JPH0629748B2 - How to measure fluid temperature of thermal flow meter - Google Patents

How to measure fluid temperature of thermal flow meter

Info

Publication number
JPH0629748B2
JPH0629748B2 JP62040955A JP4095587A JPH0629748B2 JP H0629748 B2 JPH0629748 B2 JP H0629748B2 JP 62040955 A JP62040955 A JP 62040955A JP 4095587 A JP4095587 A JP 4095587A JP H0629748 B2 JPH0629748 B2 JP H0629748B2
Authority
JP
Japan
Prior art keywords
resistor
temperature
heating
fluid temperature
flow meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62040955A
Other languages
Japanese (ja)
Other versions
JPS63206616A (en
Inventor
考司 谷本
三樹生 別所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62040955A priority Critical patent/JPH0629748B2/en
Publication of JPS63206616A publication Critical patent/JPS63206616A/en
Publication of JPH0629748B2 publication Critical patent/JPH0629748B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Details Of Flowmeters (AREA)
  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、熱式流量計の流体温度測定方法に係り、特
にエンジンのシリンダ内に導入される吸入空気温度を測
定するのに好適なものである。
Description: TECHNICAL FIELD The present invention relates to a fluid temperature measuring method for a thermal type flow meter, and is particularly suitable for measuring a temperature of intake air introduced into a cylinder of an engine. Is.

〔従来の技術〕[Conventional technology]

最近では、エンジンの制御機能を向上させる目的でマイ
クロコンピユータを使用したエンジンの総合制御が行な
われつつある。これらの制御の一つに空燃比制御があ
り、そのパラメータの一つとして、エンジンの吸入空気
量がある。
Recently, comprehensive control of an engine using a microcomputer has been performed for the purpose of improving the control function of the engine. One of these controls is air-fuel ratio control, and one of its parameters is the intake air amount of the engine.

熱式流量計は発熱抵抗体と空気間の伝熱現象を利用して
おり、質量流量が精度よく得られるという理由から、エ
ンジン制御システムに広く採用されている。
The thermal type flow meter utilizes a heat transfer phenomenon between a heating resistor and air, and is widely used in an engine control system because a mass flow rate can be accurately obtained.

他の容積式流量計を吸入空気流量検出器として用いて高
精度な空燃比制御を行なう場合、空気温度および圧力を
検出して補正する必要がある。したがつて、熱式流量計
は温度および圧力検出器を必要としないため、システム
を安価に構成できるというメリツトがある。
When using another volumetric flow meter as the intake air flow rate detector to perform highly accurate air-fuel ratio control, it is necessary to detect and correct the air temperature and pressure. Therefore, since the thermal type flow meter does not require the temperature and pressure detectors, the system can be inexpensively constructed.

しかし、エンジンの吸入空気温度はマイナス30℃から
80℃まで変化しうるため、さらに高精度なエンジン制
御を行なおうとした際に、吸入空気温度の検出が必要と
なる。
However, since the intake air temperature of the engine can change from −30 ° C. to 80 ° C., it is necessary to detect the intake air temperature when attempting to perform more accurate engine control.

エンジンの吸入空気流量検出用の熱式流量計は一般に公
知である定温度型測定法が用いられている。
As a thermal type flow meter for detecting an intake air flow rate of an engine, a generally known constant temperature measuring method is used.

定温度型回路は一方のブリツジ分岐に発熱抵抗体を、他
方のブリツジ分岐に流体温度に応じて抵抗値が変化する
温度補償用抵抗体を接続したブリツジ回路を備え、この
ブリツジ回路の対角線分岐を加熱電流制御用増幅器の入
力端子に接続し、発熱抵抗体と温度補償用抵抗体との温
度差をほぼ一定になるように加熱電流を制御している。
The constant temperature circuit has a bridging circuit in which a heating resistor is connected to one of the bridge branches and a temperature compensating resistor whose resistance value changes according to the fluid temperature is connected to the other branch of the bridge. It is connected to the input terminal of the heating current control amplifier, and the heating current is controlled so that the temperature difference between the heating resistor and the temperature compensating resistor becomes substantially constant.

