JP3019009U - Mass flow meter - Google Patents

Mass flow meter

Info

Publication number
JP3019009U
JP3019009U JP1995006497U JP649795U JP3019009U JP 3019009 U JP3019009 U JP 3019009U JP 1995006497 U JP1995006497 U JP 1995006497U JP 649795 U JP649795 U JP 649795U JP 3019009 U JP3019009 U JP 3019009U
Authority
JP
Japan
Prior art keywords
temperature
heat
conduit
ambient temperature
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1995006497U
Other languages
Japanese (ja)
Inventor
頼孝 磯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lintec Corp
Original Assignee
Lintec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lintec Corp filed Critical Lintec Corp
Priority to JP1995006497U priority Critical patent/JP3019009U/en
Application granted granted Critical
Publication of JP3019009U publication Critical patent/JP3019009U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】 (修正有) 【目的】 導管中を流れる流体の質量流量を精密に測定
する質量流量計に関する。 【構成】 内部に流体(G)が層流状態で流れる導管1の外
周にその上流側と下流側とに前記流体(G)の温度(t)に応
じて抵抗値が変化する一対の感熱コイル(Ru)(Rd)を巻設
し、導管1の外側の周囲温度(T)の検出が出来るように熱
伝導を良くし、放熱を十分に行えるようにした周囲温度
検出抵抗(Rtu)(Rtd)と、温度差設定抵抗(Rsu)(Rsd)とを
それぞれ含むブリッジ回路(Tu)(Td)を上流側と下流側と
にそれぞれ独立して設け、ブリッジ回路(Tu)(Td)によっ
て両感熱コイル(Ru)(Rd)の温度(t)と導管1の外側の周囲
温度(T)との温度差(t-T)を温度差設定抵抗(Rsu)(Rsd)で
定まる値にほぼ等しくなるように制御する制御装置21を
設け、両感熱コイル(Ru)(Rd)に与えられるエネルギの差
を検出する事により、導管1中の流体(G)の質量流量を測
定する。
(57) [Summary] (Modified) [Purpose] The present invention relates to a mass flowmeter that accurately measures the mass flow rate of a fluid flowing in a conduit. [Structure] A pair of heat-sensitive coils having a resistance value that varies depending on the temperature (t) of the fluid (G) on the outer circumference of the conduit 1 in which the fluid (G) flows in a laminar flow state. (Ru) (Rd) is wound to improve the heat conduction so that the ambient temperature (T) outside the conduit 1 can be detected, and the ambient temperature detection resistance (Rtu) (Rtd ) And a temperature difference setting resistance (Rsu) (Rsd) respectively, and a bridge circuit (Tu) (Td) is provided independently on the upstream side and the downstream side, respectively Set the temperature difference (tT) between the temperature (t) of the coil (Ru) (Rd) and the ambient temperature (T) outside the conduit 1 to be approximately equal to the value determined by the temperature difference setting resistance (Rsu) (Rsd). A control device 21 for controlling is provided, and the mass flow rate of the fluid (G) in the conduit 1 is measured by detecting the difference in energy applied to both heat sensitive coils (Ru) (Rd).

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、導管中を流れる流体の質量流量を精密に測定する質量流量計に関す る。 The present invention relates to a mass flow meter that accurately measures the mass flow rate of a fluid flowing in a conduit.

【0002】[0002]

【従来の技術】[Prior art]

前記質量流量計として、たとえば導管の上流側と下流側にそれぞれ温度係数の 大なる感熱コイルを配し、各感熱コイルに供給する電流値を一定に保持し、流体 が流れる事によって変化する感熱部分の温度分布を検出する事により、流量測定 を行うもの(例えば、特公昭56-23094号公報)や、流体温度を調節する事により通 過流体を条件付け、流体が通過する時の熱交換作用において流体の温度を異なる 温度値に変更し、これら温度調節と温度変更段階のうちの少なくとも一方の段階 で費やされたエネルギを表示するようにして流量測定を行うもの(例えば特開昭5 9−18423号公報)がある。 As the mass flow meter, for example, heat-sensitive coils having a large temperature coefficient are arranged on the upstream side and the downstream side of the conduit respectively, the current value supplied to each heat-sensitive coil is kept constant, and the heat-sensitive portion is changed by flowing a fluid. The flow rate is measured by detecting the temperature distribution of the fluid (for example, Japanese Examined Patent Publication No. 56-23094), and the passing fluid is conditioned by adjusting the fluid temperature. Flow rate measurement is performed by changing the temperature of the fluid to a different temperature value and displaying the energy consumed in at least one of these temperature adjustment and temperature change steps (for example, Japanese Patent Laid-Open No. 59- 18423).

【0003】 しかしながら、前者は温度分布が変化する速さが導管やその被覆物の熱容量の 影響を受けるため応答性に欠ける欠点がある。又、後者は応答速度は前者に比べ ると良好であるが、動作原理が熱線流速計と同一であるため、導管(1)外の周囲 温度の変化や流体の熱容量の違い等によってゼロ点が変動しやすいと言う欠点が あり、この欠点をなくすために温度調節回路を設けても回路構成が複雑になる割 にはその実効が上がりにくいと言う問題点があった。However, the former has a drawback that it lacks responsiveness because the speed at which the temperature distribution changes is affected by the heat capacity of the conduit and its coating. Also, the latter has a better response speed than the former, but since the operating principle is the same as that of the hot-wire anemometer, the zero point may change due to changes in the ambient temperature outside the conduit (1) and differences in the heat capacity of the fluid. There is a drawback that it is liable to fluctuate, and even if a temperature control circuit is provided to eliminate this drawback, the circuit configuration becomes complicated, but its effectiveness is difficult to improve.

