JPH0593639A - Flow-rate/flow-speed measuring apparatus - Google Patents

Flow-rate/flow-speed measuring apparatus

Info

Publication number
JPH0593639A
JPH0593639A JP3280781A JP28078191A JPH0593639A JP H0593639 A JPH0593639 A JP H0593639A JP 3280781 A JP3280781 A JP 3280781A JP 28078191 A JP28078191 A JP 28078191A JP H0593639 A JPH0593639 A JP H0593639A
Authority
JP
Japan
Prior art keywords
temperature
heater
upstream
flow rate
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3280781A
Other languages
Japanese (ja)
Inventor
Akira Utsuki
晃 宇津木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP3280781A priority Critical patent/JPH0593639A/en
Publication of JPH0593639A publication Critical patent/JPH0593639A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To detect the accurate speed or the flow rate of fluid by making correction to the outside air temperature with a simple circuit constitution. CONSTITUTION:An upstream-side temperature detecting part 11, a heater part 9 and a downstream-side temperature detecting part 12 are arranged on a flow- speed detecting surface 2A of a sensor main body 2 in this order along the flowing direction (v) of fluid. A temperature correcting part 10 is provided at the rear side of a substrate part 2B in parallel with the heater part 11. The temperature correcting part 10 and the heater part 9 is constituted of a thermistors, and the temperature detecting parts 11 and 12 are constituted of posistors. A specified current I is supplied into the series circuit of the upstream- side temperature detecting part 11, the heater part 9 and the downstream-side temperature detecting part 12 from a constant-current power supply 13. The temperature difference between the temperature detecting parts 11 and 12 is detected as an output voltage V from amplifier circuits 15, 16 and 17.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エンジンの吸入空気
量,排気ガス量等を計測するのに好適に用いられる流量
計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow meter suitable for measuring the intake air amount, exhaust gas amount, etc. of an engine.

【0002】[0002]

【従来の技術】一般に、車両のエンジンの吸入空気量を
計測する流量計として、白金線を用いた熱線式流量計等
が知られている。
2. Description of the Related Art Generally, a hot wire type flow meter using a platinum wire is known as a flow meter for measuring the intake air amount of a vehicle engine.

【0003】しかし、この種の熱線式流量計は、熱線に
白金線を使用しているから、高価になると共に、白金線
を張ったセンサリングまたは巻つけたボビン等を流路内
に配設しなけらばならないから、小径流路の場合には圧
損が大きくなるという問題がある。
However, this type of hot-wire type flow meter uses a platinum wire as a heating wire, so that it is expensive and a sensor ring having a platinum wire or a bobbin wound is disposed in the flow path. Since this has to be done, there is a problem that the pressure loss becomes large in the case of the small diameter flow path.

【0004】この問題を解決するために、本発明者は先
に特願平2-227615号として、流路内に流体の流れ方向に
沿って配設される基板と、該基板の表面中央部に配設さ
れ、基板の温度を中央部から上流および下流側に行くに
従って低くなる温度分布に加熱するヒータ部と、該ヒー
タ部の上流および下流に位置して基板の表面にそれぞれ
設けられ、ヒータ部からの伝導熱により加熱されると共
に、流路内を流れる流体の流速に応じ変化する上流およ
び下流の温度を検知する温度感知部と、該各温度感知部
の差出力を取り出す回路手段とを備えた流量計を提案し
た(以下、先行技術という)。
In order to solve this problem, the present inventor has previously proposed Japanese Patent Application No. 2-227615, in which a substrate disposed in the flow path along the flow direction of the fluid and a central portion of the surface of the substrate. And a heater section for heating the temperature of the substrate to a temperature distribution that decreases as it goes from the central portion to the upstream side and the downstream side, and heaters provided on the surface of the substrate located upstream and downstream of the heater portion, respectively. A temperature sensing unit that senses the upstream and downstream temperatures that change according to the flow velocity of the fluid flowing in the flow path while being heated by the conduction heat from the temperature sensing unit; and circuit means that extracts the differential output of each temperature sensing unit. We have proposed a flow meter equipped with it (hereinafter referred to as prior art).

【0005】流路内を流体が流れると、その流速に応じ
て基板の温度分布が上流から下流へシフトする。これに
より各温度感知部に対して上流側の温度が下がり、下流
側の温度が上がる。これらの温度をそれぞれ検知するこ
とにより得られる温度感知部の差出力は回路手段として
構成されたブリッジ回路により取り出され、流体の流
速,即ち流量に換算される。従って、小型で圧損の小さ
い流量計を提供し得ると共に、各温度感知部にSiC繊
維のような負の温度特性のサーミスタを用いれば、高温
流体の流量計測も可能になる。
When a fluid flows in the flow path, the temperature distribution of the substrate shifts from upstream to downstream according to the flow velocity. As a result, the temperature on the upstream side with respect to each temperature sensing unit decreases and the temperature on the downstream side increases. The differential output of the temperature sensing unit obtained by detecting each of these temperatures is taken out by a bridge circuit configured as circuit means and converted into a fluid flow velocity, that is, a flow rate. Therefore, it is possible to provide a small-sized flow meter with a small pressure loss, and it is possible to measure the flow rate of a high temperature fluid by using a thermistor having a negative temperature characteristic such as SiC fiber for each temperature sensing portion.

【0006】[0006]

【発明が解決しようとする課題】ところで、上述した先
行技術では、温度補正を考慮しておらず、このため、外
気温度の変化に伴って、ヒータ部の温度および各温度感
知部の感度が変化し、正確な流量または流速を測定する
ことができないという未解決な問題がある。
By the way, in the above-mentioned prior art, the temperature correction is not taken into consideration. Therefore, the temperature of the heater section and the sensitivity of each temperature sensing section change with the change of the outside air temperature. However, there is an unsolved problem that an accurate flow rate or flow velocity cannot be measured.

【0007】また、温度補正抵抗をブリッジ回路に用い
る場合には、温度の変化の毎にブリッジ回路の平衡を取
らなければならず、その補正用回路の回路構成が複雑に
なるという問題がある。
Further, when the temperature correction resistor is used in the bridge circuit, the bridge circuit must be balanced each time the temperature changes, and the circuit configuration of the correction circuit becomes complicated.

【0008】本発明は上述した先行技術の問題に鑑みな
されたもので、本発明は簡単な回路構成で温度補正を行
ない、外気温度の変化に拘らず流量・流速の正確な測定
ができる流量・流速測定装置を提供することを目的とし
ている。
The present invention has been made in view of the above-mentioned problems of the prior art. The present invention corrects the temperature with a simple circuit configuration and can accurately measure the flow rate and the flow rate regardless of the change of the outside air temperature. An object is to provide a flow velocity measuring device.

