JPH109919A - Mass flowmeter - Google Patents

Mass flowmeter

Info

Publication number
JPH109919A
JPH109919A JP8166437A JP16643796A JPH109919A JP H109919 A JPH109919 A JP H109919A JP 8166437 A JP8166437 A JP 8166437A JP 16643796 A JP16643796 A JP 16643796A JP H109919 A JPH109919 A JP H109919A
Authority
JP
Japan
Prior art keywords
resistance
downstream
upstream
sensor
ambient temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8166437A
Other languages
Japanese (ja)
Inventor
Tomihisa Koyama
富久 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP8166437A priority Critical patent/JPH109919A/en
Publication of JPH109919A publication Critical patent/JPH109919A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To correct the temperature drift of flow rate perfectly including the aging by correcting the drift of output due to variation in the characteristic of each component caused by aging through the use of a microcomputer. SOLUTION: When a fluid flows through a duct 10, a current IU flows through the resistance RSU of an upstream sensor while a current ID flows through the resistance RSD of a downstream sensor. At that time, the sensor output voltage VO (VO=RSUIURSDID) is proportional to the mass flow rate of the fluid. The output voltage VO is amplified at an amplifying circuit section 7 and converted at an A/D converting section 12 into a digital signal before being inputted to a microcomputer 11. Terminal voltages of ambient temperature detecting resistances Rtu , Rtd and reference resistances R30u, R30d are also converted into digital signals which are then inputted to the microcomputer 11. The microcomputer 11 automatically calculates a mass flow rate signal for which drift due to variation in the characteristic of each component caused by aging is corrected through processing based on these input signals.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はガス等の比較的小流
量の流体の質量を精密に計測する質量流量計に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mass flow meter for accurately measuring the mass of a fluid having a relatively small flow rate such as gas.

【0002】[0002]

【従来の技術】半導体製品等を製造する場合の成膜工程
やエッチング処理工程においては、各種ガス量を一定に
制御するガス流量制御機器が主に用いられており,この
ガス流量制御機器にはガス流量を精密に測定するための
質量流量計が組み込まれている。この流量計がガス流量
を精密に検出する方式として、例えば米国特許4016
759号公報や特開平1−158175号公報に開示さ
れたような定温度差式センサが知られており現在実用化
されている。
2. Description of the Related Art In a film forming process and an etching process for manufacturing a semiconductor product, a gas flow control device for controlling a constant amount of various gases is mainly used. A mass flow meter for accurately measuring the gas flow rate is incorporated. As a method in which the flow meter detects the gas flow rate precisely, for example, US Pat.
No. 759 and Japanese Patent Application Laid-Open No. 1-158175 are known and are now in practical use.

【0003】この定温度差式センサは図4のような構成
になっており、ガス流体が流れる流体管路6の上下流に
一対の、ある値の抵抗温度係数を有するセンサ抵抗Rs
u、Rsdをコイル状に巻回し、このセンサ抵抗と直列に
周囲温度を検出するための、例えば白金抵抗Rtu、Rtd
や抵抗温度係数が略零の基準抵抗R30u,R30dを接続す
る。これらと抵抗R1u,R2u,R1d,R2dにより上流側
及び下流側にブリッジ回路をそれぞれ構成させるととも
に、センサ抵抗値と、周囲温度検出抵抗値及び基準抵抗
値の和が等しくなるような制御回路4、5を設け、上下
流側共、どの流量値においても常にこの関係が成り立つ
よう制御されている。この時流れる流体の質量流量は上
流側及び下流側センサ抵抗のそれぞれの電圧の差に比例
するため、この電位差を測定することにより流量を検出
することができる。
This constant temperature difference type sensor has a structure as shown in FIG. 4, and a pair of sensor resistors Rs having a certain temperature coefficient of resistance are provided upstream and downstream of a fluid line 6 through which a gas fluid flows.
u and Rsd are wound in a coil shape, for example, platinum resistances Rtu, Rtd for detecting the ambient temperature in series with the sensor resistance.
And reference resistances R30u and R30d whose resistance temperature coefficients are substantially zero are connected. These and resistors R1u, R2u, R1d, R2d form a bridge circuit on the upstream side and on the downstream side, respectively, and a control circuit 4, which makes the sum of the sensor resistance, the ambient temperature detection resistance and the reference resistance equal, 5 is controlled so that this relationship always holds at any flow rate value on both the upstream and downstream sides. Since the mass flow rate of the fluid flowing at this time is proportional to the difference between the respective voltages of the upstream and downstream sensor resistances, the flow rate can be detected by measuring the potential difference.

【0004】流体管路6中を流体が流れると上流側セン
サ抵抗RsuにはIu、及び下流側センサ抵抗RsdにはId
の電流が流れ、この時上流側制御回路部4はRsu=(R
30u+Rtu)・R2u/R1u、又下流側制御回路部5はRs
d=(R30d+Rtd)・R1d/R2dとなるように絶えず制
御している。通常、R2u/R1u=1、R1d/R2d=1、
及びR30u+Rtu=R30d+Rtdとなるように設定されて
いるため一般にRsu=(R30u+Rtu)、Rsd=(R30d
+Rtd)となっている。ここでセンサ出力電圧VOはVO
=Rsu・Iu −Rsd・Idと表されるため、上流側及び
下流側の両ブリッジ回路の相対応する電子部品の電気
的,熱的特性がそれぞれ互いに全く同一である場合、上
記の各式より流体の質量流量はIu −Idの値に比例
し、特に流量が零の場合はIu =Idとなりセンサ出力
電圧VOも零となる。
When a fluid flows through the fluid line 6, Iu is supplied to the upstream sensor resistance Rsu and Id is supplied to the downstream sensor resistance Rsd.
Current flows at this time, and at this time, the upstream side control circuit unit 4 outputs Rsu = (R
30u + Rtu) .R2u / R1u, and the downstream control circuit 5 is Rs
It is constantly controlled so that d = (R30d + Rtd) .R1d / R2d. Usually, R2u / R1u = 1, R1d / R2d = 1,
And R30u + Rtu = R30d + Rtd, so that generally Rsu = (R30u + Rtu) and Rsd = (R30d
+ Rtd). Here, the sensor output voltage V O is V O
= Rsu · Iu−Rsd · Id, and when the electrical and thermal characteristics of the corresponding electronic components of both the upstream and downstream bridge circuits are completely identical to each other, the above equations are used. The mass flow rate of the fluid is proportional to the value of Iu-Id. In particular, when the flow rate is zero, Iu = Id, and the sensor output voltage V O also becomes zero.

