JPS6273124A - Heat type flow rate detector - Google Patents

Heat type flow rate detector

Info

Publication number
JPS6273124A
JPS6273124A JP60215480A JP21548085A JPS6273124A JP S6273124 A JPS6273124 A JP S6273124A JP 60215480 A JP60215480 A JP 60215480A JP 21548085 A JP21548085 A JP 21548085A JP S6273124 A JPS6273124 A JP S6273124A
Authority
JP
Japan
Prior art keywords
heating resistor
flow rate
heating
resistors
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60215480A
Other languages
Japanese (ja)
Inventor
Koji Tanimoto
考司 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60215480A priority Critical patent/JPS6273124A/en
Publication of JPS6273124A publication Critical patent/JPS6273124A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To detect reverse flowing in the operating region of an engine in a low rotary-output zone, by arranging two heating resistors so as to face each other along a flow, and detecting the reverse flow based on the magnitude of an electric signal corresponding to the flow rate. CONSTITUTION:A first heating resistor 1 is a heat sensitive element obtained by forming a platinum thin film on a cylindrical ceramic bobbin. A second heating resistor 2 has the same characteristics and the same configuration. The resistors 1 and 2 are both arranged approximately vertically with respect to the direction of a flow 5. Temperature compensating resistors 3 and 4 are further provided. The calorific values of the two heating resistors 1 and 2 are compared 10 and the forward or reverse direction of the flow 5 is judged. The heating resistors having the same configuration and the same characteristics are used and controlled at the same heating temperature by amplifiers 7 and transistors 6. The calorific value in the first heating resistor 1 or the second heating resistor 2 is measured and the flow rate is obtained. By comparing the calorific values of both resistors, the flowing direction can be detected at the same time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、例えばエンジンのシリンダ内に導入される
吸入窒気せの測定に用いる熱式流量検出器に関するもの
でるる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thermal flow rate detector used, for example, to measure intake nitrogen gas introduced into a cylinder of an engine.

〔従来の技術」 最近でにエンジンの制御機能?向上させる目的でマイク
ロコンピュータを使用し念エンジンの総合旧制御が行な
われているが、その際マイクロコンピュータに取り込1
れる代表的パラメータとして吸入空気#L景が3)る。
[Conventional technology] Is there an engine control function recently? For the purpose of improving the performance, a microcomputer is used to perform comprehensive old control of the Nen Engine.
3) Intake air #L view is a representative parameter.

従来、エンジンへの吸入空気量上ンサとして、いわゆる
熱線加重センサを用いると低コスト化が可能であり、な
たその出力特性の非線形性は相対誤差全均一化して広い
ダイナミックレンジ全許容する特徴がらり望ましいこと
が知られている。
Conventionally, it has been possible to reduce costs by using a so-called hot-ray weighted sensor as a sensor for increasing the amount of intake air into the engine, and the nonlinearity of its output characteristics has the characteristic of completely equalizing relative errors and allowing a wide dynamic range. known to be desirable.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記熱線式流゛槍センサは、エンジンの定常走行時およ
び巡行走行時の吸入空気流量検出に対しては正確に作動
し満足な機能を有しているが、4気筒およびそれ以下の
気筒数の少ないエンジンの低回転出力ゾーンにおいては
問題がろつ友。丁なわち、この工うな例においては、エ
ンジンに吸引される空気量は時間的に脈動を伴っており
、第3図の工うな脈動波形となる。しη・も、エンジン
の吸排気弁がオーバーラツプしている場合と吸気弁のみ
が開いている場合とでは空気流の動きが異なり、吸排気
弁のオーバーラツプ時には吸入管側がスロットル弁士流
辿1に比べて圧力が高くなり、第3図に与[線部で示ア
エクな逆方向の空気流が生じる。
The hot wire flow sensor described above operates accurately and has a satisfactory function for detecting the intake air flow rate during steady engine running and cruising. In the low rotational output zone of a small engine, there are no problems. That is, in this simple example, the amount of air sucked into the engine pulsates over time, resulting in the strange pulsating waveform shown in FIG. Also, the movement of the airflow is different when the intake and exhaust valves of the engine overlap and when only the intake valve is open, and when the intake and exhaust valves overlap, the intake pipe side is As a result, the pressure increases, and an air flow in the opposite direction is generated, as shown by the line in FIG.