【0009】[0009]

【課題を解決するための手段】上述した課題を解決する
ために第1の発明が採用する流量・流速測定装置は、流
路内に流体の流れに沿って配設される基板と、該基板の
表面中央部に配設され、該基板上の温度分布を中央部か
ら上流および下流に行くに従って低くなるように加熱す
る正または負の温度特性を有する素子からなるヒータ部
と、前記流路外に位置して、該ヒータ部に並列に接続さ
れ、前記ヒータ部の抵抗値よりも大きい抵抗値で、かつ
該ヒータ部と同じ温度特性を有する素子からなる温度補
正部と、前記ヒータ部の上流,下流側に位置して該ヒー
タ部から所定間隔を離間して前記基板の表面にそれぞれ
配設され、前記ヒータ部の抵抗値に対して極めて小さい
抵抗値で、かつ該ヒータ部と異なる温度特性を有する素
子からなる上流側温度検出部,下流側温度検出部と、該
下流側温度検出部,ヒータ部および上流側温度検出部か
らなる直列回路に所定電流を供給する定電流供給手段
と、前記各温度検出部からの検出信号により流量・流速
を検出する流量・流速検出手段とから構成したことにあ
る。
A flow rate / velocity measuring apparatus adopted by the first invention to solve the above-mentioned problems is a substrate disposed along a flow of a fluid in a flow channel, and the substrate. A heater portion which is disposed in the central portion of the surface of the substrate and which heats the temperature distribution on the substrate so as to become lower as it goes upstream and downstream from the central portion; Upstream of the heater unit, and a temperature correction unit that is connected in parallel to the heater unit and has a resistance value larger than that of the heater unit and that has the same temperature characteristics as the heater unit. , Located on the downstream side and spaced apart from the heater portion by a predetermined distance, respectively, on the surface of the substrate, and having a resistance value extremely smaller than the resistance value of the heater portion and different from the heater portion. Upstream consisting of elements with Temperature detection unit, a downstream temperature detection unit, a constant current supply unit that supplies a predetermined current to a series circuit including the downstream temperature detection unit, the heater unit, and the upstream temperature detection unit, and the detection from each of the temperature detection units. It is composed of a flow rate / flow rate detecting means for detecting the flow rate / flow rate by a signal.

【0010】また、第2の発明が採用する流量・流速測
定装置は、流路内に流体の流れに沿って配設される基板
と、該基板の表面中央部に配設され、該基板上の温度分
布を中央部から上流および下流に行くに従って低くなる
ように加熱する正または負の温度特性を有する素子から
なるヒータ部と、該ヒータ部の上流,下流側に位置して
該ヒータ部から所定間隔を離間して前記基板の表面にそ
れぞれ配設され、前記ヒータ部の抵抗値に対して極めて
小さい抵抗値で、かつ該ヒータ部と同じ温度特性を有す
る素子からなる上流側温度検出部,下流側温度検出部
と、該下流側温度検出部,ヒータ部および上流側温度検
出部からなる直列回路に所定電流を供給する定電流供給
手段と、前記各温度検出部からの検出信号により流量・
流速を検出する流量・流速検出手段とから構成したこと
にある。
The flow rate / velocity measuring device adopted by the second invention is a substrate arranged along the flow of a fluid in the flow path and a central portion of the surface of the substrate. The temperature distribution of the heater so as to become lower from the central part toward the upstream and the downstream, and a heater part composed of elements having positive or negative temperature characteristics, and the heater part located upstream and downstream of the heater part. An upstream side temperature detection unit, which is arranged on the surface of the substrate at a predetermined interval and has an extremely small resistance value with respect to the resistance value of the heater unit and has the same temperature characteristics as the heater unit, The downstream side temperature detecting section, a constant current supplying means for supplying a predetermined current to a series circuit including the downstream side temperature detecting section, the heater section and the upstream side temperature detecting section, and a flow rate by a detection signal from each of the temperature detecting sections.
It is composed of a flow rate / flow rate detecting means for detecting the flow rate.

【0011】[0011]

【作用】上記構成による第1の発明では、ヒータ部と温
度補正部との外気温度による抵抗値の変化率を同一にす
ることができるから、該ヒータ部および温度補正部に供
給される電流の比率は変わることがなく、外気温度の変
化に拘らずヒータ部の温度と温度補償部の温度差を常に
一定に保つことができる。。
In the first aspect of the present invention having the above-described structure, the rate of change in the resistance value of the heater section and that of the temperature correction section depending on the outside air temperature can be made the same, so that the current supplied to the heater section and the temperature correction section is The ratio does not change, and the temperature difference between the heater section and the temperature compensating section can always be kept constant regardless of changes in the outside air temperature. ..

【0012】また、第2の発明では、ヒータ部と各温度
検出部との外気温度による抵抗値の変化率を同一にする
ことができ、該ヒータ部による基板上の温度分布の変化
に対して各温度検出部の検出感度を対応させることがで
きる。
Further, according to the second aspect of the present invention, the rate of change in the resistance value due to the outside air temperature can be made the same for the heater section and each temperature detecting section, and the heater section can respond to changes in the temperature distribution on the substrate. The detection sensitivity of each temperature detection unit can be made to correspond.

【0013】[0013]

【実施例】以下、本発明の実施例を図1ないし図12に
基づき説明する。
Embodiments of the present invention will be described below with reference to FIGS.

【0014】図1ないし図8は本発明の第1の実施例を
示す。
1 to 8 show a first embodiment of the present invention.

【0015】図中、1は本実施例による流速計測装置の
検出部を示し、該検出部1は後述するセンサ本体2と、
該センサ本体2に設けられたヒータ部9と、該ヒータ部
9の裏側に設けられた温度補正部10と、前記ヒータ部
9を挟んで上流,下流側に所定間隔を離間し、前記セン
サ本体2に設けられた上流側温度検出部11,下流側温
度検出部12とから大略構成されている。
In the figure, reference numeral 1 denotes a detecting portion of the flow velocity measuring device according to the present embodiment, and the detecting portion 1 includes a sensor body 2 described later,
A heater section 9 provided on the sensor body 2, a temperature correction section 10 provided on the back side of the heater section 9, and a predetermined space upstream and downstream with the heater section 9 sandwiched therebetween. The upstream side temperature detecting section 11 and the downstream side temperature detecting section 12 provided in the second section are generally configured.