【0004】 その他の従来例として、Vu(上流側の感熱コイル電圧)−Vd(下流側の感熱コイル電圧) Vu(上流側の感熱コイル電圧)+Vd(下流側の感熱コイル電圧) の式で表される補正回路(65)(第2図)を持つ質量流量計があるが、 (Vu+Vd)が厳密には温度変化だけでなく、流量の変化に応じて変化するため 、完全な温度補正が出来ない。 温度設定抵抗(61)(61')の温度係数がゼロに近い抵抗でなければならないため 、両感熱コイル(Ru)(Rd)が一定温度(例えば80〜90℃程度)に設定されてしまい、 その結果周囲温度が設定された感熱コイル(Ru)(Rd)の温度を越えた又は両者の差 が少ない場合ノイズが大きくて使用できない。 同様に、導管(1)外の周囲温度よりも感熱コイル(Ru)(Rd)の温度をかなり高く 取らなければならないので、反応性の高い被測定流体(G)の場合は測定不能と言 う制約がある。As another conventional example, it is represented by the formula of Vu (upstream thermal coil voltage) -Vd (downstream thermal coil voltage) Vu (upstream thermal coil voltage) + Vd (downstream thermal coil voltage) There is a mass flowmeter that has a correction circuit (65) (Fig. 2) that is used. However, since (Vu + Vd) strictly changes not only with temperature change but also with flow rate change, complete temperature correction is possible. Absent. Since the temperature coefficient of the temperature setting resistors (61) (61 ') must be close to zero, both thermal coils (Ru) (Rd) are set to a constant temperature (for example, about 80 to 90 ° C), As a result, if the ambient temperature exceeds the set temperature of the heat sensitive coils (Ru) (Rd) or the difference between the two is small, noise is too large to use. Similarly, the temperature of the heat sensitive coil (Ru) (Rd) must be set considerably higher than the ambient temperature outside the conduit (1), so it is said that measurement is impossible in the case of a highly reactive fluid (G). There are restrictions.

【0005】 そこで、感熱コイル(Ru)(Rd)と直列にこれらとほぼ等しい温度係数を持つ温度 検出抵抗(11)(11')を挿入して感熱コイル(Ru)(Rd)と温度検出抵抗(11)(11')とを それぞれ含む定温度差回路(Tu)(Td)を設けた方式が案出されたが、(第3図) この方式では、上流側及び下流側コイル(Ru)(Rd)の温度特性を式で表せば、 Ru=Rd=Ro(1+αt)……(1) ここで、Ro=0℃での両コイル(Ru)(Rd)の抵抗値 t =両コイル(Ru)(Rd)のコイル温度 α=両コイル(Ru)(Rd)の温度係数 又、その定温度差回路(Tu)(Td)は以下の(2)式が成立するように作動するよう 設計されていた。 Ru(Rd)=(11)=(11')=ARo(1+αT)……(2) ここで、T =導管(1)外の周囲温度 A > 1 (Ru<(11)及び Rd<(11')でなければならないため) 次に(2)に(1)を代入すると、 t ={(A-1)/α}+AT………(3) となる。従って、導管(1)外の周囲温度(T)の昇降に対してコイル温度(t)は(A) 倍されて表される事になるので、定温度差とはならず、正確な質量測定がなされ ないと言う欠点が残った。Therefore, the temperature sensing resistors (11) and (11 ′) having temperature coefficients substantially equal to these are inserted in series with the heat sensing coil (Ru) (Rd) to insert the temperature sensing resistor (Ru) (Rd) and the temperature sensing resistor. (11) (11 ') has been devised a method of providing a constant temperature difference circuit (Tu) (Td) respectively, (Fig. 3) In this method, upstream and downstream coils (Ru) If the temperature characteristic of (Rd) is expressed by the formula, Ru = Rd = Ro (1 + αt) (1) where, the resistance value t of both coils (Ru) (Rd) at Ro = 0 ° C = both coils ( Ru) (Rd) coil temperature α = temperature coefficient of both coils (Ru) (Rd) Also, its constant temperature difference circuit (Tu) (Td) is designed to operate so that the following equation (2) is satisfied. It had been. Ru (Rd) = (11) = (11 ') = ARo (1 + αT) …… (2) where T = ambient temperature outside the conduit (1) A> 1 (Ru <(11) and Rd <(11 (Because it must be ')) Substituting (1) into (2), we get t = {(A-1) / α} + AT .... (3). Therefore, since the coil temperature (t) is multiplied by (A) with respect to the rise and fall of the ambient temperature (T) outside the conduit (1), there will be no constant temperature difference and accurate mass measurement will not occur. There was a drawback that was not done.

【0006】[0006]

【考案が解決しようとする課題】 本考案はかかる従来例の欠点に鑑みてなされたもので、その目的とする処は、 定温度差方式であるために応答速度が速く、且つ、導管外の周囲温度による影響 が少なく、更に、感熱コイルが定温に制御される定温度タイプに比べて使用可能 温度範囲が広く、しかも感熱コイルの温度を高温にする必要がないので被測定物 質への影響が少ない質量流量計を提供するにある。The present invention has been made in view of the drawbacks of the conventional example, and the object thereof is to provide a fast response speed because of the constant temperature difference method, and to It is less affected by the ambient temperature, and has a wider usable temperature range than the constant temperature type in which the heat sensitive coil is controlled to a constant temperature, and since it is not necessary to raise the temperature of the heat sensitive coil, it has an effect on the material to be measured. There is less to provide a mass flow meter.

【0007】[0007]

【課題を解決するための手段】[Means for Solving the Problems]