この工うな現象は、エンジンの燃焼室の形状、吸排気管
形状およびエアクリーナの形状などvL−工って異なっ
た形態ケ示すが、特にエンジンの低回転(600〜30
00 rpm)および吸入負圧100 mmH9以下の
状7態において多く現われる。このような逆流金体う脈
動流に対して、従来の熱線式流量センサの出力は第4図
に示すJ−リな波形となり、逆流全検知する方策がない
ため真の空気量を検出することができない。つまり、空
気流量信号は1口方向、逆方向をご関係なく一方向の信
号しか取9W、せない構成である之め、吹返し全伴う脈
蛎時においては吸入空気量を高謂匹に測定することがで
きない問題点がめった。
This phenomenon occurs in different forms, such as the shape of the engine's combustion chamber, the shape of the intake and exhaust pipes, and the shape of the air cleaner.
00 rpm) and negative suction pressure of 100 mmH9 or less. For such backflow pulsating flow, the output of the conventional hot wire flow rate sensor becomes a J-shaped waveform as shown in Figure 4, and since there is no way to detect the entire backflow, it is difficult to detect the true amount of air. I can't. In other words, the air flow rate signal is configured so that it can only receive a signal in one direction (9W), regardless of whether it is in one direction or in the opposite direction, so during a pulse with full blowback, the intake air amount can be measured accurately. Problems that can't be done are rare.

この発明は上記のような問題点全711!1.消するた
めになされたもので、脈動時に生じる逆流全検知し、逆
流による検量誤差をなくして正確な流量検出を行なうこ
とができろ熱式流量検出器を得ること全目的とする。
This invention has a total of 711 problems as mentioned above!1. The overall purpose is to obtain a thermal flow rate detector that can detect all the backflow that occurs during pulsation, eliminate calibration errors due to backflow, and perform accurate flow rate detection.

〔問題A全解決する九めの手段〕[Ninth method to solve all problems A]

この光QJjに係る熱式流量検出器な、流体通路内に設
置し几第1発熱抵抗体の波流中に第1発熱抵抗体に対向
する工うVC第2発熱抵抗体會配設し、各々の発熱抵抗
体の1!流亡制御するとともに出力電流を取9出丁駆動
回路部と、両出力℃流全比較する比敦器と金設けたもの
でるる。
The thermal flow rate detector related to this light QJj is installed in the fluid passage, and a VC second heating resistor is disposed opposite the first heating resistor in the wave flow of the first heating resistor, 1 of each heating resistor! In addition to controlling the output current, it is equipped with a nine-output drive circuit and a ratio device to compare both output currents.

〔作用〕[Effect]

この発明に係る熱式流量検出器でに、2つの発熱抵抗体
と流体間の平均熱伝達率の大小関係が流れ方向により逆
転する。
In the thermal flow rate detector according to the present invention, the magnitude relationship of the average heat transfer coefficients between the two heating resistors and the fluid is reversed depending on the flow direction.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図において、1は円筒形セラミックボビンに白金薄膜全
形成した感温素子を応用した第1発熱抵抗体、2は第1
発熱抵抗体と同一特性、同一形状kmする第2発熱抵抗
体で、第1発熱抵抗体1に対向するように下流側に近接
して配設してめる。3,4は温度補償用抵抗体でめる。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, 1 is a first heat-generating resistor, which is a temperature-sensitive element formed entirely of a platinum thin film on a cylindrical ceramic bobbin, and 2 is a first heat-generating resistor.
A second heating resistor having the same characteristics and the same shape as the heating resistor 1 is disposed close to the downstream side so as to face the first heating resistor 1. 3 and 4 are temperature compensation resistors.

