, a flat plate having a heat generating resistor 11 and a temperature compensation resistor 12 is used. The substrate 1 is arranged parallel to the flow direction of the intake air, and the temperature compensating resistor 12 is placed on the upstream side.

しかしながら、1一方向流れに対する流量検出信号とほ
ぼ同等な信号が逆方向流れに対しても得られ、従来の熱
式流量計は逆流検知手段を有していない。
However, a signal substantially equivalent to the flow rate detection signal for one-way flow is also obtained for reverse flow, and conventional thermal flowmeters do not have reverse flow detection means.

4気筒二ンソンの場合、低回転出力ゾーンにおいては、
吸入空気は時間的に脈動を伴なっており吸気弁と排気弁
の両方とも開いているオーバーラッグ時には、排気側の
正圧で空気が吸気側に逆流する。
In the case of a 4-cylinder engine, in the low rotation output zone,
Intake air pulsates over time, and during overlapping when both the intake valve and exhaust valve are open, air flows back to the intake side due to positive pressure on the exhaust side.

このような現象下においては、従来の流を計の場合、逆
流方向の流量と順方向の流量との和が牧人空気量として
検出されるため逆方向の流量の2倍に相当する流量検出
誤差が生じることになる。
Under such a phenomenon, in the case of a conventional flowmeter, the sum of the flow rate in the reverse direction and the flow rate in the forward direction is detected as Makinto's air flow rate, resulting in a flow rate detection error equivalent to twice the flow rate in the reverse direction. will occur.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の内燃機関用熱式流量針は以上のLうに逆流検知手
段を有していないため、吸入窒気管内流れが逆流を伴な
う脈動流の場合、流量検出誤差が生じる問題点があった
Conventional thermal flow rate needles for internal combustion engines do not have the above-mentioned backflow detection means, so when the flow in the intake nitrogen pipe is a pulsating flow accompanied by backflow, there is a problem in that a flow rate detection error occurs. .

この発明は上記のような問題点を解消するためになされ
たもので、脈動時に生じる空気流の逆流による検出誤差
をなくし、正確な吸入空気量が測定できる内燃機関用熱
式流室rrtを得ることを目的とする。
This invention was made to solve the above-mentioned problems, and provides a thermal flow chamber rrt for an internal combustion engine that can eliminate detection errors caused by backflow of airflow that occurs during pulsation and can accurately measure the amount of intake air. The purpose is to

〔課fMt−解決するための手段〕[Section fMt-Means for solving]

この発明に係る内燃機関用熱式流量針は、吸気通路内に
流れに対し平行になるように配設した平板状基板上の上
流側と下流側に感温抵抗膜からなる発熱抵抗体と、この
発熱抵抗体からの放散熱量を電気的に判別して吸入空気
の流れ方向を検知する比較器とを設けたものでおる。
A thermal flow rate needle for an internal combustion engine according to the present invention includes a heating resistor made of a temperature-sensitive resistive film on the upstream and downstream sides of a flat substrate disposed in an intake passage so as to be parallel to the flow; A comparator is provided for electrically determining the amount of heat radiated from the heating resistor and detecting the flow direction of the intake air.

〔作用〕[Effect]

この発明における平板状基板上の上流側と下流側に発熱
抵抗体のそれぞれからの放散熱量の差を比較器で電気的
に検出し、流れ方向を判別することにエリ、逆流時でも
正確な空気量を測定する。
In this invention, the comparator electrically detects the difference in the amount of heat dissipated from each of the heating resistors on the upstream and downstream sides of the flat substrate, and the flow direction is determined. measure quantity.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図において、lはセラミックなどの熱伝導率の大きい電
気絶縁材料で作られた平版状基板で、この平版状基板l
の表面上には白金薄膜より成る二つの発熱抵抗体11a
、llbがスItツタリングとフォトエツチングにより
形成されている。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, l is a planar substrate made of an electrically insulating material with high thermal conductivity such as ceramic;
There are two heating resistors 11a made of a thin platinum film on the surface of the
, llb are formed by scattering and photoetching.

発熱抵抗体11aは吸気上流側に対応する位置に、また
、発熱抵抗体11bは吸気下流側に対応する位置に形成
され、外表面上にはAttos、またはSin、の薄膜
がコーティングされている。なお、5.6は発熱抵抗体
11a、llbの接続面である。またAIは吸入空気の
流れ方向を示す。
The heating resistor 11a is formed at a position corresponding to the upstream side of the intake air, and the heating resistor 11b is formed at a position corresponding to the downstream side of the intake air, and a thin film of Attos or Sin is coated on the outer surface. Note that 5.6 is a connection surface between the heating resistors 11a and llb. Further, AI indicates the flow direction of intake air.