「請求項1」に記載の質量流量計は、 内部に流体(G)が層流状態で流れる導管(1)の外周にその上流側と下流側とに前 記流体(G)の温度(t)に応じて抵抗値が変化する一対の感熱コイル(Ru)(Rd)を巻設 し、 感熱コイル(Ru)(Rd)に並列に感熱コイル(Ru)(Rd)と特性のほぼ相等しく、前記 導管(1)の外側の周囲温度(T)の検出が出来るように熱伝導を良くし、放熱を十分 に行えるようにした周囲温度検出抵抗(Rtu)(Rtd)と、 温度係数がほぼ零の温度差設定抵抗(Rsu)(Rsd)とをそれぞれ挿入して前記感熱 コイル(Ru)(Rd)、周囲温度検出抵抗(Rtu)(Rtd)及び温度差設定抵抗(Rsu)(Rsd)と をそれぞれ含むブリッジ回路(Tu)(Td)を上流側と下流側とにそれぞれ独立して設 け、 該ブリッジ回路(Tu)(Td)によって両感熱コイル(Ru)(Rd)の温度(t)と導管(1)の 外側の周囲温度(T)との温度差(t-T)を温度差設定抵抗(Rsu)(Rsd)で定まる値にほ ぼ等しくなるように制御する制御装置(21)を設け、 両感熱コイル(Ru)(Rd)に与えられるエネルギの差を検出する事により、前記導 管(1)中の流体(G)の質量流量を測定するようにした事を特徴とする。 The mass flowmeter according to claim 1 has a temperature (t) of the fluid (G) on the upstream side and the downstream side of the conduit (1) on the outer periphery of the conduit (1) in which the fluid (G) flows in a laminar flow state. ), A pair of heat sensitive coils (Ru) (Rd) are wound, and the characteristics are almost the same as those of the heat sensitive coils (Ru) (Rd) in parallel with the heat sensitive coils (Ru) (Rd). The ambient temperature detection resistance (Rtu) (Rtd), which has good heat conduction and sufficient heat dissipation to detect the ambient temperature (T) outside the conduit (1), and the temperature coefficient are almost zero. Insert the temperature difference setting resistors (Rsu) (Rsd) and the temperature sensing coil (Ru) (Rd), ambient temperature detection resistor (Rtu) (Rtd) and temperature difference setting resistor (Rsu) (Rsd), respectively. A bridge circuit (Tu) (Td) including each is installed independently on the upstream side and the downstream side, and the temperature (t) of both thermal coils (Ru) (Rd) is set by the bridge circuit (Tu) (Td). Set the temperature difference (tT) from the ambient temperature (T) outside the conduit (1). A control device (21) that controls the resistance (Rsu) (Rsd) to be approximately equal to the value determined is provided, and by detecting the difference in energy applied to both thermal coils (Ru) (Rd), It is characterized in that the mass flow rate of the fluid (G) in the pipe (1) is measured.

【0008】[0008]

【作用】[Action]

上述の構成においては、導管(1)内に流体(G)が流れていない時には、上流側と 下流側の感熱コイル(Ru)(Rd)と導管(1)外の周囲温度の温度差を同一に保持する ためのエネルギはほぼ相等しいから導管(1)外の周囲温度の変化や導管(1)内の流 体(G)の相違によるゼロ点の影響は相殺される。又、導管(1)内に流体(G)が流れ ている時は上流側の感熱コイル(Ru)は流体(G)に熱を奪われる。 In the above configuration, when the fluid (G) does not flow in the conduit (1), the temperature difference between the upstream and downstream heat-sensitive coils (Ru) (Rd) and the ambient temperature outside the conduit (1) is the same. Since the energies for holding at are almost equal, the effects of the zero point due to changes in the ambient temperature outside the conduit (1) and differences in the fluid (G) inside the conduit (1) are offset. Further, when the fluid (G) is flowing in the conduit (1), the heat is removed from the heat sensitive coil (Ru) on the upstream side by the fluid (G).

【0009】 この結果、流体(G)は加熱され温度上昇するが、前記導管(1)外の周囲温度と感 熱コイル(Ru)とを所定温度差に保持するには流体(G)が流れていない時に比べて 大なるエネルギが必要となる。一方、下流側の感熱コイル(Rd)は前記加熱された 流体(G)から熱を受ける事により導管(1)外の周囲温度と該感熱コイル(Rd)との温 度差を所定に保持するには流体(G)が流れていない状態に比べて小なるエネルギ で良い事になる。As a result, the fluid (G) is heated and its temperature rises, but the fluid (G) flows in order to keep the ambient temperature outside the conduit (1) and the heat sensitive coil (Ru) at a predetermined temperature difference. It requires more energy than when not in use. On the other hand, the heat-sensitive coil (Rd) on the downstream side keeps a predetermined temperature difference between the ambient temperature outside the conduit (1) and the heat-sensitive coil (Rd) by receiving heat from the heated fluid (G). It requires less energy than the state in which no fluid (G) is flowing.

【0010】 この時生ずる前記両コイル(Ru)(Rd)に供給されるエネルギの差はその時の流体 (G)の質量流量に比例しているから前記エネルギの差を検出する事により、質量 流量を測定出来るのであるが、本考案においては、感熱コイル(Ru)(Rd)と特性の ほぼ等しく、周囲温度の検出が出来るように熱伝導を良くし、放熱を十分に行え るようにした周囲温度検出抵抗(Rtu)(Rtd)に直列(感熱コイル(Ru)(Rd)には並列 に接続されている。)に挿入された温度係数の非常に小さい温度差設定抵抗(Rsu )(Rsd)が存在するために導管(1)外の周囲温度の変化に拘わらず、導管(1)外の周 囲温度(T)とコイル温度(t)の温度差は常に一定に保たれる事になって正確な質量 流量測定が可能となる。Since the difference in energy supplied to both the coils (Ru) and (Rd) at this time is proportional to the mass flow rate of the fluid (G) at that time, the mass flow rate is detected by detecting the difference in energy. In the present invention, the characteristics are almost the same as those of the heat sensitive coil (Ru) (Rd), the heat conduction is good so that the ambient temperature can be detected, and the heat radiation can be performed sufficiently. Temperature difference setting resistor (Rsu) (Rsd) with a very small temperature coefficient inserted in series with the temperature detection resistor (Rtu) (Rtd) (connected in parallel with the thermal coil (Ru) (Rd).) Therefore, the temperature difference between the ambient temperature (T) outside the conduit (1) and the coil temperature (t) is always kept constant regardless of the change in ambient temperature outside the conduit (1). This enables accurate mass flow measurement.