したがつて、ブリツジ回路内の温度補償用抵抗の抵抗値
を検出することは困難であり、流体温度を検出するには
温度補償用抵抗体をブリツジ回路と分離する必要があつ
た。
Therefore, it is difficult to detect the resistance value of the temperature compensating resistor in the bridge circuit, and it is necessary to separate the temperature compensating resistor from the bridge circuit in order to detect the fluid temperature.

このような種類の熱式流量計として以下の方法があつ
た。第2図はたとえば特開昭55−114911号公報に示され
た従来の熱式流量計の構成を示す。
The following methods have been used for this type of thermal flowmeter. FIG. 2 shows the construction of a conventional thermal type flow meter disclosed in, for example, Japanese Patent Laid-Open No. 55-114911.

この第2図において、1は流路、2はこの流路1中に配
設され、温度依存性を有する発熱抵抗体である。
In FIG. 2, reference numeral 1 is a flow path, and 2 is a heating resistor disposed in the flow path 1 and having temperature dependency.

この発熱抵抗体2と固定抵抗体4〜6とによりブリツジ
回路を構成し、発熱抵抗体2と固定抵抗4との接続点は
制御器12の出力端に接続され、固定抵抗5と6との接
続点とはアースされ、ブリツジ回路の対角線分岐A,B
は制御器12の入力端に接続している。制御器12に
は、電源9Aが接続されている。
The heating resistor 2 and the fixed resistors 4 to 6 form a bridge circuit. The connection point between the heating resistor 2 and the fixed resistor 4 is connected to the output end of the controller 12, and the fixed resistors 5 and 6 are connected. The connection point is grounded and the diagonal branches A and B of the bridge circuit are connected.
Is connected to the input end of the controller 12. A power supply 9A is connected to the controller 12.

また、電源9Bは定電流源8に接続されており、この定
電流源8とアース間に温度補償用抵抗体3が接続されて
いる。この温度補償用抵抗体3は流路1内に配置されて
おり、この流路1内において、定電流源8より温度補償
用抵抗体3に定電流を流すようにしている。
The power source 9B is connected to the constant current source 8, and the temperature compensating resistor 3 is connected between the constant current source 8 and the ground. The temperature compensating resistor 3 is arranged in the flow path 1, and a constant current is supplied from the constant current source 8 to the temperature compensating resistor 3 in the flow path 1.

温度補償用抵抗体3の両端には、比例動作素子13が接
続されている。なお、10は加熱電流を検出する流量検
出用信号、11は流体温度検出用信号である。
Proportional operating elements 13 are connected to both ends of the temperature compensating resistor 3. Reference numeral 10 is a flow rate detection signal for detecting the heating current, and 11 is a fluid temperature detection signal.

次に動作について説明する。流路1中には温度依存性抵
抗体よりなる発熱抵抗体2と流体温度を検知する温度補
償用抵抗体3が配設されている。温度補償用抵抗体3に
は1〜3mA程度の定電流が電源9Bと定電流回路8より
供給されている。
Next, the operation will be described. A heating resistor 2 made of a temperature-dependent resistor and a temperature compensating resistor 3 for detecting a fluid temperature are arranged in the flow path 1. A constant current of about 1 to 3 mA is supplied to the temperature compensating resistor 3 from the power source 9B and the constant current circuit 8.

比例動作素子13は上記温度補償用抵抗3の両端間電圧
に比例した電圧を出力する。
The proportional operating element 13 outputs a voltage proportional to the voltage across the temperature compensating resistor 3.

また、上記発熱抵抗体2と固定抵抗4〜6とのブリツジ
回路の対角線分岐点A,Bおよび比例動作素子13の出
力は制御器12に入力される。
Further, the diagonal branch points A and B of the bridge circuit of the heating resistor 2 and the fixed resistors 4 to 6 and the output of the proportional action element 13 are input to the controller 12.