【0005】しかしながら実際には前記センサ抵抗や周
囲温度検出抵抗及びゼロ点調整用抵抗の初期抵抗値のバ
ラツキや抵抗温度係数のバラツキ等が必ず存在するため
上記各電子部品の電気的,熱的特性がそれぞれ互いに全
く同一であることは現実にはあり得ない。従ってセンサ
の出力値は真の流量値を示さず、真値とのずれが生じ、
温度ドリフトが発生する原因となっている。このドリフ
トを補正するために従来R1u,R2u,R1d,R2dの抵抗の
内のいずれかを可変とすることによりドリフト量を打ち
消すゼロ点調整の方法がとられている。しかしこの方法
ではその時点での周囲温度におけるドリフト、いわゆる
零点ドリフトのみの補正であって、周囲温度が変化した
場合には新たなドリフトが発生することになる。
However, in practice, there are always variations in the initial resistance values of the sensor resistor, the ambient temperature detection resistor, and the zero point adjustment resistor, and variations in the temperature coefficient of resistance. Cannot be exactly the same as each other. Therefore, the output value of the sensor does not indicate the true flow rate value, and a deviation from the true value occurs,
This causes temperature drift. In order to correct this drift, a method of zero point adjustment has conventionally been adopted in which any of the resistors R1u, R2u, R1d, and R2d is made variable to cancel the drift amount. However, in this method, only the drift at the ambient temperature at that time, that is, the so-called zero-point drift is corrected, and when the ambient temperature changes, a new drift occurs.

【0006】このような温度ドリフトの問題を解決する
ための別の技術としては次のような方法も現在実施され
ている。つまり個々の周囲温度におけるその時点での零
点ドリフト量をあらかじめA/D変換器等を用いデジタ
ル量として測定しておき、該流量計に組み込まれている
メモリー機能を有する電子素子の中に初期データ値とし
て記憶しておく。又同様にA/D変換器等によりデジタ
ル量に変換した現在のセンサ出力の値からこの初期値
を、該流量計に組み込まれているマイクロコンピュータ
等の演算機能を用いて差し引いてやることによりデジタ
ル的にドリフト分を補正する方法もある。しかしながら
このような方法においても、流量計の各構成部品の特性
値が経時的に変化してしまった場合に発生する経時的ド
リフト分については何等補正できるものではなく、この
ような経時変化によるドリフトが一度発生してしまう
と、もはや修正の手段が存在しない為に流量の検出精度
の悪化を引き起こすことになり、流量計全体の精度の大
幅な低下の原因となっているのが現状である。
As another technique for solving the problem of such temperature drift, the following method is currently being practiced. That is, the amount of zero point drift at that time at each ambient temperature is measured in advance as a digital amount using an A / D converter or the like, and the initial data is stored in an electronic element having a memory function incorporated in the flow meter. It is stored as a value. Similarly, the initial value is subtracted from the current sensor output value converted into a digital quantity by an A / D converter or the like by using an arithmetic function of a microcomputer or the like incorporated in the flow meter to obtain a digital value. There is also a method of compensating for the drift component. However, even in such a method, it is not possible to compensate for the drift with time caused when the characteristic value of each component of the flow meter changes with time. Once occurs, the flow rate detection accuracy is deteriorated because there is no longer any means for correction, and the current situation is that the accuracy of the entire flow meter is greatly reduced.

【0007】[0007]

【発明が解決しようとする課題】以上のように従来の質
量流量計は、構成している各部品の電気的或いは熱的特
性の経時的変化によって引き起こされるドリフトに対し
ては、補正手段が全く無いために一度発生すると精度や
信頼性の低下を余儀なくされていた。
As described above, the conventional mass flow meter has no means for correcting drift caused by the change over time of the electrical or thermal characteristics of the constituent parts. Because of the absence, once it occurred, the accuracy and reliability had to be reduced.

【0008】[0008]

【課題を解決するための手段】本発明は上記のような問
題点を解決するため、従来のドリフト補正方法のように
可変抵抗によるゼロ点調整や、初期のドリフト分をデジ
タル的に差し引くといった単純で一時的な流量補正方法
ではなく、流量計を構成する各部品の経時的に変化した
特性値情報を該流量計に内蔵されているマイクロコンピ
ュータがデジタル信号として取り込み、これらの値から
現在のドリフト量を該マイクロコンピュータが内蔵する
補正演算プログラムにより算出することによって、一時
的な流量補正のみならず、流量計の精度低下の主な原因
であるセンサ出力の経時的変化分についても完全に補正
し、真の流量信号として出力できるようにしたものであ
る。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems by simply adjusting the zero point using a variable resistor or digitally subtracting the initial drift as in the conventional drift correction method. Instead of a temporary flow rate correction method, the microcomputer incorporated in the flow meter captures the characteristic value information that has changed over time of each component constituting the flow meter as digital signals, and from these values the current drift is calculated. By calculating the amount by the correction calculation program built in the microcomputer, not only the temporary flow rate correction but also the time-dependent change of the sensor output, which is the main cause of the decrease in the accuracy of the flow meter, is completely corrected. , And can be output as a true flow signal.