【0016】2は基板としてのセンサ本体を示し、該セ
ンサ本体2はセラミック材料等により形成され、該セン
サ本体2は流体(例えば空気)の流路形成壁3(一部の
み図示)と同一平面の流速検出面2Aとなる基板部2B
と、該板部2Bから外側に向けて形成された小径の角筒
部2Cと、該角筒部2Cの外周面の軸方向中間に位置し
て外側に向けてそれぞれ突設され、前記流路形成壁3に
係止される係止爪部2D,2Dとから構成されている。
Reference numeral 2 denotes a sensor main body as a substrate, the sensor main body 2 is made of a ceramic material or the like, and the sensor main body 2 is flush with a flow passage forming wall 3 (only part of which is shown) for a fluid (for example, air). 2B that becomes the flow velocity detection surface 2A of
And a small-diameter square tube portion 2C formed outward from the plate portion 2B, and an axially intermediate outer peripheral surface of the square tube portion 2C, which is provided so as to project outward, respectively. It is composed of locking claw portions 2D, 2D that are locked to the forming wall 3.

【0017】4は前記センサ本体2の流速検出面2A上
に形成されたプリントパターンを示し、該プリントパタ
ーン4はそれぞれセンサ本体2の短尺方向に平行に伸長
して空気の流れ方向vに対して上流,下流側に位置する
I字状の上流側パターン4A,下流側パターン4Bと、
該パターン4A,4B間に位置して、図1中の上側に開
口するように形成されたコ字状の中間パターン4C,4
Dとからなり、各パターン4A,4B,4C,4Dの一
側(図1中、下側)には、該各パターン4A,4B,4
C,4Dと接続され、基板部2Bに挿嵌される後述の端
子ピン5,6,7が設けられている。
Reference numeral 4 denotes a print pattern formed on the flow velocity detecting surface 2A of the sensor body 2. The print pattern 4 extends parallel to the short direction of the sensor body 2 and extends in the air flow direction v. I-shaped upstream pattern 4A and downstream pattern 4B located on the upstream and downstream sides,
The U-shaped intermediate patterns 4C and 4 formed between the patterns 4A and 4B so as to open upward in FIG.
D and one of the patterns 4A, 4B, 4C, 4D (on the lower side in FIG. 1), the patterns 4A, 4B, 4
Terminal pins 5, 6, and 7, which will be described later, are provided which are connected to C and 4D and are fitted into the board portion 2B.

【0018】5,5は前記各上流側パターン4Aの一側
および左側に位置する中間パターン4Cの一側に接続さ
れ、基板部2Bに挿嵌された端子ピン、6,6は前記各
下流側パターン4Bの一側および右側に位置する中間パ
ターン4Dの一側に接続され、基板部2Bに挿嵌された
端子ピン、7,7,…は前記各中間パターン4C,4D
の一側の各頂点に接続され、基板部2Bに挿嵌された端
子ピンをそれぞれ示す。また、8,8は前記各端子ピン
7との間に位置して、基板部2Bの裏側に短尺方向に伸
長するように形成された温度補正用パターンを示す。
Terminal pins 5 and 5 are connected to one side of each upstream pattern 4A and one side of the intermediate pattern 4C located on the left side, and are inserted into the board portion 2B, and 6 and 6 are each downstream side. The terminal pins 7, 7, ... Connected to one side of the pattern 4B and one side of the intermediate pattern 4D located on the right side and inserted into the board portion 2B are the intermediate patterns 4C, 4D.
The terminal pins connected to the vertices on one side and inserted into the board portion 2B are shown. Reference numerals 8 and 8 denote temperature correction patterns which are located between the terminal pins 7 and are formed on the back side of the substrate portion 2B so as to extend in the short direction.

【0019】9は前記各中間パターン4C間の他側(図
1中、上側)に蒸着等の手段により薄膜状に形成された
ヒータ部を示し、該ヒータ部9は負の温度特性(例え
ば、遷移金属酸化物等)を有すると共に、抵抗値RH と
なるサーミスタによって構成されている。
Reference numeral 9 denotes a heater portion formed in a thin film shape on the other side (upper side in FIG. 1) between the intermediate patterns 4C by means such as vapor deposition. The heater portion 9 has a negative temperature characteristic (for example, It is composed of a thermistor having a resistance value RH while having a transition metal oxide).

【0020】10は前記ヒータ部9の裏側に位置し、前
記各温度補正用パターン8間の他側に蒸着等の手段によ
り薄膜状に形成された温度補正部を示し、該温度補正部
10は負の温度特性を有する前記ヒータ部9と同じ材料
により抵抗値Rr (>RH )となるサーミスタから構成
されている。
Reference numeral 10 denotes a temperature correction portion which is located on the back side of the heater portion 9 and is formed in a thin film on the other side between the temperature correction patterns 8 by means such as vapor deposition. The thermistor is made of the same material as the heater portion 9 having a negative temperature characteristic and has a resistance value Rr (> RH).

【0021】11,12は前記各上流側パターン4A,
下流側パターン4B間の他側に蒸着等の手段により薄膜
状に形成された上流側温度検出部,下流側温度検出部を
示し、該検出部11,12は正の温度特性(例えば、チ
タン酸バリウム系やシリコン系等)を有すると共に、抵
抗値R0 (≪RH )となるポジスタにより構成されてい
る。
Reference numerals 11 and 12 denote the upstream patterns 4A,
An upstream temperature detecting portion and a downstream temperature detecting portion, which are formed in a thin film by means such as vapor deposition, are shown on the other side between the downstream patterns 4B, and the detecting portions 11 and 12 have positive temperature characteristics (for example, titanic acid). It is composed of a posistor having a resistance value R0 (<< RH) while having a barium type or a silicon type).

【0022】そして、上流側温度検出部11,ヒータ部
9および下流側温度検出部12が空気の流れ方向vに対
して一直線状に並ぶように配設され、パターン4を介し
て最上流側端子ピン5,最下流側端子ピン6間で直列に
接続されている。
The upstream temperature detector 11, the heater unit 9 and the downstream temperature detector 12 are arranged so as to be aligned in a straight line with respect to the air flow direction v, and the uppermost stream side terminal is provided via the pattern 4. The pin 5 and the most downstream terminal pin 6 are connected in series.

【0023】次に、図4に基づいて流速計測装置の検出
回路の構成について説明する。
Next, the structure of the detection circuit of the flow velocity measuring device will be described with reference to FIG.