【0011】[0011]

【実施例】【Example】

以下、本考案を図示実施例に従って詳述する。第1図は質量流量計の1構成例 を示し、(1)は導管で、矢印方向に流体(G)が流れる。(Ru)(Rd)は導管(1)上の適 当に離れた2点にそれぞれ設けられる感熱コイル(以下、上流側コイル(Ru)、下 流側コイル(Rd)と言う。)で、鉄・ニッケル合金又は白金など温度係数の大なる温 度感応抵抗線よりなる。これは導管(1)中を流れる流体(G)の流量が約5cc/minで あり、そのわずかな変位をも検知するためである。 Hereinafter, the present invention will be described in detail with reference to illustrated embodiments. Fig. 1 shows an example of the configuration of a mass flowmeter, where (1) is a conduit through which the fluid (G) flows in the direction of the arrow. (Ru) and (Rd) are heat-sensitive coils (hereinafter referred to as the upstream coil (Ru) and the downstream coil (Rd)) provided at two points on the conduit (1) that are appropriately separated from each other. -A temperature sensitive resistance wire with a large temperature coefficient such as nickel alloy or platinum. This is because the flow rate of the fluid (G) flowing in the conduit (1) is about 5 cc / min, and even a slight displacement of the fluid (G) is detected.

【0012】 (Tu)(Td)は上流側又は下流側定温度差回路で、上流側においては上流側コイル (Ru)、温度検出抵抗(Rtu)、温度差設定抵抗(Rsu)、制御装置(21)『誤差増幅器で ある。』及びブリッジ抵抗(12)(13)とで構成され、下流側においては下流側コイ ル(Rd)、温度検出抵抗(Rtd)、温度差設定抵抗(Rsd)、制御装置(21')『誤差増幅 器である。』及びブリッジ抵抗(12')(13')とで構成される。両定温度差回路(Tu)( Td)はほぼ同一の部品で構成されているが、これは上流側コイル(Ru)、下流側コイ ル(Rd)が常にほぼ等しく且つ導管(1)外の周囲温度に対して一定温度差になるよ うにするためである。(尚、図では下流側定温度差回路(Td)の同一機能の構成部 材の数字にはダッシュを付す。)ここでは、上流側定温度差回路(Tu)の構成に付 いてのみ説明する。(Tu) (Td) is an upstream or downstream constant temperature difference circuit, and on the upstream side, an upstream coil (Ru), a temperature detection resistor (Rtu), a temperature difference setting resistor (Rsu), a controller ( 21) "It is an error amplifier. , And bridge resistances (12) and (13) .On the downstream side, the downstream coil (Rd), temperature detection resistance (Rtd), temperature difference setting resistance (Rsd), controller (21 ') It is an amplifier. ] And bridge resistors (12 ') and (13'). The two constant temperature difference circuits (Tu) (Td) are composed of almost the same parts, but this is because the upstream coil (Ru) and the downstream coil (Rd) are always almost the same and outside the conduit (1). This is to make a constant temperature difference from the ambient temperature. (In the figure, the numbers of components having the same function in the downstream constant temperature difference circuit (Td) are indicated by dashes.) Here, only the configuration of the upstream constant temperature difference circuit (Tu) will be described. .

【0013】 即ち、上流側定温度差回路(Tu)はブリッジ回路(10)と制御回路(21)『即ち、誤 差増幅器』とから構成されており、ブリッジ回路(10)は上流側コイル(Ru)と上流 側周囲温度検出抵抗(Rtu)と、温度差設定抵抗(Rsu)、ブリッジ抵抗(12)(13)及び 必要ならばゼロバランス抵抗(RB)とよりなる。前記ブリッジ抵抗(12)(13)は上流 側コイル(Ru)に比べて温度係数が十分小さいものが用いられる。ここで、周囲温 度検出抵抗(Rtu)(Rtd)は導管(1)外の周囲の温度の変化によって抵抗値が変化し 、感熱コイル(Ru)(Rd)の温度を温度差設定抵抗(Rsu)(Rsd)によって定まる値に変 化させる。That is, the upstream constant temperature difference circuit (Tu) is composed of a bridge circuit (10) and a control circuit (21) “that is, an error amplifier”, and the bridge circuit (10) has an upstream coil (10). Ru) and upstream side ambient temperature detection resistance (Rtu), temperature difference setting resistance (Rsu), bridge resistance (12) (13) and zero balance resistance (RB) if necessary. As the bridge resistors (12) and (13), those having a temperature coefficient sufficiently smaller than that of the upstream coil (Ru) are used. Here, the resistance value of the ambient temperature detection resistance (Rtu) (Rtd) changes due to the change of the ambient temperature outside the conduit (1), and the temperature of the thermal coil (Ru) (Rd) is changed to the temperature difference setting resistance (Rsu). ) (Rsd).

【0014】 即ち、上流側及び下流側コイル(Ru)(Rd)の温度特性を式で表せば、 Ru=Rd=Ro(1+αt)……(10) ここで、Ro=0℃での両コイル(Ru)(Rd)の抵抗値 t =両コイル(Ru)(Rd)のコイル温度 α=両コイル(Ru)(Rd)の温度係数 又、その定温度差回路(Tu)(Td)は以下の(11)式が成立するように作動するよう 設計されている。 Ru=Rsu+Rtu……………(11) Rd=Rsd+Rtd……………(12) 周囲温度検出抵抗(Rtu)(Rtd)が上流側及び下流側コイル(Ru)(Rd)とほとんど同 じ特性であり、導管(1)外の周囲温度と周囲温度検出抵抗(Rtu)(Rtd)の温度がほ ぼ同一である場合、 Ro(1+αt)=Rsu+Ro(1+αT)…(13) が成立する。ここで、T =導管(1)外の周囲温度 t =コイル温度 従って、t =Rsu/(α・Ro)+T……………(14) これを書き換えると、 t−T=Rsu/(α・Ro)……………(14') と言う事になる。 (14)、(14')式は、導管(1)外の周囲温度(T)に従来例のような係数値(A)がかか らないので、コイル温度(t)が、導管(1)外の周囲温度(T)とRsu/(α・Ro)の差を常 に保つように動作する事を示している。温度差設定抵抗(Rsu)は温度係数が非常 に小さなものを使用するためにRsu/(α・Ro)は温度に関係なく常に一定の値とな る。That is, if the temperature characteristics of the upstream side coil and the downstream side coil (Ru) (Rd) are expressed by an equation, Ru = Rd = Ro (1 + αt) (10) where both coils at Ro = 0 ° C. Resistance value of (Ru) (Rd) t = coil temperature of both coils (Ru) (Rd) α = temperature coefficient of both coils (Ru) (Rd) The constant temperature difference circuit (Tu) (Td) is It is designed to operate so that equation (11) of is satisfied. Ru = Rsu + Rtu ………… (11) Rd = Rsd + Rtd ………… (12) Ambient temperature detection resistance (Rtu) (Rtd) is almost same as upstream and downstream coil (Ru) (Rd). If the ambient temperature outside the conduit (1) and the ambient temperature detection resistance (Rtu) (Rtd) are approximately the same, then Ro (1 + αt) = Rsu + Ro (1 + αT) (13) holds. Here, T = ambient temperature outside the conduit (1) t = coil temperature Therefore, t = Rsu / (α · Ro) + T …………… (14) Rewriting this, t−T = Rsu / (α・ Ro) ……………… (14 '). In equations (14) and (14 '), the ambient temperature (T) outside the conduit (1) does not have the coefficient value (A) as in the conventional example, so the coil temperature (t) is ) It shows that it operates so that the difference between the ambient temperature (T) and Rsu / (α · Ro) is always maintained. Since the temperature difference setting resistor (Rsu) has a very small temperature coefficient, Rsu / (α · Ro) is always constant regardless of temperature.