【0009】すなわち、本発明は流体が流れる流体管路
の上流側に上流側センサ抵抗を設け、これに上流側周囲
温度検出抵抗と抵抗温度係数が略零の上流側基準抵抗を
直列に接続するとともに前記上流側センサ抵抗の値と、
前記上流側周囲温度検出抵抗と前記上流側基準抵抗との
和の値が常に等しくなるように制御された上流側定温度
差回路と、前記流体管路の下流側に下流側センサ抵抗を
設け、これに下流側周囲温度検出抵抗と抵抗温度係数が
略零の下流側基準抵抗を直列に接続するとともに前記下
流側センサ抵抗の値と、前記下流側周囲温度検出抵抗と
前記下流側基準抵抗との和の値が常に等しくなるように
制御された下流側定温度差回路とを有し、前記上流側セ
ンサ抵抗と前記下流側センサ抵抗に与えられるエネルギ
ーの差に基づいて、前記流体の質量流量を求めるように
した質量流量計において、各構成部材の経時的な特性値
変化により発生する出力のドリフト量を、演算機能を有
する素子を用いて補正を行うことを特徴とする質量流量
計である。
That is, according to the present invention, an upstream sensor resistor is provided upstream of a fluid pipe through which a fluid flows, and an upstream ambient temperature detecting resistor and an upstream reference resistor having a resistance temperature coefficient of substantially zero are connected in series. Together with the value of the upstream sensor resistance,
An upstream constant temperature difference circuit controlled so that the sum of the upstream ambient temperature detection resistance and the upstream reference resistance is always equal, and a downstream sensor resistance is provided downstream of the fluid pipeline. A downstream-side ambient temperature detection resistor and a downstream-side reference resistor having a resistance temperature coefficient of substantially zero are connected in series to this, and the value of the downstream-side sensor resistance, and the downstream-side ambient temperature detection resistance and the downstream-side reference resistance A downstream constant temperature difference circuit controlled so that the sum value is always equal, based on a difference in energy given to the upstream sensor resistance and the downstream sensor resistance, the mass flow rate of the fluid The mass flow meter according to the present invention is characterized in that, in the mass flow meter to be obtained, a drift amount of an output caused by a change in a characteristic value of each component over time is corrected by using an element having an arithmetic function.

【0010】本発明のような構成とすることにより、従
来の技術では不可能と考えられていた、流量計の経時的
変化により発生する温度ドリフトについても完全に補正
することが可能となり、高い信頼性と精度を持つ質量流
量計とすることができる。
[0010] By adopting the configuration as in the present invention, it is possible to completely correct even the temperature drift caused by the temporal change of the flow meter, which was considered impossible in the prior art, and to achieve high reliability. It can be a mass flow meter with high performance and accuracy.

【0011】本発明の質量流量計は、予め記憶されてい
る各構成部品の初期の特性値データと、経時変化後の各
構成部品の種々の特性値データとを基に、上記マイクロ
コンピュータに内蔵されている流量値補正演算プログラ
ム群により、補正演算を行い、現在の流量計の温度ドリ
フト量を定量的に求める。そのドリフト量と現在の流量
出力値からの差分演算処理により、該質量流量計の経時
的な温度ドリフトを自動的に自己補正した真の流量信号
を出力し、該流量計の流量出力精度を大幅に向上させう
るものである。
The mass flow meter according to the present invention is built in the microcomputer based on initial characteristic value data of each component stored in advance and various characteristic value data of each component after aging. The correction calculation is performed by the set of flow value correction calculation programs, and the current temperature drift amount of the flow meter is quantitatively obtained. By calculating the difference between the drift amount and the current flow output value, a true flow signal is output that self-corrects the temperature drift over time of the mass flow meter automatically, greatly improving the flow output accuracy of the flow meter. Can be improved.

【0012】[0012]

【発明の実施例の形態】以下本発明の実施例について図
1をもとに詳細に説明する。本発明の質量流量計の構成
は図1に示すマイクロコンピュータ部11、上流側制御
回路部8、下流側制御回路部9、流体管路10、上流側
センサ抵抗Rsu,上流側周囲温度検出抵抗Rtu,下流側
センサ抵抗Rsd、下流側周囲温度検出抵抗Rtd、上流側
基準抵抗R30u,下流側基準抵抗R30d、上流側ブリッジ
抵抗R1u,R2u,下流側ブリッジ抵抗R1d,R2d、A/D
コンバータ12、D/Aコンバータ13、マイクロコン
ピュータ11及び該マイクロコンピュータに内蔵する流
量値補正演算プログラム群よりなる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to FIG. The configuration of the mass flow meter according to the present invention includes a microcomputer unit 11, an upstream control circuit unit 8, a downstream control circuit unit 9, a fluid pipeline 10, an upstream sensor resistance Rsu, and an upstream ambient temperature detection resistance Rtu shown in FIG. , Downstream sensor resistance Rsd, downstream ambient temperature detection resistance Rtd, upstream reference resistance R30u, downstream reference resistance R30d, upstream bridge resistance R1u, R2u, downstream bridge resistance R1d, R2d, A / D
It comprises a converter 12, a D / A converter 13, a microcomputer 11, and a group of flow rate correction calculation programs built in the microcomputer.