各抵抗体は、いずれも流れ5の方向にほぼ垂直に配設し
てるる。
Each resistor is arranged substantially perpendicular to the direction of flow 5.

一般1こ、定゛謬状、」に2ける発熱抵抗体の発熱量P
は次式で与えら2する。
General 1. Conditions of error, 2. Calorific value P of the heating resistor
is given by the following equation.

P”hm”s’(THTa、:i ” Pa   ””
  (1)ここで、hm ;発熱抵抗体と流体間の平均
熱伝達率 S ;発熱抵抗体の表面積 TH;発熱抵抗体の温度 Ta S流体温度 Po:流量ゼロ時の発熱量 また、発熱抵抗体の平均熱伝達率hmは主流速度tlQ
 の関数とじて表わされる。
P"hm"s'(THTa, :i "Pa""
(1) Here, hm; average heat transfer coefficient S between the heating resistor and the fluid; surface area TH of the heating resistor; temperature Ta of the heating resistor; S fluid temperature Po: amount of heat generated when the flow rate is zero; The average heat transfer coefficient hm is the mainstream velocity tlQ
It is expressed as a function of

hm= C−uo”          ”・(2)こ
こでCおよびnは流体の物理的性質および2つの発熱抵
抗体の相対的位電関係に依存する定数でるる。
hm=C-uo"" (2) where C and n are constants that depend on the physical properties of the fluid and the relative potential relationship of the two heating resistors.

次に、(2)式’t (1)式に代入するとP−Cuo
nS(TH−Ta)十Po ・・・・ (3)となり、
発熱抵抗体と流体の温度差七一定に保つ工うに制御して
発熱量P全測定することに工υ、主シを速度UOを求め
ることができる。
Next, by substituting equation (2) into equation 't (1), P-Cuo
nS(TH-Ta) 1Po... (3),
By controlling the temperature difference between the heating resistor and the fluid to keep it constant and measuring the total amount of heat generation P, the main speed UO can be found.

今、第1発熱抵抗体1と第2発熱抵抗体2について(3
)式を適用すると、各々の光熱量P」とP2は各足数全
CI、C!とじて P+  =   C+   ・ uon  &SI# 
 (、TRI    Ta  )  −”  Poiフ Pz= Cz 1luon11sz(To2  Ta)
”Poz・・・・ (4) で与えられる。2個の発熱抵抗体ぐご同一形状、同一特
性の抵抗体?用いているため、発熱抵抗体と流体の温灰
差を等しく設定すると、各々の光熱量の差は、次式で与
えられる。
Now, regarding the first heating resistor 1 and the second heating resistor 2 (3
) formula, each amount of light P'' and P2 are the total number of feet CI, C! Close P+ = C+ ・uon &SI#
(, TRI Ta) -” Poi Fu Pz= Cz 1luon11sz(To2 Ta)
``Poz... (4) Given by: 2 heating resistors with the same shape and the same characteristics?Since two heating resistors are used, if the temperature difference between the heating resistor and the fluid is set equal, each The difference in the amount of light is given by the following equation.

P+  Pz=(CI  Cz)・uonここでA =
 81CTHI  Ta) = Sz (TH2Ta)
・・・・ (5) 2個の発熱抵抗体の軸間距離’L L 、発熱抵抗体の
直径全dと表わ丁と 3≦L/d≦9の範囲において流
れが順方向のUfCI+ Czの大小関係にCI>CI
            ”・・・ (6)となる。
P+ Pz=(CI Cz)・uon where A=
81CTHI Ta) = Sz (TH2Ta)
(5) Distance between the axes of the two heat generating resistors 'L L, total diameter d of the heat generating resistors, and UfCI+ Cz where the flow is in the forward direction in the range of 3≦L/d≦9. The size relationship of CI>CI
”... (6).