【0105】 これにより、導管(1)外の周囲温度(T)と感熱コイル(Ru)(Rd)の温度差が一定に 保たれる。 (Au)は上流側コイル(Ru)と上流側周囲温度検出抵抗(Rtu)との接続点で、下流 側定温度差回路(Td)では(Ad)が接続点となる。(B)点はブリッジ抵抗(12)と(13) の接続点で、可変抵抗であるゼロバランス抵抗(RB)が挿入されており、上流側と 下流側のブリッジ回路(10)(10')の構成部品の微小なバラツキを補正して出力回 路(50)の出力を零にするための働きをなす。As a result, the temperature difference between the ambient temperature (T) outside the conduit (1) and the heat sensitive coils (Ru) (Rd) is kept constant. (Au) is the connection point between the upstream coil (Ru) and the upstream ambient temperature detection resistor (Rtu), and (Ad) is the connection point in the downstream constant temperature difference circuit (Td). Point (B) is a connection point between bridge resistors (12) and (13), and a zero balance resistor (RB) that is a variable resistor is inserted, and bridge circuits (10) and (10 ') on the upstream and downstream sides are inserted. It serves to correct the minute variations in the components of and to make the output of the output circuit (50) zero.

【0016】 ここで、接続点(Au)と接続点(B)の電位(Vu)(Vb)は制御装置(21)に入力される 。この制御装置(21)は前記電位(Vu)と(Vb)とを比較して両者に差がある場合は(V u)と(Vb)とが等しくなるように上流側コイル(Ru)を制御する出力信号を出す。こ の点は下流側においても同様である。Here, the potentials (Vu) (Vb) at the connection point (Au) and the connection point (B) are input to the control device (21). This control device (21) compares the potentials (Vu) and (Vb), and if there is a difference between the two, controls the upstream coil (Ru) so that (Vu) and (Vb) become equal. Output an output signal. This point also applies to the downstream side.

【0017】 次に、(50)は出力回路で、上流側定温度差回路(Tu)の接続点(Au)の電位(Vu)と 下流側定温度差回路(Td)の接続点(Ad)の電位(Vd)をそれぞれ入力とし、両者の差 を出力している。この出力回路(50)の出力信号(K)は上流側コイル(Ru)、下流側 コイル(Rd)を同一温度且つ導管(1)外の周囲温度との差を一定温度にするため電 源(図示せず。)から前記両コイル(Ru)(Rd)にそれぞれ供給されるエネルギの差を 表すと共にこの出力信号(K)の大きさは導管(1)中を流れる流体(G)の質量流量に 比例している。 上述のように構成した質量流量計において、導管(1)内に流体(G)が流れていな い時は上流側コイル(Ru)、下流側コイル(Rd)にはブリッジ回路(10)を介して電源 からのエネルギが与えられるだけであり、両コイル(Ru)(Rd)の温度は、温度差設 定抵抗(Rsu)(Rsd)によってそれぞれ定められる温度差と導管(1)外の周囲温度(T) との和に保持される。Next, (50) is an output circuit, which is the potential (Vu) of the connection point (Au) of the upstream constant temperature difference circuit (Tu) and the connection point (Ad) of the downstream constant temperature difference circuit (Td). The potential (Vd) of each is input, and the difference between the two is output. The output signal (K) of this output circuit (50) is used to keep the upstream coil (Ru) and the downstream coil (Rd) at the same temperature and to maintain a constant temperature difference from the ambient temperature outside the conduit (1). (Not shown) represents the difference in energy supplied to the coils (Ru) and (Rd) respectively, and the magnitude of the output signal (K) is the mass flow rate of the fluid (G) flowing in the conduit (1). Is proportional to. In the mass flowmeter configured as described above, when the fluid (G) is not flowing in the conduit (1), the upstream coil (Ru) and the downstream coil (Rd) are connected via the bridge circuit (10). The energy from the power supply is only given to the coils, and the temperature of both coils (Ru) (Rd) is determined by the temperature difference setting resistors (Rsu) (Rsd) and the ambient temperature outside the conduit (1). Holds in sum with (T).