【0024】図4中、13は前記上流側温度検出部1
1,ヒータ部9および下流側温度検出部12からなる直
列回路に所定電流Iを供給する定電流供給手段としての
定電流電源を示し、該定電流電源13は最下流側の端子
ピン6に接続されると共に、最上流側の端子ピン5を介
してアース14に接続されている。
In FIG. 4, reference numeral 13 denotes the upstream temperature detecting section 1
1, a constant current power supply as a constant current supply means for supplying a predetermined current I to a series circuit composed of the heater unit 9 and the downstream temperature detection unit 12, the constant current power supply 13 is connected to the terminal pin 6 on the most downstream side At the same time, it is connected to the earth 14 via the terminal pin 5 on the most upstream side.

【0025】15,16,17は流速検出手段としての
増幅回路を示し、該増幅回路15の各入力端子には各端
子ピン5等を介して上流側温度検出部11が接続され、
増幅回路16の各入力端子には各端子ピン6等を介して
下流側温度検出部12が接続され、増幅回路17の各入
力端子には増幅回路15,16の出力端子が接続されて
いる。そして、該増幅回路17の出力端子は出力部18
に接続され、該出力部18とアース14との間には出力
電圧V0 が出力される。
Reference numerals 15, 16 and 17 denote amplifying circuits as flow velocity detecting means. An upstream temperature detecting section 11 is connected to each input terminal of the amplifying circuit 15 via each terminal pin 5 or the like.
The downstream temperature detection unit 12 is connected to each input terminal of the amplifier circuit 16 via each terminal pin 6 and the like, and the output terminals of the amplifier circuits 15 and 16 are connected to each input terminal of the amplifier circuit 17. The output terminal of the amplifier circuit 17 is the output unit 18
The output voltage V0 is output between the output section 18 and the ground 14.

【0026】本実施例による流速計測装置は上述の如き
構成を有するもので、次にその検出動作を図5および図
8に基づいて説明する。
The flow velocity measuring device according to this embodiment has the above-mentioned structure, and its detecting operation will be described below with reference to FIGS. 5 and 8.

【0027】ここで、検出部1に影響を及ぼす外気温度
tの変化について考えると、ヒータ部9に流れる電流I
H は、
Now, considering the change in the outside air temperature t which affects the detection unit 1, the current I flowing through the heater unit 9 is considered.
H is

【0028】[0028]

【数1】 ただし、 α :各抵抗値により設定される電流の比率
となり、ヒータ部9における電力WH は、
[Equation 1] However, α is the ratio of the current set by each resistance value, and the electric power WH in the heater unit 9 is

【0029】[0029]

【数2】WH =RH ・IH 2 =RH ・(α・I)2 となって、ヒータ部9はこの電力WH に対応した温度T
H となる。
Becomes Equation 2] WH = RH · IH 2 = RH · (α · I) 2, the temperature T heater unit 9 corresponding to the power WH
It becomes H.

【0030】また、温度補正部10に流れる電流Ir
は、
Further, the current Ir flowing through the temperature correction unit 10
Is

【0031】[0031]

【数3】 となり、温度補正部10における電力Wr は、[Equation 3] Therefore, the power Wr in the temperature correction unit 10 is

【0032】[0032]

【数4】 Wr =Rr ・Ir 2 =Rr ・{(1−α)・I}2 となって、温度補償部10はこの電力Wr に対応した周
囲温度Tf となる。
Equation 4] Wr = Rr · Ir 2 = Rr · {(1-α) · I} becomes 2, the temperature compensating section 10 becomes the ambient temperature Tf corresponding to the power Wr.

【0033】ここで、外気温度tが変化した場合には、
ヒータ部9と温度補正部10とは同じ負の温度特性を有
するサーミスタにより構成されているから、ヒータ部9
の抵抗値RH および温度補正部10の抵抗値Rr の抵抗
変化率は同一になり、電流の比率αは外気温度tに拘ら
ず常に一定となる。そして、図5に示す如く、ヒータ部
9のヒータ温度TH と温度補正部10の周囲温度Tf と
の差は常に一定の温度差ΔTとなる。
Here, when the outside air temperature t changes,
Since the heater unit 9 and the temperature correction unit 10 are composed of thermistors having the same negative temperature characteristics, the heater unit 9
And the resistance change rate of the resistance value Rr of the temperature correction unit 10 are the same, and the current ratio α is always constant regardless of the outside air temperature t. Then, as shown in FIG. 5, the difference between the heater temperature TH of the heater unit 9 and the ambient temperature Tf of the temperature correction unit 10 is always a constant temperature difference ΔT.

【0034】次に、ヒータ部9のセンサ本体2上の温度
分布について、図6および図7に基づいて説明する。
Next, the temperature distribution on the sensor body 2 of the heater section 9 will be described with reference to FIGS. 6 and 7.

【0035】図6中で、19は空気の速度vが零のとき
のヒータ部9の温度分布を示し、該温度分布19はヒー
タ温度TH が最高温度となり、上流側,下流側に広がる
ような分布になり、各検出部11,12においては同一
の温度T0 の温度を検出するようになる。
In FIG. 6, 19 shows the temperature distribution of the heater portion 9 when the velocity v of the air is zero. The temperature distribution 19 has a maximum heater temperature TH and spreads upstream and downstream. As a result of the distribution, the temperature of the same temperature T0 is detected in each of the detectors 11 and 12.

【0036】また、空気が矢示v方向に流れるときに
は、図7に示すようにヒータ部9の温度分布は19から
20へと移動し、上流側温度検出部11においては温度
T1 が検出され、下流側温度検出部12においては温度
T2 (<T1 )が検出されるようになる。一方、温度分
布の移動は空気の速度vに対応して下流側へ移動するよ
うになっている。そして、この温度差ΔT(=T2 −T
1 )とヒータ温度TH と周囲温度Tf の関係は、
When the air flows in the direction of arrow v, the temperature distribution of the heater section 9 moves from 19 to 20, as shown in FIG. 7, and the upstream side temperature detecting section 11 detects the temperature T1. The temperature T2 (<T1) is detected in the downstream temperature detector 12. On the other hand, the temperature distribution is moved to the downstream side according to the velocity v of the air. Then, this temperature difference ΔT (= T2 -T
1), heater temperature TH and ambient temperature Tf

【0037】[0037]

【数5】 の式が成り立つ。[Equation 5] The formula of is established.

【0038】さらに、前記数式5を変形することによっ
て、
Further, by modifying the above equation 5,

【0039】[0039]

【数6】 が得られ、空気の速度vは各検出部11,12の温度差
から算出することができる。
[Equation 6] The air velocity v can be calculated from the temperature difference between the detection units 11 and 12.