逆流時にハ(6)式の関係が逆転し CI>Cz            ・・・−(7)と
なる。したがって、2個の発熱抵抗体の発熱量を比較し
、Pz>P+  の時は流れに順方向でろ9、P!<P
IC+場合は流れは逆方向でるると判別できる。さらに
、2個の発熱抵抗体の形状・特性が同一であるので、I
E4方向時の第1発熱抵抗体の発熱量と主流速度の関係
は、逆方向時の第2発熱抵抗体のそれに一致する。でお
、特に、L/d≦9とし几のは、L/d> 9の範1で
は上?fj側発熱抵抗体と下流側発熱抵抗体の流れ様相
に差異が見られなくなり、また、2悶の流速検出点での
時間差が問題となるためである。
At the time of backflow, the relationship in equation (6) is reversed, and CI>Cz...-(7). Therefore, compare the amount of heat generated by the two heating resistors, and if Pz>P+, proceed in the forward direction of the flow9, P! <P
If IC+, it can be determined that the flow is in the opposite direction. Furthermore, since the two heating resistors have the same shape and characteristics, I
The relationship between the amount of heat generated by the first heating resistor and the main flow velocity in the E4 direction matches that of the second heating resistor in the opposite direction. So, in particular, when L/d≦9, is it better than in range 1 when L/d>9? This is because there is no difference in the flow behavior between the fj-side heating resistor and the downstream-side heating resistor, and the time difference between the two flow velocity detection points becomes a problem.

よって、同一形状、同一特性の発熱抵抗体2個を用い、
同一発熱温度にコントロールして第1発熱抵抗体1ろる
いは第2発熱抵抗体2における発熱量を測定することに
よって、流t’を求めることができると同時に、面抵抗
体(・cおける発熱量を比較することにより、流れ方向
も検知できる。
Therefore, using two heating resistors with the same shape and characteristics,
By controlling the heat generation temperature to be the same and measuring the heat generation amount in the first heating resistor 1 or the second heating resistor 2, the current t' can be determined, and at the same time, the heat generation in the sheet resistor (c) can be determined. By comparing the amounts, the flow direction can also be detected.

第2図は逆流検出器を備えた発熱抵抗体の、C*回路を
示す。第2図の回路は、発熱抵抗体1(またけ2)、温
度補償用抵抗体3(−iた汀4〕、固定抵抗器9の各抵
抗体でホイートスト/ブリッジ全構成し、その中点の電
位差全増幅器7を用いた差動増幅回路で検出するように
なっている。この増幅器7の出力全トランジスタ60ベ
ースに入力し、ブリッジ中点の電位が常に等しくなる二
うに電源8工9トランジスタ6全介して電bit金供給
している。ブリッジの平衡条件工9、流速検出用抵抗体
でろる発熱抵抗体の抵抗fw、 RHは次式で表わされ
る。
FIG. 2 shows a C* circuit of a heating resistor with a backflow detector. The circuit shown in Figure 2 has a wheat strike/bridge configuration consisting of each resistor: heating resistor 1 (straddle 2), temperature compensation resistor 3 (-i ta 4), and fixed resistor 9, and the midpoint Detection is performed by a differential amplifier circuit using a potential difference amplifier 7.The output of this amplifier 7 is input to the base of all transistors 60, and the potential at the midpoint of the bridge is always equal. Electrical bits are supplied through the bridge equilibrium condition 9, and the resistances fw and RH of the heating resistor, which is connected to the flow rate detection resistor, are expressed by the following equations.

ここで、P+ + Rt r Rs :固定抵抗器の抵
抗値Rc:温度補償用抵抗体の抵抗値 Rn、Reはいずれも温度依存性を示し、流体温度が上
昇した時はRe もそれに伴い抵抗値は大きくなり、流
体温度の上昇による影響を補償している。
Here, P+ + Rt r Rs : Resistance value of the fixed resistor Rc : Resistance value of the temperature compensation resistor Both Rn and Re show temperature dependence, and when the fluid temperature rises, the resistance value of Re also increases accordingly. is increased to compensate for the effect of increased fluid temperature.