【0013】流体が流体管路10中を流れると、上流側
センサ抵抗RsuにはIu、及び下流側センサ抵抗Rsdに
はIdの電流が流れる。この時センサ出力電圧VOはVO
=RsuIu−RsdIdとなり、上流側及び下流側の両ブリ
ッジ回路間の対応する各電子部品の電気的,熱的特性が
それぞれ互いに全く同一である場合、流体の質量流量は
Iu−Idの値に比例する。この出力電圧は概して微小で
あるため、所定の電圧になるようにセンサ出力増幅回路
部7により増幅されるとともに、A/D変換部12によ
りデジタル信号に変換された後、マイクロコンピュータ
11に入力される。又同様に上流側及び下流側の周囲温
度検出抵抗の端子電圧及び上流側及び下流側の基準抵抗
の端子電圧もそれぞれA/D変換部によりデジタル信号
に変換された後マイクロコンピュータに入力される。該
マイクロコンピュータは入力された各信号を基に以下に
示す演算処理により各構成部品の経時的ドリフト分を補
正した現在の質量流量信号VOを自動的に算出する。但
しこの演算の中で用いた記号の意味は以下の通りであ
る。
When the fluid flows through the fluid line 10, a current of Iu flows through the upstream sensor resistor Rsu and a current of Id flows through the downstream sensor resistor Rsd. At this time, the sensor output voltage VO becomes VO
= RsuIu-RsdId, and when the electrical and thermal characteristics of the corresponding electronic components between the upstream and downstream bridge circuits are completely the same, the mass flow rate of the fluid is proportional to the value of Iu-Id. I do. Since this output voltage is generally very small, it is amplified by the sensor output amplifier circuit 7 to a predetermined voltage, converted into a digital signal by the A / D converter 12, and then input to the microcomputer 11. You. Similarly, the terminal voltages of the upstream and downstream ambient temperature detection resistors and the terminal voltages of the upstream and downstream reference resistors are also converted into digital signals by the A / D converter and then input to the microcomputer. The microcomputer automatically calculates the present mass flow rate signal VO in which the drift with time of each component is corrected by the following arithmetic processing based on the input signals. However, the meanings of the symbols used in this operation are as follows.

【0014】Rsuは上流側センサ抵抗,Rtuは上流側周
囲温度検出抵抗、Rsdは下流側センサ抵抗、Rtdは下流
側周囲温度検出抵抗、Tsuは上流側センサ抵抗温度、T
tuは上流側周囲温度検出抵抗温度、Tsdは下流側センサ
抵抗温度、Ttdは下流側周囲温度検出抵抗温度、Iuは
上流側電流、Idは下流側電流、Psuは上流側センサ抵
抗への入力、Ptuは上流側周囲温度検出抵抗への入力、
Psdは下流側センサ抵抗への入力、Ptdは下流側周囲温
度検出抵抗への入力、Csuは上流側センサ抵抗の熱放散
係数、Ctuは上流側周囲温度検出抵抗の熱放散係数、C
sdは下流側センサ抵抗の熱放散係数、Ctdは下流側周囲
温度検出抵抗の熱放散係数、αsuは上流側センサ抵抗の
第1次抵抗温度係数、αtuは上流側周囲温度検出抵抗の
第1次抵抗温度係数、αsdは下流側センサ抵抗の第1次
抵抗温度係数、αtdは下流側周囲温度検出抵抗の第1次
抵抗温度係数、βsuは上流側センサ抵抗の第2次抵抗温
度係数、βtuは上流側周囲温度検出抵抗の第2次抵抗温
度係数、βsdは下流側センサ抵抗の第2次抵抗温度係
数、βtdは下流側周囲温度検出抵抗の第2次抵抗温度係
数、RsouはTsou(℃)における上流側センサ抵抗、R
touはTtou(℃)における上流側周囲温度検出抵抗、R
sodはTsod(℃)における下流側センサ抵抗、Rtodは
Ttod(℃)における下流側周囲温度検出抵抗、Rs25u
はTs25u(℃)における上流側センサ抵抗、Rt25uはT
t25u(℃)における上流側周囲温度検出抵抗、Rs25dは
Ts25d(℃)における下流側センサ抵抗、Rt25dはTt2
5d(℃)における下流側周囲温度検出抵抗、Rs50uはT
s50u(℃)における上流側センサ抵抗、Rt50uはTt50u
(℃)における上流側周囲温度検出抵抗、Rs50dはTs5
0d(℃)における下流側センサ抵抗、Rt50dはTt50d
(℃)における下流側周囲温度検出抵抗、R30uは上流
側基準抵抗、R30dは下流側基準抵抗、Taは周囲温度、
Nは上流側0点調整用抵抗値比、Mは下流側0点調整用
抵抗値比R1u、R2uは上流側ブリッジ抵抗、R1d,R2d
は下流側ブリッジ抵抗、Vsuは上流側センサ抵抗の端子
電圧、Vtuは上流側周囲温度検出抵抗の端子電圧、Vsd
は下流側センサ抵抗の端子電圧、Vtdは下流側周囲温度
検出抵抗の端子電圧、Vuは上流側センサ出力、Vdは下
流側センサ出力、VOはセンサ出力電圧である。
Rsu is an upstream sensor resistance, Rtu is an upstream ambient temperature detection resistor, Rsd is a downstream sensor resistance, Rtd is a downstream ambient temperature detection resistor, Tsu is an upstream sensor resistance temperature, T
tu is the upstream ambient temperature detection resistance temperature, Tsd is the downstream sensor resistance temperature, Ttd is the downstream ambient temperature detection resistance temperature, Iu is the upstream current, Id is the downstream current, Psu is the input to the upstream sensor resistance, Ptu is the input to the upstream ambient temperature detection resistor,
Psd is the input to the downstream sensor resistance, Ptd is the input to the downstream ambient temperature detection resistor, Csu is the heat dissipation coefficient of the upstream sensor resistance, Ctu is the heat dissipation coefficient of the upstream ambient temperature detection resistor, C
sd is the heat dissipation coefficient of the downstream sensor resistance, Ctd is the heat dissipation coefficient of the downstream ambient temperature detection resistor, αsu is the primary resistance temperature coefficient of the upstream sensor resistance, and αtu is the primary resistance of the upstream ambient temperature detection resistor. The resistance temperature coefficient, αsd is the primary resistance temperature coefficient of the downstream sensor resistance, αtd is the primary resistance temperature coefficient of the downstream ambient temperature detection resistance, βsu is the secondary resistance temperature coefficient of the upstream sensor resistance, βtu is The secondary resistance temperature coefficient of the upstream ambient temperature detection resistor, βsd is the secondary resistance temperature coefficient of the downstream sensor resistance, βtd is the secondary resistance temperature coefficient of the downstream ambient temperature detection resistor, and Rsou is Tsou (° C.) Upstream sensor resistance at R
tou is the upstream ambient temperature detection resistance at Ttou (° C), R
sod is the downstream sensor resistance at Tsod (° C), Rtod is the downstream ambient temperature detection resistance at Ttod (° C), Rs25u
Is the upstream sensor resistance at Ts25u (° C), and Rt25u is T
The upstream ambient temperature detection resistance at t25u (° C), Rs25d is the downstream sensor resistance at Ts25d (° C), and Rt25d is Tt2
The downstream side ambient temperature detection resistance at 5d (° C), Rs50u is T
The upstream sensor resistance at s50u (° C), Rt50u is Tt50u
The upstream side ambient temperature detection resistance at (° C), Rs50d is Ts5
The downstream sensor resistance at 0d (° C), Rt50d is Tt50d
R30u is the upstream reference resistance, R30d is the downstream reference resistance, Ta is the ambient temperature,
N is the upstream zero-point adjustment resistance value ratio, M is the downstream zero-point adjustment resistance ratio R1u, R2u is the upstream bridge resistance, and R1d and R2d.
Is the downstream bridge resistance, Vsu is the terminal voltage of the upstream sensor resistance, Vtu is the terminal voltage of the upstream ambient temperature detection resistor, Vsd
Is the terminal voltage of the downstream sensor resistor, Vtd is the terminal voltage of the downstream ambient temperature detection resistor, Vu is the upstream sensor output, Vd is the downstream sensor output, and VO is the sensor output voltage.