【0040】従って、本実施例の検出回路においては、
空気の速度vによる上流側温度検出部11でのT0 から
T1 への温度の減少を、抵抗値の変化として検出し、下
流側温度検出部12でのT0 からT2 への温度の上昇
を、抵抗値の変化として検出し、この各抵抗値の変化を
各増幅回路15,16で増幅し、出力電圧V1 ,V2 と
し、この出力電圧V1 ,V2 の差を増幅回路17で増幅
し、出力部18から出力電圧V0 を出力する。
Therefore, in the detection circuit of this embodiment,
The decrease in temperature from T0 to T1 in the upstream temperature detection unit 11 due to the velocity of air v is detected as a change in resistance value, and the increase in temperature from T0 to T2 in the downstream temperature detection unit 12 is detected as resistance. A change in the resistance value is detected, and the change in each resistance value is amplified by the amplifier circuits 15 and 16 to obtain output voltages V1 and V2. The difference between the output voltages V1 and V2 is amplified by the amplifier circuit 17, and the output unit 18 is provided. Outputs an output voltage V0.

【0041】そして、図8に示すように空気の速度vに
対応した出力電圧V0を出力特性を得ることができる。
Then, as shown in FIG. 8, the output characteristic of the output voltage V0 corresponding to the velocity v of the air can be obtained.

【0042】かくして、本実施例では、外気温度tが変
化した場合でもヒータ部9および温度補正部10の抵抗
値の変化を同一比率で変化させることができるから、外
気温度tが変化した場合でも、ヒータ部9の温度TH と
温度補正部10の周囲温度Tf との温度差ΔTを常に一
定にすることができる。これによって、簡単な回路構成
で温度補正を可能にし、正確な流速を検出することがで
きる。
Thus, in this embodiment, even when the outside air temperature t changes, the change in the resistance value of the heater unit 9 and the temperature correction unit 10 can be changed at the same ratio, so that even when the outside air temperature t changes. The temperature difference ΔT between the temperature TH of the heater unit 9 and the ambient temperature Tf of the temperature correction unit 10 can be kept constant. As a result, the temperature can be corrected with a simple circuit configuration and the accurate flow velocity can be detected.

【0043】さらに、検出部1を上述のように構成する
ことにより、従来技術のように流路内に突出させるよう
に配設することがないから、圧力損失を低減することが
でき、小径流路にも用いることが可能である。また、検
出回路では、従来技術のようなブリッジ回路や温度補償
用の時別な電気回路を構成する必要がないから、簡単の
回路構成で、低コストの流速計測装置とすることができ
る。
Further, by configuring the detecting portion 1 as described above, since it is not arranged so as to project into the flow path as in the prior art, the pressure loss can be reduced and the small diameter flow can be obtained. It can also be used on the road. Further, in the detection circuit, it is not necessary to configure a bridge circuit or a separate electric circuit for temperature compensation as in the prior art, so that the flow velocity measuring device can be a low cost with a simple circuit configuration.

【0044】また、ヒータ部9,温度補正部10および
温度検出部11,12をサーミスタにより構成したか
ら、応答性のよい流速計測装置を形成することができ
る。
Further, since the heater unit 9, the temperature correction unit 10, and the temperature detection units 11 and 12 are constituted by thermistors, it is possible to form a flow velocity measuring device having good responsiveness.

【0045】なお、前記第1の実施例では、ヒータ部9
および温度補正部10を負の温度特性を有するサーミス
タにより構成し、上流側温度検出部11および下流側温
度検出部12を正の温度特性を有するポジスタにより構
成したが、本発明はこれに限らず、ヒータ部および温度
補償部を正の温度特性を有するポジスタにより構成し、
上流側温度検出部および下流側温度検出部を負の温度特
性を有するサーミスタにより構成するようにしてもよ
い。さらに、各温度検出部,ヒータ部および温度補正部
をSiC繊維により構成するようにしてもよい。
In the first embodiment, the heater portion 9
The temperature correction unit 10 is configured by a thermistor having a negative temperature characteristic, and the upstream temperature detection unit 11 and the downstream temperature detection unit 12 are configured by a posistor having a positive temperature characteristic, but the present invention is not limited to this. , The heater part and the temperature compensating part are composed of a posistor having a positive temperature characteristic,
The upstream temperature detecting section and the downstream temperature detecting section may be configured by thermistors having negative temperature characteristics. Further, each temperature detecting unit, heater unit, and temperature correcting unit may be made of SiC fiber.

【0046】次に、図9ないし図12は本発明の第2の
実施例を示す。本実施例の特徴はヒータ部および各温度
検出部をそれぞれ同一の温度特性を有する温度検出素子
(SiC繊維)により構成したことにある。なお、前述
した第1の実施例と同一の構成要素に同一の符号を付
し、その説明を省略するものとする。
Next, FIGS. 9 to 12 show a second embodiment of the present invention. The feature of this embodiment is that the heater section and each temperature detecting section are composed of temperature detecting elements (SiC fibers) having the same temperature characteristics. The same components as those in the first embodiment described above are designated by the same reference numerals, and the description thereof will be omitted.

【0047】図中、21は本実施例による流速計測装置
の検出部を示し、該検出部21は前述した検出部1とほ
ぼ同様に構成され、後述するセンサ本体22と、該セン
サ本体22に設けられたヒータ部27と、該ヒータ部2
7を挟んで上流,下流側に所定間隔を離間し、前記セン
サ本体22に設けられた上流側温度検出部28,下流側
温度検出部29とから大略構成されている。
In the figure, reference numeral 21 denotes a detector of the flow velocity measuring device according to the present embodiment. The detector 21 has substantially the same structure as the above-mentioned detector 1, and includes a sensor main body 22 described later and a sensor main body 22. The heater part 27 provided and the heater part 2
It is roughly composed of an upstream temperature detecting portion 28 and a downstream temperature detecting portion 29 provided on the sensor main body 22 with a predetermined distance therebetween on the upstream side and the downstream side with 7 in between.