また流体温度が一定ならばRcは一定とな!l 、RH
は流量の大小にかかわらず一足値となるように、増幅器
γが動作してブリッジに流丁電流金制#する。発熱抵抗
体に流れる電流’tIとすると、発熱・・・・  (1
0) で表わされるので、この電位を測定することに工9、流
速uo および流量が求められる。
Also, if the fluid temperature is constant, Rc is constant! l, RH
The amplifier γ operates to control the current flow to the bridge so that the value remains constant regardless of the magnitude of the flow rate. If the current flowing through the heating resistor is 'tI, then heat generation... (1
0) Therefore, by measuring this potential, the flow velocity uo and flow rate are determined.

発熱抵抗体1,2の各々は、第2図に示した工うなホイ
ートストンブリッジ回路に接続されており、それぞれの
発熱量P+、Pzに対応した流量信号a、bが出力され
る。これらの流量信号a、bセまた電圧比較器10の入
力端子に接続され、第1流量信号aが第2流量信号す工
9大きい時に電圧比較器10の出力信号Cけ論理r H
Jにな9、第2流量信号すが第1流量信号aエク大きい
時は上記出力は論理[Lコとなる。
Each of the heating resistors 1 and 2 is connected to the Wheatstone bridge circuit shown in FIG. 2, and flow rate signals a and b corresponding to the respective heat generation amounts P+ and Pz are output. These flow rate signals a and b are also connected to the input terminal of the voltage comparator 10, and when the first flow rate signal a is greater than the second flow rate signal, the output signal of the voltage comparator 10 is
9, when the second flow rate signal is larger than the first flow rate signal a, the above output becomes logic [L].

工って電気信号a、b、cを図上省略したが周知のマイ
クロプロセッサへ接続し、信号cが論理「H」の時は逆
流でるると検知し、第2流量信号す工9流itを求め、
信号Cが論理1〜 L Jの時は順方向のθこれで必る
kめ第1流″i信号aエクR,量を求めることができる
The electrical signals a, b, and c are omitted in the diagram, but are connected to a well-known microprocessor, and when the signal c is logic "H", it is detected that there is a reverse flow, and the second flow signal is generated. seek,
When the signal C is logic 1 to LJ, the amount of the forward direction θ can be determined.

なお、上記実施例″cに発熱抵抗体り軸間距離りと発熱
抵抗体の外径dの比ガ−3≦L、/′d≦9の範囲につ
いて示したが、1 < iL/’d < 3 の範囲に
ついても2個の発熱抵抗体の・ド均熱伝達率に差異が見
られ々ので、同様にして逆流に出が可能となる。
In addition, in the above-mentioned Example "c", the ratio of the distance between the axes of the heating resistor and the outer diameter d of the heating resistor was shown in the range of -3≦L, /'d≦9, but 1 <iL/'d In the range <3, there is a difference in the uniform heat transfer coefficients of the two heating resistors, so it is possible to reverse the flow in the same way.

また、上記実施レリでは流計信号として上流側の発熱抵
抗体の流f信号全測定しているが、下流側の発熱抵抗体
のfklk信号から流量全求める方法でも上記実施例と
同様の効果を奏する。
In addition, in the above implementation example, the entire flow f signal of the heating resistor on the upstream side is measured as a flowmeter signal, but the same effect as in the above embodiment can be obtained by calculating the total flow rate from the fklk signal of the heating resistor on the downstream side. play.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、2個の発熱抵抗体を流
れに沿って対向して配設し、流量に対応した電気信号の
大小関係に19逆流全検知できる工うな構成としたので
、エンジンの低回転出力ゾーンの運転領域において生じ
やすい逆流?伴う脈動吸気状態においても、その逆流全
横細し、流量を補正することにエフ火際にエンジン内へ
吸入された吸気量を正確Vこ検出できる効果がΔ)る。
As described above, according to the present invention, the two heating resistors are disposed opposite to each other along the flow, and the configuration is such that all 19 backflows can be detected based on the magnitude relationship of the electric signal corresponding to the flow rate. Backflow that tends to occur in the engine's low rotational output zone? Even in the accompanying pulsating intake state, by correcting the flow rate by narrowing the reverse flow, the effect of accurately detecting the amount of intake air taken into the engine at the time of combustion is Δ).