吸気温度検出用の温度補償用抵抗体も同様なグロセスで
構成される。温度補償用抵抗体の抵抗温度係数は発熱抵
抗体のそれと同等で、抵抗値は発熱抵抗体のそれの50
倍以上になるよう設計されている。
The temperature compensating resistor for detecting the intake air temperature is also constructed of similar grosses. The temperature coefficient of resistance of the temperature compensation resistor is the same as that of the heating resistor, and the resistance value is 50% that of the heating resistor.
It is designed to more than double.

第2図はこの発明の内燃機関用熱式流量針の斜視図であ
り、20は「L」字形に形成された1対の支持部材でろ
る。この支持部材20は絶縁材料で形成されており、吸
入空気の流れ方向A1に平行して設置されている。この
支持部材200表面にはメタライズした配線層21が形
成されている。
FIG. 2 is a perspective view of the thermal flow needle for an internal combustion engine according to the present invention, in which 20 is a pair of support members formed in an "L" shape. This support member 20 is made of an insulating material and is installed parallel to the flow direction A1 of the intake air. A metalized wiring layer 21 is formed on the surface of this support member 200.

一方、11は上記発熱抵抗体IIa、llbを総称した
ものであり、この発熱抵抗体11と温度補償用抵抗体1
2はその接続面5,6で上記配線層21上にろう付けさ
れている。
On the other hand, 11 is a general term for the heating resistors IIa and llb, and this heating resistor 11 and the temperature compensation resistor 1
2 is brazed onto the wiring layer 21 at its connection surfaces 5 and 6.

次に逆流検出方法について説明する。発熱抵抗体と流体
間の熱平衡式は次式で与えられる。
Next, a backflow detection method will be explained. The thermal balance equation between the heating resistor and the fluid is given by the following equation.

Q=h、、、SΔT ここで、Q;発熱体からの放散熱量、 h、II;平均熱伝達率、 ΔT;発熱抵抗体と流体の温度差、 熱伝達率は発熱抵抗体の基板lに沿って流れ方向の距N
xと流速Uの関数であり、たとえば上流側の発熱抵抗体
11aの平均熱伝達率ht、下流側の発熱抵抗体11b
の平均熱伝達率をh2とすると、各々次式で与えられる
Q=h, , SΔT Where, Q: Amount of heat dissipated from the heating element, h, II: Average heat transfer coefficient, ΔT: Temperature difference between the heating resistor and the fluid, The heat transfer coefficient is the heat transfer coefficient to the substrate l of the heating resistor. along the streamwise distance N
x and the flow velocity U, for example, the average heat transfer coefficient ht of the heating resistor 11a on the upstream side, the heating resistor 11b on the downstream side
Letting the average heat transfer coefficient of h2 be given by the following equations.

ただし、jは発熱抵抗体の基板1のX方向の長さ抗体1
18mX=yからtまでは下流側の発熱抵抗体11bが
形成されているものとする。また、Aは定数である。
However, j is the length of the heating resistor substrate 1 in the X direction
It is assumed that the heating resistor 11b on the downstream side is formed from 18mX=y to t. Further, A is a constant.

上式エリ明らかなように、流速一定の場合、hl>ha
であるので、二つの発熱抵抗体11a。
As is clear from the above equation, when the flow rate is constant, hl>ha
Therefore, there are two heating resistors 11a.

11bの面積Sおよび温度差ΔTが等しいとすると、発
熱抵抗体からの放散熱量は上流側の方が下流側よりも大
きくなる。よって、上流側の発熱抵抗体11aと下流側
の発熱抵抗体11bのうちの両方からの放散熱量の差に
より、吸気の流れ方向を検知することができる。
Assuming that the area S of 11b and the temperature difference ΔT are equal, the amount of heat radiated from the heating resistor is larger on the upstream side than on the downstream side. Therefore, the flow direction of the intake air can be detected based on the difference in the amount of heat dissipated from both the upstream heating resistor 11a and the downstream heating resistor 11b.

次に流量および流れ方向の検出回路を第3図で説明する
。上流側の発熱抵抗体11a、上流側の温度補償用抵抗
体12aおよび固定抵抗13a。
Next, the flow rate and flow direction detection circuit will be explained with reference to FIG. An upstream heating resistor 11a, an upstream temperature compensation resistor 12a, and a fixed resistor 13a.