【0048】22は基板としてのセンサ本体を示し、該
センサ本体22はセラミック材料等により形成され、該
センサ本体22は空気の流路形成壁3と同一平面の流速
検出面22Aとなる基板部22Bと、該板部22Bから
外側に向けて形成された小径の角筒部22Cと、該角筒
部22Cの外周面の軸方向中間に位置して外側に向けて
それぞれ突設され、前記流路形成壁3に係止される係止
爪部22D,22Dとから構成されている。
Reference numeral 22 denotes a sensor body as a substrate. The sensor body 22 is made of a ceramic material or the like, and the sensor body 22 serves as a flow velocity detecting surface 22A which is flush with the air flow path forming wall 3. A small-diameter square tubular portion 22C formed outward from the plate portion 22B, and an axially intermediate portion of the outer peripheral surface of the square tubular portion 22C which is provided so as to project outward, It is composed of locking claw portions 22D and 22D that are locked to the forming wall 3.

【0049】23は前記センサ本体22の流速検出面2
2A側に形成されたプリントパターンを示し、該プリン
トパターン23は図9に示すように空気の流れ方向vに
対して段違いに図9の下側と上側に伸長して設けられた
下側パターン23A,上側パターン23Bとからなり、
各パターン23A,23Bの各端部には後述する端子ピ
ン24,25,26が設けられている。
Reference numeral 23 denotes the flow velocity detecting surface 2 of the sensor body 22.
2A shows a print pattern formed on the 2A side, and the print pattern 23 has a lower pattern 23A provided by extending to the lower side and the upper side in FIG. 9 in a stepwise manner with respect to the air flow direction v as shown in FIG. , Upper pattern 23B,
Terminal pins 24, 25, 26 described later are provided at each end of each pattern 23A, 23B.

【0050】24,24は空気の流れ方向vに対して直
角に位置し、一方が前記下側パターン23Aの上流側の
端部に接続され、基板部22Bに挿嵌された端子ピン、
25,25は空気の流れ方向vに対して直角に位置し、
一方が前記上側パターン23Bの下流側の端部に接続さ
れ、基板部22Bに挿嵌された端子ピン、26,26は
前記パターン23A,23Bの下流側端部,上流側端部
にそれぞれ接続され、基板部22Bに挿嵌された端子ピ
ンをそれぞれ示す。
24 and 24 are positioned at right angles to the air flow direction v, one of which is connected to the upstream end of the lower pattern 23A and is inserted into the board portion 22B.
25 and 25 are located at right angles to the air flow direction v,
One is connected to the downstream end of the upper pattern 23B, and the terminal pins 26, 26 inserted into the board portion 22B are connected to the downstream and upstream ends of the patterns 23A and 23B, respectively. , And the terminal pins inserted into the board portion 22B.

【0051】27は前記各端子ピン26間に接続され、
前記流速検出面22A上に貼着されたヒータ部を示し、
該ヒータ部27は負の温度特性を有するSiC繊維によ
って構成され、各端子ピン26間で複数回折り返すよう
にして設けることで、抵抗値RH を有する。
27 is connected between the terminal pins 26,
Shows a heater part attached on the flow velocity detection surface 22A,
The heater portion 27 is made of SiC fiber having a negative temperature characteristic, and has a resistance value RH by being provided so as to be folded back a plurality of times between the terminal pins 26.

【0052】28,29は前記各端子ピン24,25間
にそれぞれ接続され、前記流速検出面22A上に貼着さ
れた上流側温度検出部,下流側温度検出部を示し、該各
温度検出部28,29は負の温度特性を有するSiC繊
維により構成され、各端子ピン24,25間に一直線状
にそれぞれ接続することで、抵抗値R0(≪RH )を有
する。
Reference numerals 28 and 29 denote an upstream side temperature detecting section and a downstream side temperature detecting section which are respectively connected between the respective terminal pins 24 and 25 and are adhered onto the flow velocity detecting surface 22A. 28 and 29 are made of SiC fiber having a negative temperature characteristic, and have a resistance value R0 (<< RH) by connecting each of the terminal pins 24 and 25 in a straight line.

【0053】そして、上流側温度検出部28,ヒータ部
27および下流側温度検出部29が空気の流れ方向vに
対して流速検出面22A上で一直線状に並ぶように配設
され、パターン23を介して端子ピン24,25間で直
列に接続されている。
The upstream side temperature detecting portion 28, the heater portion 27 and the downstream side temperature detecting portion 29 are arranged in a straight line on the flow velocity detecting surface 22A in the air flow direction v, and the pattern 23 is formed. It is connected in series between the terminal pins 24 and 25 via.

【0054】このように構成される検出部21は図12
に示すように、前述した第1の実施例と同様の検出回路
に接続されている。
The detecting unit 21 having such a configuration is shown in FIG.
As shown in FIG. 4, the detection circuit is connected to the same detection circuit as that of the first embodiment.

【0055】そして、増幅回路15の各入力端子には各
端子ピン24等を介して上流側温度検出部28が接続さ
れ、増幅回路16の各入力端子には各端子ピン25等を
介して下流側温度検出部29が接続され、増幅回路17
の各入力端子には増幅回路15,16の出力端子が接続
されている。そして、該増幅回路17の出力端子は出力
部18に接続され、該出力部18とアース14との間に
は出力電圧V0 が出力される。
The upstream side temperature detecting section 28 is connected to each input terminal of the amplifier circuit 15 via each terminal pin 24 and the like, and is connected to each input terminal of the amplifier circuit 16 to the downstream side via each terminal pin 25 and the like. The side temperature detector 29 is connected to the amplifier circuit 17
The output terminals of the amplifier circuits 15 and 16 are connected to the respective input terminals of. The output terminal of the amplifier circuit 17 is connected to the output section 18, and the output voltage V0 is output between the output section 18 and the ground 14.

【0056】本実施例による流速計測装置は上述の如き
構成を有するもので、その検出動作については、前述し
た第1の実施例とほぼ同様である。
The flow velocity measuring device according to the present embodiment has the above-mentioned structure, and its detecting operation is almost the same as that of the above-mentioned first embodiment.

【0057】ここで、外気温度が変化した場合を考える
と、ヒータ部27および温度検出部28,29を同じ温
度特性を有するサーミスタにより構成しているから、該
温度検出部28,29で検出される電圧は、それぞれの
抵抗値R0 の変化によって設定される。そして、温度検
出部28,29の抵抗値R0 は外気温度の変化に対して
は同じ変化量となるから、例え外気温度が変化しても、
温度検出部28,29の抵抗値の差は変わることがな
く、前記数式6の関係が成り立ち、常に外気温度に関係
のない抵抗値の差を増幅回路17から出力電圧V0 とし
て出力することができる。
Here, considering the case where the outside air temperature changes, since the heater section 27 and the temperature detecting sections 28 and 29 are composed of thermistors having the same temperature characteristics, they are detected by the temperature detecting sections 28 and 29. The voltage to be set is set by the change of each resistance value R0. Since the resistance value R0 of the temperature detection units 28 and 29 has the same amount of change with respect to the change of the outside air temperature, even if the outside air temperature changes,
The difference between the resistance values of the temperature detecting portions 28 and 29 does not change, and the relationship of the above-mentioned expression 6 is established, and the difference between the resistance values irrelevant to the outside air temperature can always be output from the amplifier circuit 17 as the output voltage V0. .