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施ff1Jによる熱式流量検出
器の流量検出部の構毎例紫示す構成図、第2図は発熱抵
抗体ρ基らの信号を流tfc対応した電気信号に変換し
かつ逆流を検知する回路図、第3図は吸気脈動状悪時の
吸入空気量の時間変化全示す図、第4図(−S、第3図
の脈動流に対する従来の熱式流量検出器の流量信号全示
す図である。 1・・・・第1発熱抵抗体、2・・・・第2発熱抵抗体
、3・・・・第1温度補償用抵抗体、4・・・・第2温
度補償用抵抗体、5・・・・流れ、6・φ・・トランジ
ヌ、り、7・φ・−増幅器、8・・・・電源、9・・・
・固定抵抗器、10・・・・電圧比較器。
Fig. 1 is a configuration diagram showing an example of the flow rate detection section of a thermal flow rate detector according to one embodiment of the present invention ff1J, shown in purple, and Fig. 2 converts the signal from the heating resistor ρ into an electric signal corresponding to the flow TFC. In addition, a circuit diagram for detecting backflow, Fig. 3 is a diagram showing all the changes in intake air amount over time when intake pulsation is bad, and Fig. 4 (-S, a conventional thermal flow rate detector for the pulsating flow shown in Fig. 3). 1 is a diagram showing all flow rate signals of 1...first heating resistor, 2...second heating resistor, 3...first temperature compensation resistor, 4...first 2 Temperature compensation resistor, 5... Current, 6 φ... Transine, 7... φ - Amplifier, 8... Power supply, 9...
・Fixed resistor, 10... Voltage comparator.

Claims (3)

【特許請求の範囲】[Claims] (1)流体通路中に設置され、流量を感知する第1発熱
抵抗体と、上記第1発熱抵抗体の下流の流体通路中に第
1発熱抵抗体に対向するように配設された流量を感知す
る第2発熱抵抗体と、各発熱抵抗体の電流を制御すると
ともに各発熱抵抗体の出力電流を流量に対応した信号と
して取り出す駆動回路部と、各流量に対応した信号を入
力とする比較器とを備えたことを特徴とする熱式流量検
出器。
(1) A first heating resistor installed in the fluid passage to sense the flow rate; and a first heating resistor disposed in the fluid passage downstream of the first heating resistor to sense the flow rate and facing the first heating resistor. A second heating resistor to sense, a drive circuit unit that controls the current of each heating resistor and takes out the output current of each heating resistor as a signal corresponding to the flow rate, and a comparison that receives the signal corresponding to each flow rate as input. A thermal flow rate detector characterized by comprising:
(2)第1発熱抵抗体と第2発熱抵抗体とが同一形状、
同一特性であることを特徴とする特許請求の範囲第1項
記載の熱式流量検出器。
(2) the first heating resistor and the second heating resistor have the same shape;
The thermal flow rate detector according to claim 1, which has the same characteristics.
(3)第1および第2の発熱抵抗体の形状が同一円筒形
で、2つの発熱抵抗体の軸間距離Lと、各発熱抵抗体の
直径dとの比が1〜9の範囲内にあることを特徴とする
特許請求の範囲第1項記載の熱式流量検出器。
(3) The first and second heating resistors have the same cylindrical shape, and the ratio of the distance L between the axes of the two heating resistors to the diameter d of each heating resistor is within the range of 1 to 9. A thermal flow rate detector according to claim 1, characterized in that:
JP60215480A 1985-09-26 1985-09-26 Heat type flow rate detector Pending JPS6273124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60215480A JPS6273124A (en) 1985-09-26 1985-09-26 Heat type flow rate detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60215480A JPS6273124A (en) 1985-09-26 1985-09-26 Heat type flow rate detector