14a、15aでホイストンブリッジを構成し、固定抵
抗13aと15aとの中点および固定抵抗14aと発熱
抵抗体11aとの中点の電位差を差動増巾器16aで検
出するようにしている。
14a and 15a constitute a Whiston bridge, and a differential amplifier 16a detects the potential difference between the midpoint between the fixed resistors 13a and 15a and the midpoint between the fixed resistor 14a and the heating resistor 11a.

この差動増巾器16aからの信号をトランゾスタ17a
のベースに入力し、上記プリツノ中点の電位が常に等し
くなるように閉ループ制御している。
The signal from this differential amplifier 16a is transferred to a transistor 17a.
closed-loop control is performed so that the potential at the midpoint of the above-mentioned Pritsuno is always equal.

このトランiスタ17aのエミッタは温度補償用抵抗体
12aと発熱抵抗体11aとの接続点に接続され、その
フレフタは電源に接続している。
The emitter of this transistor i-stor 17a is connected to the connection point between the temperature compensating resistor 12a and the heating resistor 11a, and its flap is connected to the power source.

同様にして、下流側の発熱抵抗体ttb、下流側の温度
補償用抵抗体12b、固定抵抗13b。
Similarly, the heating resistor ttb on the downstream side, the temperature compensation resistor 12b on the downstream side, and the fixed resistor 13b.

14b、15b、差動増巾器16bお工びトランiスタ
17bで閉ループ制御回路を構成している。
14b, 15b, a differential amplifier 16b and a built-in transistor 17b constitute a closed loop control circuit.

ブリツノの平衡条件より、発熱抵抗体ttaの抵抗値R
Hは次式で与えられる。
From the Britsno equilibrium condition, the resistance value R of the heating resistor tta is
H is given by the following equation.

ただしRK;温度補償用抵抗体12aの抵抗値、R1;
固定抵抗13aの抵抗値、 R8;固定抵抗15aの抵抗値、 R3r固定抵抗14aの抵抗値、 発熱抵抗体11aの抵抗値RHは吸気温度エリも100
℃高い温度になるように各プリツノ中点fKを設定して
おり、吸気温度が一定ならば温度補償用抵抗体12aの
抵抗11 Rx、発熱抵抗体11aの抵抗値RHは一定
となり、この発熱抵抗体11aの抵抗値RHは流量にか
かわらず一定値となるように差動増巾器16aとトラン
iスタ17aにエリプリッソに流す電流を制御する。よ
って、発熱抵抗体11aに流れる電流を固定抵抗14a
における電圧降下として検出することにより、空気流量
を求めることができる。
However, RK: resistance value of the temperature compensation resistor 12a, R1;
The resistance value of the fixed resistor 13a, R8; The resistance value of the fixed resistor 15a, R3r The resistance value of the fixed resistor 14a, The resistance value RH of the heating resistor 11a is also 100 at the intake air temperature.
Each Pritsuno midpoint fK is set so that the temperature is higher by ℃, and if the intake air temperature is constant, the resistance 11 Rx of the temperature compensation resistor 12a and the resistance value RH of the heating resistor 11a are constant, and this heating resistance The current applied to the differential amplifier 16a and the transistor 17a is controlled so that the resistance value RH of the body 11a remains constant regardless of the flow rate. Therefore, the current flowing through the heating resistor 11a is controlled by the fixed resistor 14a.
By detecting the voltage drop at , the air flow rate can be determined.

発熱抵抗体11aからの放散熱量は発熱量に等しいので
、上記固定抵抗14aにおける電圧降下Vaは次式で示
すように放散熱tQaの関数となる。
Since the amount of heat dissipated from the heating resistor 11a is equal to the amount of heat generated, the voltage drop Va at the fixed resistor 14a becomes a function of the dissipated heat tQa as shown in the following equation.

一方、放散熱flQaは流量の関数形で与えられるため
、電圧降下va(以下、出力電圧という)エリ空気流量
が検出できる。
On the other hand, since the dissipated heat flQa is given in the form of a function of the flow rate, the air flow rate at the voltage drop va (hereinafter referred to as output voltage) can be detected.

下流側の発熱抵抗体11bを含む閉ループ制御回路にお
いても同様な制御が行なわれ、固定抵抗14bにおける
電圧降下vb (以下出力電圧という)は放散熱11Q
bの関数となる。
Similar control is performed in the closed loop control circuit including the heating resistor 11b on the downstream side, and the voltage drop vb (hereinafter referred to as output voltage) at the fixed resistor 14b is equal to the dissipated heat 11Q.
It becomes a function of b.