【0018】 そして、上流側及び下流側定温度差回路(Tu)(Td)の周囲温度検出抵抗(Rtu)(Rtd) の特性は等しいから前記両コイル(Ru)(Rd)の導管(1)外の周囲温度(T)との温度差 はほぼ等しくなる。このため、点(Au)の電位(Vu)と点(Ad)の電位(Vd)とはほぼ等 しく、出力回路(50)からの出力信号(K)はゼロとなり、流体(G)が流れていない事 を示す。ところが前述のように各構成部品の条件にばらつきがあるために正確に 零とならず、それ故、ゼロバランス抵抗(RB)の比を変えてゼロバランスをとるよ うにしているのである。The ambient temperature detection resistors (Rtu) (Rtd) of the upstream and downstream constant temperature difference circuits (Tu) (Td) have the same characteristics, so that the conduits (1) of the coils (Ru) (Rd) are provided. The temperature difference from the outside ambient temperature (T) is almost equal. Therefore, the potential (Vu) at the point (Au) and the potential (Vd) at the point (Ad) are almost equal, the output signal (K) from the output circuit (50) becomes zero, and the fluid (G) flows. Indicates that not. However, as described above, the condition of each component varies so that it does not become exactly zero. Therefore, the ratio of the zero balance resistance (RB) is changed to achieve zero balance.

【0019】 次に、導管(1)内に流体(G)が流れている時には上流側コイル(Ru)は流体(G)に よって熱を奪われ、加熱された流体(G)が下流側にやってくるが、下流側コイル( Rd)と流体(G)の温度差が小さいために奪われる熱量が上流側より小さくなる。こ のため、奪われた熱量を補完して上流側コイル(Ru)の温度と導管(1)外の周囲温 度との温度差を例えば10℃程度の一定温度差に保持する為、電源からのエネルギ 供給が大となり、その結果、点(Au)の電位が上昇する。Next, when the fluid (G) is flowing in the conduit (1), the upstream coil (Ru) is deprived of heat by the fluid (G), and the heated fluid (G) flows to the downstream side. Although coming in, the amount of heat absorbed is smaller than that on the upstream side because the temperature difference between the downstream coil (Rd) and the fluid (G) is small. For this reason, the amount of heat taken away is complemented to maintain the temperature difference between the temperature of the upstream coil (Ru) and the ambient temperature outside the conduit (1) at a constant temperature difference of, for example, about 10 ° C. The energy supply at the point becomes large, and as a result, the potential at the point (Au) increases.

【0020】 他方、下流側コイル(Rd)においても導管(1)外の周囲温度と所定温度差に保持 するものであるが、流体(G)が奪う熱量がそれだけ少なく(上流側で奪った熱量分 だけ少なくなる。)なるから電源からの供給エネルギが少なくて済み、その結果 、点(Ad)の電位は下がる。このため出力回路(50)に入力される電圧(Vu)(Vd)に差 が生ず。出力信号(K)として(Vu)−(Vd)が得られる。そして、前記(Vu)−(Vd)は 導管(1)内を流れる流体(G)の質量流量に比例したものであるから、これに定数を 乗ずる事により、流体(G)の質量流量が得られる。On the other hand, the downstream coil (Rd) also maintains a predetermined temperature difference from the ambient temperature outside the conduit (1), but the amount of heat taken by the fluid (G) is so small (the amount of heat taken by the upstream side). Therefore, the amount of energy supplied from the power supply is small, and as a result, the potential at the point (Ad) drops. Therefore, there is no difference in the voltage (Vu) (Vd) input to the output circuit (50). (Vu)-(Vd) is obtained as the output signal (K). Since (Vu)-(Vd) is proportional to the mass flow rate of the fluid (G) flowing in the conduit (1), multiplying this by a constant gives the mass flow rate of the fluid (G). To be

【0021】 (60)は温度検出抵抗(Rtu)の電圧(Vt)を検出・増幅する温度検出用増幅器であ り、(70)は温度差設定抵抗(Rsu)の電圧(Vi)を検出・増幅する温度差設定用増幅 器で、検出・増幅される電圧(Vi)は、温度差設定抵抗(Rsu)を通過するブリッジ 電流(i)とこの抵抗値の積で表される事になる。 尚、温度検出用増幅器(60)及び温度差設定用増幅器(70)は上流側又は下流側の いずれか一方に設けられる。(60) is a temperature detection amplifier that detects and amplifies the voltage (Vt) of the temperature detection resistor (Rtu), and (70) detects the voltage (Vi) of the temperature difference setting resistor (Rsu). The voltage (Vi) that is detected and amplified by the temperature difference setting amplifier that amplifies is represented by the product of the bridge current (i) that passes through the temperature difference setting resistor (Rsu) and this resistance value. The temperature detection amplifier (60) and the temperature difference setting amplifier (70) are provided on either the upstream side or the downstream side.

【0022】 この温度検出用増幅器(60)及び温度差設定用増幅器(70)にて検出・増幅された 温度検出抵抗電圧(Vi)と温度差設定抵抗電圧(Vt)は補正回路(80)に入り、(Vt)/( Vi)=(Rtu)/(Rsu)と言う演算がなされて温度差設定抵抗(Rsu)が導管(1)外の周囲 温度に左右されず一定値をとるため、導管(1)外の周囲温度につれて変化する(Rt u)から導管(1)外の周囲温度が算出されることになる。この周囲温度信号により 、より精密な温度補正演算が可能となる。The temperature detection resistance voltage (Vi) and the temperature difference setting resistance voltage (Vt) detected and amplified by the temperature detection amplifier (60) and the temperature difference setting amplifier (70) are sent to the correction circuit (80). On, the calculation of (Vt) / (Vi) = (Rtu) / (Rsu) is performed and the temperature difference setting resistance (Rsu) takes a constant value regardless of the ambient temperature outside the conduit (1). (1) The ambient temperature outside the conduit (1) is calculated from (Rtu) which changes with the ambient temperature outside. This ambient temperature signal enables more precise temperature correction calculation.

【0023】 尚、補正回路(80)は本実施例では、A/D変換回路(81)、CPU(82)並びにD/A変換 回路(83)にて構成されているが、勿論これに限られず、ロジック回路による方式 やアナログ方式で処理する事も可能である。In the present embodiment, the correction circuit (80) is composed of the A / D conversion circuit (81), the CPU (82) and the D / A conversion circuit (83), but of course it is not limited to this. Instead, it is possible to process with a logic circuit method or an analog method.