【0015】センサ出力電圧VOを算出するための電気
的及び熱的状態方程式は以下のようになる。 Psu=Csu(Tsu−Ta)、 Psu=RsuIu2 、 Rsu=Rsou(1+αsu(Tsu−Tsou)+βsu(Tsu-
Tsou)2) Ptu=Ctu(Ttu−Ta)、 Ptu=RtuIu2 、 Rtu=Rtou(1+αtu(Ttu−Ttou)+βtu(Ttu-
Ttou)2) Psd=Csd(Tsd−Ta)、 Psd=RsdId2 、 Rsd=Rsod(1+αsd(Tsd−Tsod)+βsd(Tsd-
Tsod)2) Ptd=Ctd(Ttd−Ta)、 Ptd=RtdId2 、 Rtd=Rtod(1+αtd(Ttd−Ttod)+βtd(Ttd-
Ttod)2) Rsu=N(R30u+Rtu)、 Rsd=M(R30d+Rtd)、 N=R2u/R1u 、M=R2d/R1d 、 Vu=RsuIu 、 Vd=RsdId 、 VO=Vu−Vd 、
The electrical and thermal equation for calculating the sensor output voltage VO is as follows. Psu = Csu (Tsu−Ta), Psu = RsuIu 2 , Rsu = Rsou (1 + αsu (Tsu−Tsou) + βsu (Tsu−
Tsou) 2) Ptu = Ctu ( Ttu-Ta), Ptu = RtuIu 2, Rtu = Rtou (1 + αtu (Ttu-Ttou) + βtu (Ttu-
Ttou) 2 ) Psd = Csd (Tsd−Ta), Psd = RsdId 2 , Rsd = Rsod (1 + αsd (Tsd−Tsod) + βsd (Tsd−
Tsod) 2 ) Ptd = Ctd (Ttd−Ta), Ptd = RtdId 2 , Rtd = Rtod (1 + αtd (Ttd−Ttod) + βtd (Ttd−
Ttod) 2 ) Rsu = N (R30u + Rtu), Rsd = M (R30d + Rtd), N = R2u / R1u, M = R2d / R1d, Vu = RsuIu, Vd = RsdId, VO = Vu−Vd,

【0016】またαsu,βsu,αtu,βtu,αsd,βs
d,αtd,βtd,Csu,Ctu,Csd,Ctdの値は次式の
ようになる。 αsu=((Rs50u−Rs25u)Ts25uTs50u−Rsou(Ts
50u−Ts25u)(Ts50u+Ts25u)−(Rs50uTs25u−
Rs25uTs50u)(Ts25u+Ts50u))÷(RsouTs25u
Ts50u(Ts50u−Ts25u)) αtu=((Rt50u−Rt25u)Tt25uTt50u−Rtou(Tt
50u−Tt25u)(Tt50u+Tt25u)−(Rt50uTt25u−
Rt25uTt50u)(Tt25u+Tt50u))÷(RtouTt25u
Tt50u(Tt50u−Tt25u)) βsu=(Rsou(Ts50u−Ts25u)+Rs50uTs25u−Rs
25uTs50u)÷(RsouTs25uTs50u(Ts50u−Ts25
u)) βtu=(Rtou(Tt50u−Tt25u)+Rt50uTt25u−Rt
25uTt50u)÷(RtouTt25uTt50u(Tt50u−Tt25
u))
Also, αsu, βsu, αtu, βtu, αsd, βs
The values of d, αtd, βtd, Csu, Ctu, Csd, and Ctd are as follows. αsu = ((Rs50u−Rs25u) Ts25uTs50u−Rsou (Ts
50u-Ts25u) (Ts50u + Ts25u)-(Rs50uTs25u-
Rs25uTs50u) (Ts25u + Ts50u)) ÷ (RsouTs25u
Ts50u (Ts50u−Ts25u)) αtu = ((Rt50u−Rt25u) Tt25uTt50u−Rtou (Tt)
50u-Tt25u) (Tt50u + Tt25u)-(Rt50uTt25u-
Rt25uTt50u) (Tt25u + Tt50u)) ÷ (RtouTt25u
Tt50u (Tt50u−Tt25u)) βsu = (Rsou (Ts50u−Ts25u) + Rs50uTs25u−Rs)
25uTs50u) ÷ (RsouTs25uTs50u (Ts50u-Ts25
u)) βtu = (Rtou (Tt50u−Tt25u) + Rt50uTt25u−Rt)
25uTt50u) ÷ (RtouTt25uTt50u (Tt50u-Tt25
u))