両方の閉ループ制御回路の回路定数を同一に設計すると
、出力電圧Vaお工びvbには、両方の発熱抵抗体の平
均熱伝達率の差が現われる。つまり、順方向流れの場合
Va > Vbとなり逆方向流れの場合Va (■とな
る。よって双方の出力電圧を比較器18に入力し、比較
器18の出力を検出することにエリ流れ方向が検知でき
る。
If the circuit constants of both closed loop control circuits are designed to be the same, a difference in the average heat transfer coefficients of both heating resistors will appear in the output voltage Va and vb. In other words, in the case of forward flow, Va > Vb, and in the case of reverse flow, Va (■).Therefore, by inputting both output voltages to the comparator 18 and detecting the output of the comparator 18, the flow direction can be detected. can.

なお、上記実施例では、発熱抵抗体11と温度補償用抵
抗体12を各々二つの基板に構成したが、第4図に示す
ように1枚の基板上に形成してもよい。発熱抵抗体の発
熱による影響を回避するため基板1の中央部に孔3を設
けている。
In the above embodiment, the heating resistor 11 and the temperature compensating resistor 12 are each formed on two substrates, but they may be formed on one substrate as shown in FIG. A hole 3 is provided in the center of the substrate 1 to avoid the influence of heat generated by the heating resistor.

また、上記実施例では、発熱抵抗体の基板上全体に二つ
の発熱抵抗体を形成した場合について説明したが、第4
図に示す工うに基板の一部でも二つの発熱抵抗体を基板
lの上流側と下流側に平行に配設することに工っても同
様の効果を奏する。
Further, in the above embodiment, the case where two heating resistors are formed on the entire substrate of the heating resistor is explained, but the fourth heating resistor is formed on the entire substrate.
The same effect can be obtained by arranging two heat generating resistors in parallel on the upstream and downstream sides of the substrate l even in a part of the substrate as shown in the figure.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、平板状基板上の上流側
と下流側に二つの発熱抵抗体を形成し、二つの発熱抵抗
体からの放散熱量の差から流れ方向を検出できるLうに
構成したので、逆流を伴なう内燃機関の吸入空気型の測
定において精度の高いものが得られる効果がある。
As explained above, this invention is configured such that two heating resistors are formed on the upstream and downstream sides of a flat substrate, and the flow direction can be detected from the difference in the amount of heat dissipated from the two heating resistors. This has the effect of obtaining highly accurate measurements of the intake air type of internal combustion engines that are accompanied by backflow.

【図面の簡単な説明】 5g1図はこの発明の一実施例による内燃機関用熱式流
量計の発熱抵抗体を示す平面図、第2図は同上実施例の
熱式流量計の流量検出部を示す斜視図、第3図は同上実
施例の熱式流量計の回路図、第4図はこの発明の内燃機
関用熱式流量計の他の実施例における発熱抵抗体の平面
図、第5図は従来の内燃機関用熱式流量計における流量
検出部を示す平面図、第6図は従来の内燃機関用熱式流
量計の回路図でめる◎ 1 ・・・基板、5 、6 、、、接続面、11.ll
a、llb・・・発熱抵抗体、12,12a、12b・
・・温度補償用抵抗体、12a〜15a、12b〜15
b・=固定抵抗、16m、16b−差動増巾器、17a
。 17b・・・トランジスタ、18・・・比較器。 なお、図中、同一符号は同一、または相当部分を示す。
[BRIEF DESCRIPTION OF THE DRAWINGS] Figure 5g1 is a plan view showing a heating resistor of a thermal flowmeter for an internal combustion engine according to an embodiment of the present invention, and Figure 2 shows a flow rate detection section of the thermal flowmeter of the same embodiment. FIG. 3 is a circuit diagram of the thermal flow meter according to the embodiment shown above, FIG. 4 is a plan view of a heating resistor in another embodiment of the thermal flow meter for an internal combustion engine according to the present invention, and FIG. 1 is a plan view showing a flow rate detection part in a conventional thermal flowmeter for internal combustion engines, and FIG. 6 is a circuit diagram of a conventional thermal flowmeter for internal combustion engines. , connection surface, 11. ll
a, llb...heating resistor, 12, 12a, 12b.
...Temperature compensation resistor, 12a to 15a, 12b to 15
b = fixed resistance, 16m, 16b - differential amplifier, 17a
. 17b...Transistor, 18...Comparator. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 吸気通路内に吸入空気の流れに対し平行になるよう配設
した平板状基板上に形成された上流側と下流側に感温抵
抗膜から成る発熱抵抗体と、この上流側および下流側の
各々の発熱抵抗体からの放散熱量の差を電気的に判別し
、吸入空気の流れ方向を検知する比較器とを備えて成る
内燃機関用熱式流量計。
A heating resistor made of a temperature-sensitive resistive film is formed on the upstream and downstream sides of a flat substrate disposed in the intake passage parallel to the flow of intake air, and each of the upstream and downstream sides A thermal flow meter for an internal combustion engine, comprising a comparator that electrically determines the difference in the amount of heat dissipated from the heating resistor and detects the flow direction of intake air.
JP63011271A 1988-01-20 1988-01-20 Thermal flowmeter for internal combustion engine Pending JPH01185416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63011271A JPH01185416A (en) 1988-01-20 1988-01-20 Thermal flowmeter for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63011271A JPH01185416A (en) 1988-01-20 1988-01-20 Thermal flowmeter for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH01185416A true JPH01185416A (en) 1989-07-25