【0024】[0024]

【考案の効果】[Effect of device]

本考案にかかる質量流量計は、内部に流体が層流状態で流れる導管の外周にそ の上流側と下流側とに前記流体の温度に応じて抵抗値が変化する一対の感熱コイ ルを巻設し、感熱コイルに並列に感熱コイルと特性のほぼ相等しく、前記導管の 外側の周囲温度の検出が出来るように熱伝導を良くし、放熱を十分に行えるよう にした周囲温度検出抵抗と、温度係数がほぼ零の温度差設定抵抗とをそれぞれ挿 入して前記感熱コイル、周囲温度検出抵抗及び温度差設定抵抗とをそれぞれ含む ブリッジ回路を上流側と下流側とにそれぞれ独立して設け、該ブリッジ回路によ って両感熱コイルの温度と導管の外側の周囲温度との温度差を温度差設定抵抗で 定まる値にほぼ等しくなるように制御する制御装置を設け、両感熱コイルに与え られるエネルギの差を検出する事により、前記導管中の流体の質量流量を測定す るようにしたので、上流側及び下流側コイルの温度分布を変化させないために応 答速度が速くなり、又、導管外の周囲温度に対して上流側及び下流側コイルを一 定の温度差に維持するために導管外の周囲温度による影響が少なく、しかも上流 側及び下流側コイルが定温に制御される定温度タイプに比べて使用可能温度範囲 を広く取る事が出来る。加えて、上流側及び下流側コイルの温度を高温にする必 要がないので被測定物質への影響を少なく出来ると言う諸利点がある。更に、感 熱コイルに並列に温度係数がほぼ零の温度差設定抵抗をそれぞれ挿入してあるの で、(14)式の周囲温度に従来例のような係数値がかからず、コイル温度が周囲温 度とRsu/(α・Ro)の差を常に保つように動作する結果、導管外の周囲温度と感熱 コイルの温度差が正確に一定に保たれる。 なお、導管内を流れる流体は、導管外の計測部材によって層流状態を保ったま まで計測されるので、極く少量の計測対象流体を超精密に測定する場合に最適で ある。 尚、周囲温度検出抵抗の端子電圧とその電流との商である抵抗値を演算する事 によって周囲温度を算出する温度補正回路を設けると、周囲温度信号を得る事が 出来、より高精度な温度補正も行う事が出来ると言う利点がある。 The mass flowmeter according to the present invention has a pair of heat-sensitive coils whose resistance value changes according to the temperature of the fluid on the outer circumference of the conduit through which the fluid flows in a laminar flow state. The temperature sensing resistor is installed in parallel with the heat sensing coil and has substantially the same characteristics as the heat sensing coil to improve heat conduction so that the ambient temperature outside the conduit can be detected, and sufficient heat dissipation can be performed. A temperature difference setting resistor having a temperature coefficient of substantially zero is inserted, and a bridge circuit including the heat sensitive coil, the ambient temperature detecting resistor, and the temperature difference setting resistor is provided independently on the upstream side and the downstream side, respectively. The bridge circuit is provided with a control device for controlling the temperature difference between the temperature of both heat sensitive coils and the ambient temperature outside the conduit to be substantially equal to the value determined by the temperature difference setting resistance, and is provided to both heat sensitive coils. Energy Since the mass flow rate of the fluid in the conduit is measured by detecting the difference, the response speed is increased because the temperature distribution of the upstream and downstream coils is not changed, and the In order to maintain a constant temperature difference between the upstream and downstream coils with respect to the ambient temperature, there is little influence of the ambient temperature outside the conduit, and compared to the constant temperature type in which the upstream and downstream coils are controlled to a constant temperature. Therefore, the usable temperature range can be widened. In addition, there is no need to raise the temperature of the upstream side coil and the downstream side coil, so there are various advantages that the influence on the substance to be measured can be reduced. Furthermore, since the temperature difference setting resistors with a temperature coefficient of almost zero are inserted in parallel with the heat-sensitive coil, the ambient temperature in Eq. As a result of operating to keep the difference between the ambient temperature and Rsu / (α · Ro) at all times, the temperature difference between the ambient temperature outside the conduit and the temperature of the heat-sensitive coil is kept exactly constant. The fluid flowing in the conduit is measured by a measuring member outside the conduit until the laminar flow is maintained, so it is optimal for ultra-precision measurement of a very small amount of fluid to be measured. If a temperature correction circuit that calculates the ambient temperature by calculating the resistance value, which is the quotient of the terminal voltage of the ambient temperature detection resistor and its current, is provided, the ambient temperature signal can be obtained and a more accurate temperature can be obtained. It has the advantage that it can also be corrected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案に一実施例の概略構成図FIG. 1 is a schematic configuration diagram of an embodiment of the present invention.

【図2】従来例の概略構成図FIG. 2 is a schematic configuration diagram of a conventional example.

【図3】他の従来例の概略構成図FIG. 3 is a schematic configuration diagram of another conventional example.

【符号の説明】[Explanation of symbols]

(1)…導管 (G)…流体 (Rtu)(Rtd)…周囲温度検出抵抗 (Rsu)(Rsd)…温度差設定抵抗 (12)(13)…ブリッジ抵抗 (21)…制御装置 (50)…出力回路 (1) ... Conduit (G) ... Fluid (Rtu) (Rtd) ... Ambient temperature detection resistance (Rsu) (Rsd) ... Temperature difference setting resistance (12) (13) ... Bridge resistance (21) ... Control device (50) … Output circuit