【0017】αsd=((Rs50d−Rs25d)Ts25dTs50d
−Rsod(Ts50d−Ts25d)(Ts50d+Ts25d)−(Rs
50dTs25d−Rs25dTs50d)(Ts25d+Ts50d))÷
(RsodTs25dTs50d(Ts50d−Ts25d)) αtd=((Rt50d−Rt25d)Tt25dTt50d−Rtod(Tt
50d−Tt25d)(Tt50d+Tt25d)−(Rt50dTt25d−
Rt25dTt50d)(Tt25d+Tt50d))÷(RtodTt25d
Tt50d(Tt50d−Tt25d)) βsd=(Rsod(Ts50d−Ts25d)+Rs50dTs25d−Rs
25dTs50d)÷(RsodTs25dTs50d(Ts50d−Ts25
d)) βtd=(Rtod(Tt50d−Tt25d)+Rt50dTt25d−Rt
25dTt50d)÷(RtodTt25dTt50d(Tt50d−Tt25
d))
Αsd = ((Rs50d−Rs25d) Ts25dTs50d
−Rsod (Ts50d−Ts25d) (Ts50d + Ts25d) − (Rs
50dTs25d-Rs25dTs50d) (Ts25d + Ts50d)) ÷
(RsodTs25dTs50d (Ts50d-Ts25d)) αtd = ((Rt50d-Rt25d) Tt25dTt50d-Rtod (Tt
50d-Tt25d) (Tt50d + Tt25d)-(Rt50dTt25d-
Rt25dTt50d) (Tt25d + Tt50d)) ÷ (RtodTt25d
Tt50d (Tt50d-Tt25d)) βsd = (Rsod (Ts50d-Ts25d) + Rs50d Ts25d-Rs
25dTs50d) ÷ (RsodTs25dTs50d (Ts50d-Ts25
d)) βtd = (Rtod (Tt50d−Tt25d) + Rt50dTt25d−Rt)
25dTt50d) ÷ (RtodTt25dTt50d (Tt50d-Tt25
d))

【0018】Csu=RsuIu2/(Tsu=(−αsu/2β
su)±(αsu2/4βsu2+(Rsu−Rsou)/Rsouβs
u)1/2−Ta) Csd=RsdId2/(Tsd=(−αsd/2βsd)±(αsd
2/4βsd2+(Rsd−Rsod)/Rsouβsd)1/2−Ta) Ctu=RtuIu2/(Ttu=(−αtu/2βtu)±(αtu
2/4βtu2+(Rtu−Rtou)/Rtouβtu)1/2−Ta) Ctd=RtdId2/(Ttd=(−αtd/2βtd)±(αtd
2/4βtd2+(Rtd−Rtod)/Rsouβtd)1/2−Ta)
Csu = RsuIu 2 / (Tsu = (− αsu / 2β)
su) ± (αsu 2 / 4βsu 2 + (Rsu−Rsou) / Rsouβs
u) 1/2 −Ta) Csd = RsdId 2 / (Tsd = (− αsd / 2βsd) ± (αsd
2 / 4βsd 2 + (Rsd−Rsod) / Rsouβsd) 1/2 −Ta) Ctu = RtuIu 2 / (Ttu = (− αtu / 2βtu) ± (αtu
2 / 4βtu 2 + (Rtu−Rtou) / Rtouβtu) 1/2 −Ta) Ctd = RtdId 2 / (Ttd = (− αtd / 2βtd) ± (αtd)
2 / 4βtd 2 + (Rtd−Rtod) / Rsouβtd) 1/2 −Ta)

【0019】これらの値を用い上記方程式を解くことに
より、出力VOは次式によって表される。 VO =(CsuRsu((−αsu/2βsu)±((αsu2/4
βsu2)+(Rsu−Rsou)/(Rsouβsu))1/2−T
a))1/2−(CsdRsd((−αsd/2βsd)±((αsd
2/4βsd2)+(Rsd−Rsod)/(Rsodβsd))1/2
−Ta))1/2 但し式中Rsu及びRsdの値は次式の方程式の解であり、
また±符号はαsu,βsu,αtu,βtu,αsd,βsd,α
td,βtd,の値を吟味して決定できる。 Rsu/(Rsu/N−R30u)=(Csu/Ctu)(−αsu
/2βsu)*((αsu2/4βsu2)+(Rsu−Rsou)
/Rsouβsu)1/2−Ta)/((−αtu/2βtu)
((αtu2/4βtu2)+(Rtu−Rtou)/Rtouβtu)
1/2−Ta) Rsd/(Rsd/N−R30d)=(Csd/Ctd)(−αsd
/2βsd)((αsd2/4βsd2)+(Rsd−Rsod)/
Rsodβsd)1/2−Ta)/((−αtd/2βtd)((αt
d2/4βtd2)+(Rtd−Rtod)/Rtodβtd)1/2−T
a)
By solving the above equation using these values, the output VO is represented by the following equation. VO = (CsuRsu ((- αsu / 2βsu) ± ((αsu 2/4
βsu 2 ) + (Rsu−Rsou) / (Rsouβsu)) 1/2 −T
a)) 1 /2-(CsdRsd ((-αsd / 2βsd) ± ((αsd
2 / 4βsd 2 ) + (Rsd−Rsod) / (Rsodβsd)) 1/2
−Ta)) 1/2 where the values of Rsu and Rsd are the solutions of the following equation:
The ± signs are αsu, βsu, αtu, βtu, αsd, βsd, α
It can be determined by examining the values of td and βtd. Rsu / (Rsu / NR30u) = (Csu / Ctu) (-αsu
/ 2βsu) * ((αsu 2 / 4βsu 2) + (Rsu-Rsou)
/ Rsouβsu) 1/2 -Ta) / ((-αtu / 2βtu)
((Αtu 2 / 4βtu 2 ) + (Rtu−Rtou) / Rtouβtu)
1 / 2- Ta) Rsd / (Rsd / N-R30d) = (Csd / Ctd) (-αsd
/ 2βsd) ((αsd 2 / 4βsd 2) + (Rsd-Rsod) /
Rsodβsd) 1/2 −Ta) / ((− αtd / 2βtd) ((αt
d 2 / 4βtd 2 ) + (Rtd−Rtod) / Rtodβtd) 1/2 −T
a)