Family

ID=11773310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63011271A Pending JPH01185416A (en) 1988-01-20 1988-01-20 Thermal flowmeter for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH01185416A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995014215A1 (en) * 1993-11-18 1995-05-26 Unisia Jecs Corporation Method and device for detecting suction air flow rate for an engine
EP0695928A2 (en) 1994-08-02 1996-02-07 Hitachi, Ltd. Intake air flow measuring apparatus for internal combustion engine
US5520047A (en) * 1993-03-17 1996-05-28 Hitachi, Ltd. Exothermic resistor element and thermal process air flow meter using the same
EP0751377A1 (en) * 1995-06-29 1997-01-02 Pierburg Aktiengesellschaft Mass flow determination device
KR970059713A (en) * 1996-01-17 1997-08-12 가나이 쯔도무 Heating resistor type air flow rate measuring device
US5708205A (en) * 1995-05-19 1998-01-13 Hitachi, Ltd. Measuring element for a mass air flow sensor and mass air flow sensor using the measuring element
US5717136A (en) * 1994-02-28 1998-02-10 Unisia Jecs Corporation Hot film type air flow quantity detecting apparatus applicable to vehicular internal combustion engine
US5892150A (en) * 1997-01-10 1999-04-06 Hitachi, Ltd. Air flow measuring element and air flow measuring apparatus therewith
US6134960A (en) * 1998-01-19 2000-10-24 Mitsubishi Denki Kabushiki Kaisha Thermal-type flow sensor
US6240775B1 (en) 1998-05-11 2001-06-05 Mitsubishi Denki Kabushiki Kaisha Flow rate sensor
US6253606B1 (en) 1998-05-21 2001-07-03 Mitsubishi Denki Kabushiki Kaisha Thermosensitive flow rate sensor
US6629456B2 (en) 2000-12-20 2003-10-07 Denso Corporation Thermal flowmeter for detecting rate and direction of fluid flow
US6805003B2 (en) 2000-03-27 2004-10-19 Ngk Spark Plug Co., Ltd. Mass flow sensor and mass flowmeter comprising the same
US6862930B1 (en) 1998-10-21 2005-03-08 Denso Corporation Fluid flow amount measuring apparatus responsive to fluid flow in forward and reverse directions
US7251995B2 (en) 2005-01-19 2007-08-07 Denso Corporation Fluid flow sensor
JP2017516081A (en) * 2014-03-26 2017-06-15 ヘレウス センサー テクノロジー ゲーエムベーハー Ceramic carrier, sensor element having ceramic carrier, heating element and sensor module, and method for producing ceramic carrier
CN107003165A (en) * 2014-11-28 2017-08-01 日立汽车系统株式会社 Thermal flow rate sensor