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 内部に流体が層流状態で流れる導
管の外周にその上流側と下流側とに前記流体の温度に応
じて抵抗値が変化する一対の感熱コイルを巻設し、感熱
コイルに並列に感熱コイルと特性のほぼ相等しく、前記
導管の外側の周囲温度の検出が出来るように熱伝導を良
くし、放熱を十分に行えるようにした周囲温度検出抵抗
と、温度係数がほぼ零の温度差設定抵抗とをそれぞれ挿
入して前記感熱コイル、周囲温度検出抵抗及び温度差設
定抵抗とをそれぞれ含むブリッジ回路を上流側と下流側
とにそれぞれ独立して設け、該ブリッジ回路によって両
感熱コイルの温度と導管の外側の周囲温度との温度差を
温度差設定抵抗で定まる値にほぼ等しくなるように制御
する制御装置を設け、両感熱コイルに与えられるエネル
ギの差を検出する事により、前記導管中の流体の質量流
量を測定するようにした事を特徴とする質量流量計。
1. A pair of heat-sensitive coils, whose resistance value changes depending on the temperature of the fluid, are wound around the outer circumference of a conduit in which the fluid flows in a laminar flow state, and the heat-sensitive coil is provided with the heat-sensitive coil. In parallel, the characteristics are almost the same as those of the heat-sensitive coil, the heat conduction is good so that the ambient temperature outside the conduit can be detected, and the ambient temperature detection resistance and the temperature coefficient of which the heat dissipation can be sufficiently performed are almost zero. A temperature difference setting resistor is inserted into each of the heat sensitive coils, a bridge circuit including the ambient temperature detecting resistor and a temperature difference setting resistor is independently provided on each of the upstream side and the downstream side, and both heat sensitive coils are provided by the bridge circuit. By installing a control device that controls the temperature difference between the temperature of the pipe and the ambient temperature outside the conduit to be approximately equal to the value determined by the temperature difference setting resistance, and detecting the difference in energy applied to both heat sensitive coils. A mass flowmeter, wherein the mass flow rate of the fluid in the conduit is measured.
【請求項2】 内部に流体が層流状態で流れる導
管の外周にその上流側と下流側とに前記流体の温度に応
じて抵抗値が変化する一対の感熱コイルを巻設し、感熱
コイルに並列に感熱コイルと特性のほぼ相等しく、前記
導管の外側の周囲温度の検出が出来るように熱伝導を良
くし、放熱を十分に行えるようにした周囲温度検出抵抗
と、温度係数がほぼ零の温度差設定抵抗とをそれぞれ挿
入して前記感熱コイル、周囲温度検出抵抗及び温度差設
定抵抗とをそれぞれ含むブリッジ回路を上流側と下流側
とにそれぞれ独立して設け、該ブリッジ回路によって両
感熱コイルの温度と導管の外側の周囲温度との温度差を
温度差設定抵抗で定まる値にほぼ等しくなるように制御
する制御装置を設け、両感熱コイルに与えられるエネル
ギの差を検出する事により、前記導管中の流体の質量流
量を測定するようにした事を特徴とする質量流量計にお
いて、 周囲温度検出抵抗の端子電圧とその電流の商である抵抗
値を演算する事によって導管外の周囲温度を算出する温
度補正回路を設けた事を特徴とする質量流量計。
2. A pair of heat-sensitive coils whose resistance values change according to the temperature of the fluid are wound around the outer circumference of a conduit in which the fluid flows in a laminar flow state, and the heat-sensitive coil is provided with the heat-sensitive coil. In parallel, the characteristics are almost the same as those of the heat-sensitive coil, the heat conduction is good so that the ambient temperature outside the conduit can be detected, and the ambient temperature detection resistance and the temperature coefficient of which the heat dissipation can be sufficiently performed are almost zero. A temperature difference setting resistor is inserted into each of the heat sensitive coils, a bridge circuit including the ambient temperature detecting resistor and a temperature difference setting resistor is independently provided on each of the upstream side and the downstream side, and both heat sensitive coils are provided by the bridge circuit. By installing a control device that controls the temperature difference between the temperature of the pipe and the ambient temperature outside the conduit to be approximately equal to the value determined by the temperature difference setting resistance, and detecting the difference in energy applied to both heat sensitive coils. In the mass flowmeter characterized by measuring the mass flow rate of the fluid in the conduit, the ambient temperature outside the conduit is calculated by calculating the resistance value which is the quotient of the terminal voltage of the ambient temperature detection resistance and its current. A mass flowmeter characterized by having a temperature correction circuit for calculating the temperature.
JP1995006497U 1995-06-05 1995-06-05 Mass flow meter Expired - Lifetime JP3019009U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1995006497U JP3019009U (en) 1995-06-05 1995-06-05 Mass flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1995006497U JP3019009U (en) 1995-06-05 1995-06-05 Mass flow meter

Publications (1)

Publication Number Publication Date
JP3019009U true JP3019009U (en) 1995-12-05

Family

ID=43154435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1995006497U Expired - Lifetime JP3019009U (en) 1995-06-05 1995-06-05 Mass flow meter

Country Status (1)

Country Link
JP (1) JP3019009U (en)

Similar Documents

Publication Publication Date Title
JP2631481B2 (en) Mass flow meter and its measurement method
US5461913A (en) Differential current thermal mass flow transducer
US5222395A (en) Thermal type flowmeter
WO2003029759A1 (en) Flow rate measuring instrument
JP3019009U (en) Mass flow meter
JP2875919B2 (en) Mass flow meter
JPH0449893B2 (en)
JP2788329B2 (en) Method and apparatus for measuring flow velocity and flow direction of fluid
JP2964186B2 (en) Thermal flow meter
JP2965464B2 (en) Flowmeter
JPH11148945A (en) Flow velocity sensor and flow velocity-measuring apparatus
JP2531968B2 (en) Flow velocity sensor and flow velocity measuring device using the same
JPH01227016A (en) Mass flowmeter
KR100262225B1 (en) A measurement circuit of flow rate
JP2949527B2 (en) Mass flow meter
JPH07295653A (en) Mass flow controller
JPH085426A (en) Flow meter
KR0163621B1 (en) Temperature and speed measuring method in moving field using one thermal line sensor
JPH0434315A (en) Heater controller for flowmeter
JP2003315129A (en) Thermal flow measuring instrument
JPH0523605B2 (en)
KR20020080137A (en) Sensor for detecting the mass flow rate and device and method for controlling mass flow rate using it
JPH1123335A (en) Detecting apparatus for flow rate
JPH0593639A (en) Flow-rate/flow-speed measuring apparatus
JPH109919A (en) Mass flowmeter