Publications (1)

Publication Number Publication Date
JPS6273124A true JPS6273124A (en) 1987-04-03

Family

ID=16673076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60215480A Pending JPS6273124A (en) 1985-09-26 1985-09-26 Heat type flow rate detector

Country Status (1)

Country Link
JP (1) JPS6273124A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0785417A2 (en) * 1996-01-17 1997-07-23 Hitachi, Ltd. Heating resistor type air flow rate measuring apparatus
US5681989A (en) * 1994-11-18 1997-10-28 Hitachi, Ltd. Intake air amount measuring apparatus for internal combustion engines
US5708205A (en) * 1995-05-19 1998-01-13 Hitachi, Ltd. Measuring element for a mass air flow sensor and mass air flow sensor using the measuring element
US5717136A (en) * 1994-02-28 1998-02-10 Unisia Jecs Corporation Hot film type air flow quantity detecting apparatus applicable to vehicular internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57116220A (en) * 1981-01-12 1982-07-20 Hitachi Ltd Detecting device for suction volume for internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57116220A (en) * 1981-01-12 1982-07-20 Hitachi Ltd Detecting device for suction volume for internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5717136A (en) * 1994-02-28 1998-02-10 Unisia Jecs Corporation Hot film type air flow quantity detecting apparatus applicable to vehicular internal combustion engine
US5681989A (en) * 1994-11-18 1997-10-28 Hitachi, Ltd. Intake air amount measuring apparatus for internal combustion engines
US5708205A (en) * 1995-05-19 1998-01-13 Hitachi, Ltd. Measuring element for a mass air flow sensor and mass air flow sensor using the measuring element
EP0785417A2 (en) * 1996-01-17 1997-07-23 Hitachi, Ltd. Heating resistor type air flow rate measuring apparatus
EP0785417A3 (en) * 1996-01-17 1998-04-15 Hitachi, Ltd. Heating resistor type air flow rate measuring apparatus
US6435023B1 (en) 1996-01-17 2002-08-20 Hitachi, Ltd. Heating resistor type air flow rate measuring apparatus

Similar Documents

Publication Publication Date Title
US4320650A (en) Flow rate measuring apparatus having vortex-generating element and hot wire element
JP2704048B2 (en) Current difference type thermal mass flow transducer
JPH0421809B2 (en)
US20050075804A1 (en) Optimized convection based mass airflow sensor circuit
JPH01185416A (en) Thermal flowmeter for internal combustion engine
JP3421245B2 (en) Heating resistor type air flow measurement device
JP3583136B2 (en) Air flow meter output signal correction method
US5375466A (en) Measuring element
JP2004516465A (en) Method and apparatus for detecting the flow rate of a flowing medium
JP2000193505A (en) Flow-rate measuring device
KR100486140B1 (en) Flow rate detector
JPS6273124A (en) Heat type flow rate detector
JP3470620B2 (en) Thermal air flow meter
JP4483115B2 (en) Fuel injection control device and fluid flow rate measuring device
JPH0250406B2 (en)
JPH0915013A (en) Heating type measuring method and device for air flow rate
JPH09318412A (en) Thermal flow velocity sensor
JPH075009A (en) Air flowrate measuring device of engine, fuel injection controller, and flow sensor to be used therein
JP3060861B2 (en) Intake air amount measurement device for internal combustion engine
JPS62812A (en) Hot-wire air flow meter
JPH0143883B2 (en)
JP2003004496A (en) Flow rate measuring instrument
JPS5912571Y2 (en) Intake air amount measuring device
JPS60100720A (en) Hot wire type flow meter
JP2616150B2 (en) Thermal air flow meter