【0020】上記は高次の方程式であるため直接根を求
めることは現実的に不可能である。従って本発明におい
ては流量計内蔵のマイクロコンピュータ11により数値
解法を用いて解く。該マイクロコンピュータは、温度検
出抵抗の値より現在の周囲温度を算出するとともに、そ
の温度における前記方程式の数値解を内蔵の演算プログ
ラム群により算出する。
Since the above is a higher-order equation, it is practically impossible to find a root directly. Therefore, in the present invention, the numerical value is solved by the microcomputer 11 having the built-in flow meter. The microcomputer calculates the current ambient temperature from the value of the temperature detection resistor, and calculates the numerical solution of the above equation at that temperature using a group of built-in arithmetic programs.

【0021】今仮にその出力値をV2とし、同様に構成
部品が経時的変化を生じる前の初期特性値を基にした出
力値を該演算処理により算出しその値を V1とする
と、現在の温度におけるドリフト量DはD=V2−V1と
して求めることができる。このように該マイクロコンピ
ュータによる上記演算処理により求めたドリフト量と各
周囲温度における該センサの実際に測定したドリフト量
との比較例を図3と図4に示す。ここで求める流量出力
値VRは、実際の流量出力値VCからこのドリフト量Dの
値を差し引いたものであり、この出力VRが前記説明の
如く各構成部品の経時的変化による温度ドリフト量をす
べて自動的に補正した真の流量出力値となる。但し上記
のような複雑な方程式をすべて逐次解いて最終的な解を
求めることは現在のマイクロコンピュータの演算速度に
は自ずと限界が存在するため現実的には非常に困難な問
題となる。
Now, suppose that the output value is V2, and similarly, an output value based on the initial characteristic value before the components change over time is calculated by the arithmetic processing, and the value is V1. Can be obtained as D = V2-V1. FIGS. 3 and 4 show comparative examples of the drift amount obtained by the above-described arithmetic processing by the microcomputer and the actually measured drift amount of the sensor at each ambient temperature. The flow rate output value VR obtained here is obtained by subtracting the value of the drift amount D from the actual flow rate output value VC, and this output VR represents the total temperature drift amount due to the temporal change of each component as described above. It becomes the true flow output value automatically corrected. However, finding the final solution by sequentially solving all of the complicated equations as described above is a very difficult problem in practice because there is naturally a limitation in the operation speed of the current microcomputer.

【0022】しかしながら本方式センサの各要素におけ
る経時的な特性値の変化を考えてみると、実際には高々
このような短時間のスパンにおいては、この各要素の特
性値というものはほとんど変化を生じるものでもないた
め、ここで逐次高速で演算する必要も全くない。そこで
実際の演算は該流量計の非動作時等の空き時間を利用し
て実行しおき、その結果算出されたドリフト量Dは該マ
イクロコンピュータ内に記憶させておき、真の流量値を
出力する際逐次利用するという方法も可能となる。
However, considering the change of the characteristic value over time in each element of the sensor of the present system, the characteristic value of each element hardly changes at most in such a short time span. Since it does not occur, there is no need to perform the calculation at high speed sequentially here. Therefore, the actual calculation is performed using the idle time of the flow meter when it is not operating, and the calculated drift amount D is stored in the microcomputer, and the true flow value is output. It is also possible to use the device successively.

【0023】[0023]

【発明の効果】以上の説明のように本発明の流量計にお
いては周囲温度の変化に伴って発生する流量値の温度ド
リフトを経時的変化分を含めて完全に補正する事が可能
となり、真の質量流量値を出力できるようになる。
As described above, in the flow meter of the present invention, it is possible to completely correct the temperature drift of the flow rate value caused by the change of the ambient temperature, including the time-dependent change. Can be output.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の質量流量センサの構成部品を示す図で
ある。
FIG. 1 is a diagram showing components of a mass flow sensor according to the present invention.

【図2】実際のドリフト量と演算により求めたドリフト
量との比較例1である。
FIG. 2 is a comparative example 1 of an actual drift amount and a drift amount obtained by calculation.

【図3】実際のドリフト量と演算により求めたドリフト
量との比較例2である。
FIG. 3 is a comparative example 2 of an actual drift amount and a drift amount obtained by calculation.

【図4】従来の質量流量センサの構成部品を示す図であ
る。
FIG. 4 is a diagram showing components of a conventional mass flow sensor.