【0058】従って、本実施例においても、外気温度の
変化に拘らず温度検出部28,29の温度差を高精度に
検出することができ、正確な空気の速度vを測定するこ
とができる。
Therefore, also in this embodiment, the temperature difference between the temperature detecting portions 28 and 29 can be detected with high accuracy regardless of the change in the outside air temperature, and the accurate air velocity v can be measured.

【0059】なお、前記第2の実施例では、ヒータ部2
7および温度検出部28,29をSiC繊維により負の
温度特性を有するサーミスタとして構成したが、本発明
はこれに限らず、正の温度特性を有するポジスタで構成
するようにしてもよい。
In the second embodiment, the heater section 2
7 and the temperature detecting portions 28 and 29 are configured as thermistors having negative temperature characteristics by using SiC fibers, but the present invention is not limited to this, and may be configured as positive transistors having positive temperature characteristics.

【0060】さらに、前記各実施例では、空気の速度v
を測定する流速計測装置について述べたが、数式6にお
ける定数Aまたはaを流路の断面積を考慮した設定にす
ることにより、流量計測装置として構成することもでき
る。
Further, in each of the above embodiments, the velocity v of air is
Although the flow velocity measuring device for measuring is described, the flow rate measuring device can be configured by setting the constant A or a in Expression 6 in consideration of the cross-sectional area of the flow path.

【0061】[0061]

【発明の効果】以上詳述した如く、本発明による第1の
発明によれば、流体の流れに沿って上流側から上流側温
度検出部,ヒータ部,下流側温度検出部の順に基板に配
設し、ヒータ部に並列に接続し、基板の裏側に温度補正
部を設けて、該温度補正部とヒータ部とを同じ温度特性
を有し、各温度検出部を前記ヒータ部とは異なる温度特
性を有する温度検出素子により構成し、また第2の発明
では、流体の流れに沿って上流側から上流側温度検出
部,ヒータ部,下流側温度検出部の順に基板に配設し、
各温度検出部およびヒータ部を同じ温度特性を有する温
度検出素子により構成したから、外気温度の変化に拘ら
ず各温度検出部の温度差を正確に検出することができ、
正確な流体の流量・速度を測定することができる。
As described above in detail, according to the first aspect of the present invention, the upstream side temperature detecting portion, the heater portion, and the downstream side temperature detecting portion are arranged on the substrate in this order from the upstream side along the fluid flow. The temperature correction unit and the heater unit have the same temperature characteristics, and each temperature detection unit has a temperature different from that of the heater unit. In the second invention, the temperature detecting element having characteristics is provided, and in the second invention, the upstream temperature detecting unit, the heater unit, and the downstream temperature detecting unit are arranged on the substrate in this order from the upstream side along the flow of the fluid.
Since each temperature detection unit and the heater unit are configured by the temperature detection element having the same temperature characteristic, it is possible to accurately detect the temperature difference of each temperature detection unit regardless of the change in the outside air temperature.
Accurate flow rate and velocity of fluid can be measured.

【0062】さらに、外気温度に対する温度補償回路を
特別に設けることがないから、低コストの流量・流速計
測装置とすることができる。
Furthermore, since a temperature compensation circuit for the outside air temperature is not specially provided, a low cost flow rate / flow velocity measuring device can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例による流速計測装置の検
出部を示す表面図である。
FIG. 1 is a front view showing a detection unit of a flow velocity measuring device according to a first embodiment of the present invention.

【図2】図1中の矢示II−II方向断面図である。FIG. 2 is a sectional view taken along the line II-II in FIG.

【図3】検出部の裏面図である。FIG. 3 is a rear view of the detection unit.

【図4】第1の実施例による流速計測装置の検出回路の
構成図である。
FIG. 4 is a configuration diagram of a detection circuit of the flow velocity measuring device according to the first embodiment.

【図5】外気温度とヒータ温度との関係を示す特性線図
である。
FIG. 5 is a characteristic diagram showing a relationship between outside air temperature and heater temperature.

【図6】速度零のときの検出部上の温度分布を示す説明
図である。
FIG. 6 is an explanatory diagram showing a temperature distribution on a detection unit when the speed is zero.

【図7】速度vのときの検出部上の温度分布を示す説明
図である。
FIG. 7 is an explanatory diagram showing a temperature distribution on a detection unit at a speed v.

【図8】速度と出力電圧の関係を示す特性線図である。FIG. 8 is a characteristic diagram showing the relationship between speed and output voltage.

【図9】本発明の第2の実施例による流速計測装置の検
出部を示す表面図である。
FIG. 9 is a front view showing a detecting portion of a flow velocity measuring device according to a second embodiment of the present invention.

【図10】図9中の矢示X−X方向断面図である。10 is a cross-sectional view taken along arrow XX in FIG.

【図11】検出部の裏面図である。FIG. 11 is a rear view of the detection unit.

【図12】第2の実施例による流速計測装置の検出回路
の構成図である。
FIG. 12 is a configuration diagram of a detection circuit of a flow velocity measuring device according to a second embodiment.

【符号の説明】[Explanation of symbols]