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5520047A (en) * 1993-03-17 1996-05-28 Hitachi, Ltd. Exothermic resistor element and thermal process air flow meter using the same
WO1995014215A1 (en) * 1993-11-18 1995-05-26 Unisia Jecs Corporation Method and device for detecting suction air flow rate for an engine
US5635635A (en) * 1993-11-18 1997-06-03 Unisia Jecs Corporation Method and apparatus for detecting the intake air quantity of an engine
US5717136A (en) * 1994-02-28 1998-02-10 Unisia Jecs Corporation Hot film type air flow quantity detecting apparatus applicable to vehicular internal combustion engine
EP0695928A2 (en) 1994-08-02 1996-02-07 Hitachi, Ltd. Intake air flow measuring apparatus for internal combustion engine
US5817932A (en) * 1994-08-02 1998-10-06 Hitachi, Ltd. Intake air flow measuring apparatus for internal combustion engine
US5708205A (en) * 1995-05-19 1998-01-13 Hitachi, Ltd. Measuring element for a mass air flow sensor and mass air flow sensor using the measuring element
EP0751377A1 (en) * 1995-06-29 1997-01-02 Pierburg Aktiengesellschaft Mass flow determination device
KR970059713A (en) * 1996-01-17 1997-08-12 가나이 쯔도무 Heating resistor type air flow rate measuring device
US5892150A (en) * 1997-01-10 1999-04-06 Hitachi, Ltd. Air flow measuring element and air flow measuring apparatus therewith
US6134960A (en) * 1998-01-19 2000-10-24 Mitsubishi Denki Kabushiki Kaisha Thermal-type flow sensor
DE19832964B4 (en) * 1998-01-19 2004-12-02 Mitsubishi Denki K.K. Thermal flow sensor
US6240775B1 (en) 1998-05-11 2001-06-05 Mitsubishi Denki Kabushiki Kaisha Flow rate sensor
US6253606B1 (en) 1998-05-21 2001-07-03 Mitsubishi Denki Kabushiki Kaisha Thermosensitive flow rate sensor
DE19855884B4 (en) * 1998-05-21 2006-02-16 Mitsubishi Denki K.K. Heat-sensitive throughput sensor
US6862930B1 (en) 1998-10-21 2005-03-08 Denso Corporation Fluid flow amount measuring apparatus responsive to fluid flow in forward and reverse directions
US6805003B2 (en) 2000-03-27 2004-10-19 Ngk Spark Plug Co., Ltd. Mass flow sensor and mass flowmeter comprising the same
US6629456B2 (en) 2000-12-20 2003-10-07 Denso Corporation Thermal flowmeter for detecting rate and direction of fluid flow
US7251995B2 (en) 2005-01-19 2007-08-07 Denso Corporation Fluid flow sensor
JP2017516081A (en) * 2014-03-26 2017-06-15 ヘレウス センサー テクノロジー ゲーエムベーハー Ceramic carrier, sensor element having ceramic carrier, heating element and sensor module, and method for producing ceramic carrier
US10529470B2 (en) 2014-03-26 2020-01-07 Heraeus Nexensos Gmbh Ceramic carrier and sensor element, heating element and sensor module, each with a ceramic carrier and method for manufacturing a ceramic carrier
CN107003165A (en) * 2014-11-28 2017-08-01 日立汽车系统株式会社 Thermal flow rate sensor
CN107003165B (en) * 2014-11-28 2021-03-09 日立汽车系统株式会社 Thermal flow sensor

Similar Documents

Publication Publication Date Title
JPH01185416A (en) Thermal flowmeter for internal combustion engine
US4304130A (en) Flow rate meter with temperature dependent resistor
JPH0330091B2 (en)
JP3650384B2 (en) Thermal flow detector
US5375466A (en) Measuring element
JP2003302271A (en) Flow measurement part package and flow measurement unit using the package
JPS5868618A (en) Flowmeter
JP3761769B2 (en) Thermal flow sensor
JP2533479B2 (en) Heating resistance type air flow meter
JPS61239119A (en) Air flow rate detector
JP3675721B2 (en) Thermal air flow meter
JPS5845568A (en) Hot-wire flowmeter
JPH075009A (en) Air flowrate measuring device of engine, fuel injection controller, and flow sensor to be used therein
JP4435351B2 (en) Thermal flow meter
KR820002255B1 (en) Air flow rate measuring apparatus
JPS6273124A (en) Heat type flow rate detector
JPH11351930A (en) Heating resistor type air flowmeter
JPS6060521A (en) Heat generating and temperature sensitive resistor for heat generating flowmeter
JP2795724B2 (en) Detector of thermal flow meter
JPS6189521A (en) Apparatus for detecting flow amount of gas
JPH07286876A (en) Thermal type air flow rate detector
JPH0351715A (en) Apparatus for detecting amount of intake air
JPH0593639A (en) Flow-rate/flow-speed measuring apparatus
JP3019009U (en) Mass flow meter
JPH0428021Y2 (en)