【符号の説明】[Explanation of symbols]

Rsu 上流側センサ抵抗、 Rtu 上流側周囲温度検出
抵抗、Rsd 下流側センサ抵抗、 Rtd 下流側周囲温
度検出抵抗、R30u 上流側基準抵抗、 R30d 下流側
基準抵抗、R1u、R2u 上流側ブリッジ抵抗、 R1d,
R2d 下流側ブリッジ抵抗、3,7 センサ出力増幅回
路部、 4,8 上流側電流制御回路部、5,9 下流側
電流制御回路部、 6,10 流体管路、11 マイク
ロコンピュータ、 12 A/Dコンバータ、13 D
/Aコンバータ、
Rsu upstream sensor resistance, Rtu upstream ambient temperature detection resistance, Rsd downstream sensor resistance, Rtd downstream ambient temperature detection resistance, R30u upstream reference resistance, R30d downstream reference resistance, R1u, R2u upstream bridge resistance, R1d,
R2d Downstream bridge resistor, 3,7 Sensor output amplifier circuit, 4,8 Upstream current control circuit, 5,9 Downstream current control circuit, 6,10 Fluid line, 11 microcomputer, 12 A / D Converter, 13D
/ A converter,

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 流体が流れる流体管路の上流側に上流側
センサ抵抗を設け、これに上流側周囲温度検出抵抗と抵
抗温度係数が略零の上流側基準抵抗を直列に接続すると
ともに前記上流側センサ抵抗の値と、前記上流側周囲温
度検出抵抗と前記上流側基準抵抗との和の値が常に等し
くなるように制御された上流側定温度差回路と、前記流
体管路の下流側に下流側センサ抵抗を設け、これに下流
側周囲温度検出抵抗と抵抗温度係数が略零の下流側基準
抵抗を直列に接続するとともに前記下流側センサ抵抗の
値と、前記下流側周囲温度検出抵抗と前記下流側基準抵
抗との和の値が常に等しくなるように制御された下流側
定温度差回路とを有し、前記上流側センサ抵抗と前記下
流側センサ抵抗に与えられるエネルギーの差に基づい
て、前記流体の質量流量を求めるようにした質量流量計
において、各構成部材の経時的な特性値変化により発生
する出力のドリフト量を、演算機能を有する素子を用い
て補正を行うことを特徴とする質量流量計。
An upstream sensor resistor is provided upstream of a fluid line through which a fluid flows, and an upstream ambient temperature detection resistor and an upstream reference resistor having a resistance temperature coefficient of substantially zero are connected in series to the upstream sensor resistor. The value of the side sensor resistance, the upstream constant temperature difference circuit controlled so that the sum of the upstream ambient temperature detection resistance and the upstream reference resistance is always equal, and on the downstream side of the fluid line A downstream sensor resistor is provided, and a downstream ambient temperature detection resistor and a downstream reference resistor having a resistance temperature coefficient of substantially zero are connected in series thereto, and the value of the downstream sensor resistance, the downstream ambient temperature detection resistor, A downstream constant temperature difference circuit controlled so that the sum value of the downstream reference resistance is always equal to the downstream reference resistance, based on a difference in energy given to the upstream sensor resistance and the downstream sensor resistance. , The mass flow of the fluid In a mass flow meter for obtaining an amount, a drift amount of an output caused by a change in a characteristic value of each constituent member over time is corrected using an element having an arithmetic function.
JP8166437A 1996-06-26 1996-06-26 Mass flowmeter Pending JPH109919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8166437A JPH109919A (en) 1996-06-26 1996-06-26 Mass flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8166437A JPH109919A (en) 1996-06-26 1996-06-26 Mass flowmeter

Publications (1)

Publication Number Publication Date
JPH109919A true JPH109919A (en) 1998-01-16

Family

ID=15831397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8166437A Pending JPH109919A (en) 1996-06-26 1996-06-26 Mass flowmeter

Country Status (1)

Country Link
JP (1) JPH109919A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6871538B2 (en) 2002-11-15 2005-03-29 Omron Corporation Flow sensor and flow rate measuring method
WO2011040327A1 (en) * 2009-09-30 2011-04-07 株式会社堀場エステック Flow rate sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6871538B2 (en) 2002-11-15 2005-03-29 Omron Corporation Flow sensor and flow rate measuring method
WO2011040327A1 (en) * 2009-09-30 2011-04-07 株式会社堀場エステック Flow rate sensor
JP5629212B2 (en) * 2009-09-30 2014-11-19 株式会社堀場エステック Flow sensor
US9026383B2 (en) 2009-09-30 2015-05-05 Horiba Stec, Co., Ltd. Flow rate sensor

Similar Documents

Publication Publication Date Title
JP2631481B2 (en) Mass flow meter and its measurement method
US8499786B2 (en) Mass flow controller with enhanced operating range
US7651263B2 (en) Method and apparatus for measuring the temperature of a gas in a mass flow controller
US8504311B2 (en) Method and mass flow controller for enhanced operating range
EP1564532B1 (en) Thermal mass flowmeter and method with temperature correction
US5461913A (en) Differential current thermal mass flow transducer
JPS5858417A (en) Method and device for measuring quantity of fluid medium, which flow through fluid section and change in pulsatile form
JPH0663803B2 (en) Zero compensation method
JP3421245B2 (en) Heating resistor type air flow measurement device
JP3726261B2 (en) Thermal flow meter
JPH109919A (en) Mass flowmeter
JP2789272B2 (en) Flow meter flow compensation method
JPH0934556A (en) Mass flow controller
JP2788329B2 (en) Method and apparatus for measuring flow velocity and flow direction of fluid
JPH0449893B2 (en)
JPH109920A (en) Mass flowmeter
JPH0835869A (en) Air flowmeter
JP3019009U (en) Mass flow meter
JP3068950B2 (en) Mass flow meter
JP2949527B2 (en) Mass flow meter
JPH07295653A (en) Mass flow controller
KR20020080137A (en) Sensor for detecting the mass flow rate and device and method for controlling mass flow rate using it
JPH0353128A (en) Zero point correcting circuit
JPH0629748B2 (en) How to measure fluid temperature of thermal flow meter
JPS6190013A (en) Measuring instrument for fluid flow rate