1,21 検出部 2,22 センサ本体(基板) 3 流路形成壁(流路) 9,27 ヒータ部 11,28 上流側温度検出部 12,29 下流側温度検出部 13 定電流電源(定電流供給手段) 15,16,17 増幅回路(流量・流速検出手段) 1, 21 Detection part 2, 22 Sensor main body (substrate) 3 Flow path forming wall (flow path) 9, 27 Heater part 11, 28 Upstream temperature detection part 12, 29 Downstream temperature detection part 13 Constant current power supply (constant current) Supplying means) 15, 16, 17 Amplifying circuit (flow rate / flow velocity detecting means)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 流路内に流体の流れに沿って配設される
基板と、該基板の表面中央部に配設され、該基板上の温
度分布を中央部から上流および下流に行くに従って低く
なるように加熱する正または負の温度特性を有する素子
からなるヒータ部と、前記流路外に位置して該ヒータ部
に並列に接続され、前記ヒータ部の抵抗値よりも大きい
抵抗値で、かつ該ヒータ部と同じ温度特性を有する素子
からなる温度補正部と、前記ヒータ部の上流,下流側に
位置して該ヒータ部から所定間隔を離間して前記基板の
表面にそれぞれ配設され、前記ヒータ部の抵抗値に対し
て極めて小さい抵抗値で、かつ該ヒータ部と異なる温度
特性を有する素子からなる上流側温度検出部,下流側温
度検出部と、該下流側温度検出部,ヒータ部および上流
側温度検出部からなる直列回路に所定電流を供給する定
電流供給手段と、前記各温度検出部からの検出信号によ
り流量・流速を検出する流量・流速検出手段とから構成
してなる流量・流速計測装置。
1. A substrate disposed along a flow of a fluid in a flow channel, and a substrate disposed on a central portion of the surface of the substrate, the temperature distribution on the substrate being lowered from the central portion toward upstream and downstream. And a heater part consisting of an element having a positive or negative temperature characteristic for heating so that it is connected in parallel to the heater part outside the flow path, and has a resistance value larger than the resistance value of the heater part, And a temperature correction unit formed of an element having the same temperature characteristic as that of the heater unit, and disposed on the upstream side and the downstream side of the heater unit and spaced apart from the heater unit by a predetermined distance on the surface of the substrate, respectively. An upstream temperature detection unit, a downstream temperature detection unit, and an upstream temperature detection unit and a downstream temperature detection unit, which have resistance values extremely smaller than the resistance value of the heater unit and have different temperature characteristics from the heater unit. And the upstream temperature detector A flow rate / flow rate measuring device comprising constant current supply means for supplying a predetermined current to the series circuit, and flow rate / flow rate detection means for detecting the flow rate / flow rate based on the detection signal from each of the temperature detecting sections.
【請求項2】 流路内に流体の流れに沿って配設される
基板と、該基板の表面中央部に配設され、該基板上の温
度分布を中央部から上流および下流に行くに従って低く
なるように加熱する正または負の温度特性を有する素子
からなるヒータ部と、該ヒータ部の上流,下流側に位置
して該ヒータ部から所定間隔を離間して前記基板の表面
にそれぞれ配設され、前記ヒータ部の抵抗値に対して極
めて小さい抵抗値で、かつ該ヒータ部と同じ温度特性を
有する素子からなる上流側温度検出部,下流側温度検出
部と、該下流側温度検出部,ヒータ部および上流側温度
検出部からなる直列回路に所定電流を供給する定電流供
給手段と、前記各温度検出部からの検出信号により流量
・流速を検出する流量・流速検出手段とから構成してな
る流量・流速計測装置。
2. A substrate disposed along a fluid flow in a flow channel, and a substrate disposed at a central portion of the surface of the substrate, the temperature distribution on the substrate being lowered from the central portion toward the upstream side and the downstream side. And a heater portion formed of an element having a positive or negative temperature characteristic for heating so that the heater portion is positioned upstream and downstream of the heater portion and spaced apart from the heater portion by a predetermined distance. And an upstream side temperature detecting section, a downstream side temperature detecting section, and a downstream side temperature detecting section, each of which has an extremely small resistance value with respect to the resistance value of the heater section and which has the same temperature characteristic as that of the heater section. A constant current supply means for supplying a predetermined current to a series circuit composed of a heater part and an upstream temperature detection part, and a flow rate / flow rate detection means for detecting a flow rate / flow rate from a detection signal from each of the temperature detection parts. Flow rate / velocity measurement equipment Place
JP3280781A 1991-10-01 1991-10-01 Flow-rate/flow-speed measuring apparatus Pending JPH0593639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3280781A JPH0593639A (en) 1991-10-01 1991-10-01 Flow-rate/flow-speed measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3280781A JPH0593639A (en) 1991-10-01 1991-10-01 Flow-rate/flow-speed measuring apparatus

Publications (1)

Publication Number Publication Date
JPH0593639A true JPH0593639A (en) 1993-04-16

Family

ID=17629868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3280781A Pending JPH0593639A (en) 1991-10-01 1991-10-01 Flow-rate/flow-speed measuring apparatus

Country Status (1)

Country Link
JP (1) JPH0593639A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004020958A1 (en) * 2002-08-29 2004-03-11 Yamatake Corporation Thermal flowmeter
US7043826B2 (en) 2003-06-05 2006-05-16 Newfrey Llc Apparatus for correcting setting of self-piercing rivets, for removing self-piercing rivets, and for setting solid rivets
KR102208088B1 (en) * 2020-07-16 2021-01-27 시스트로닉스 주식회사 Air flow measurement device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004020958A1 (en) * 2002-08-29 2004-03-11 Yamatake Corporation Thermal flowmeter
US7043826B2 (en) 2003-06-05 2006-05-16 Newfrey Llc Apparatus for correcting setting of self-piercing rivets, for removing self-piercing rivets, and for setting solid rivets
KR102208088B1 (en) * 2020-07-16 2021-01-27 시스트로닉스 주식회사 Air flow measurement device

Similar Documents

Publication Publication Date Title
US4213335A (en) Flow rate meter with temperature dependent resistor
JP2631481B2 (en) Mass flow meter and its measurement method
US7287424B2 (en) Thermal type flow measurement apparatus having asymmetrical passage for flow rate measurement
KR960015065B1 (en) Control and detection circuitry for mass air-flow sensors
US5827960A (en) Bi-directional mass air flow sensor having mutually-heated sensor elements
KR100251025B1 (en) Flow rate detector
JP4608843B2 (en) Flow measuring device
JPH086268Y2 (en) Thermal flow meter
EP0387025B1 (en) Temperature compensating circuit
JP4157034B2 (en) Thermal flow meter
JPS6213605B2 (en)
US6684695B1 (en) Mass flow sensor utilizing a resistance bridge
JP3658170B2 (en) Flow sensor
EP0172440B1 (en) Hot-wire flow rate measuring apparatus
US6508117B1 (en) Thermally balanced mass air flow sensor
JP3981907B2 (en) Flow measuring device
JP2000352531A (en) Heat-sensitive type flow rate sensor
JPH0829224A (en) Flow rate detection device
JPH0593639A (en) Flow-rate/flow-speed measuring apparatus
JPH0625684B2 (en) Fluid flow rate detection sensor
EP1004856A2 (en) Thermal air flow meter
US11802784B1 (en) Single heater MEMS-CMOS based flow sensor
JP2002005717A (en) Thermal flow sensor
JP3706283B2 (en) Flow sensor circuit
JP3577902B2 (en) Thermal flow sensor