制御器12では、流体温度が変化しても流体温度と発熱
抵抗体の温度差がほぼ一定になるようにブリツジに電流
を供給している。このような定温度型制御回路を構成す
るとき、発熱抵抗体2に流れる電流は流量の関数とな
る。
The controller 12 supplies an electric current to the bridge so that the temperature difference between the fluid temperature and the heating resistor becomes substantially constant even if the fluid temperature changes. When configuring such a constant temperature control circuit, the current flowing through the heating resistor 2 becomes a function of the flow rate.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

従来の定温度型熱式流量計で流体温度を検出する場合に
は以上のように温度補償用抵抗体3をブリツジ回路とは
別に構成する必要があり、かつ、発熱抵抗体2と流体の
温度差を一定に保持する制御器12が複雑になるなどの
問題点があつた。
When detecting the fluid temperature with the conventional constant temperature type thermal flow meter, it is necessary to configure the temperature compensating resistor 3 separately from the bridge circuit as described above, and the temperature of the heat generating resistor 2 and the fluid temperature. There has been a problem that the controller 12 for keeping the difference constant becomes complicated.

この発明は、かかる問題点を解決するためになされたも
ので、ブリツジ回路の構成を変化させることなく、流量
信号と同時に流体温度信号が得られる熱式流量計の流体
温度測定方法を得ることを目的とする。
The present invention has been made to solve such a problem, and to obtain a fluid temperature measuring method for a thermal type flow meter capable of obtaining a fluid temperature signal at the same time as a flow rate signal without changing the configuration of a bridge circuit. To aim.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る熱式流量計の流体温度検出方法は、発熱
抵抗体と温度補償用抵抗体および固定抵抗体とともにブ
リツジ回路を構成して流量検出信号の他に発熱抵抗体の
抵抗値に比例する電圧を検出し、演算処理することによ
り流体温度を検知するようにしたものである。
A fluid temperature detecting method for a thermal type flow meter according to the present invention constitutes a bridge circuit together with a heating resistor, a temperature compensating resistor and a fixed resistor, and is proportional to the resistance value of the heating resistor in addition to a flow rate detection signal. The fluid temperature is detected by detecting the voltage and performing arithmetic processing.

〔作用〕[Action]

この発明においては、ブリツジ回路の2個所の電圧から
発熱抵抗体の抵抗値を演算処理により導き、その値から
流体温度を検知する。
In the present invention, the resistance value of the heating resistor is derived from the voltage at the two points of the bridge circuit by arithmetic processing, and the fluid temperature is detected from the value.

〔実施例〕〔Example〕

以下、この発明の熱式流量計の流体温度測定方法の実施
例について図面に基づき説明する。第1図はその一実施
例に適用される熱式流量計の構成を示す回路図である。
この第1図において、第2図と同一部分には同一符号を
付して述べる。
An embodiment of a fluid temperature measuring method for a thermal type flow meter according to the present invention will be described below with reference to the drawings. FIG. 1 is a circuit diagram showing the configuration of a thermal type flow meter applied to the embodiment.
In FIG. 1, the same parts as those in FIG. 2 are described with the same reference numerals.

この第1図では、吸気管の吸気用の流路1に温度依存性
抵抗体からなる発熱抵抗体2、流体温度検出用の温度補
償用抵抗体3が配置されており、この発熱抵抗体2と固
定抵抗6が電流供給用増幅器7の出力端A1とアース間
に直列に接続されている。
In FIG. 1, a heat generating resistor 2 composed of a temperature-dependent resistor and a temperature compensating resistor 3 for detecting a fluid temperature are arranged in an intake passage 1 of an intake pipe. And the fixed resistor 6 are connected in series between the output terminal A1 of the current supply amplifier 7 and the ground.

同様にして、電流供給用増幅器7の出力端A1とアース
間には温度補償用抵抗体3と固定抵抗4,5との直列回
路が接続されている。かくして、発熱抵抗体2、温度補
償用抵抗体3、固定抵抗4〜6とによりブリツジ回路が
構成されている。電流供給用増幅器7はブリツジ回路に
加熱電流を供給し、かつこのブリツジ回路の出力を入力
とするものである。
Similarly, a series circuit of the temperature compensating resistor 3 and the fixed resistors 4 and 5 is connected between the output terminal A1 of the current supply amplifier 7 and the ground. Thus, the heat generating resistor 2, the temperature compensating resistor 3, and the fixed resistors 4 to 6 form a bridge circuit. The current supply amplifier 7 supplies a heating current to the bridge circuit and receives the output of the bridge circuit as an input.

固定抵抗4と5との接続点Cおよび固定抵抗6と発熱抵
抗体2との接続点B1は電流供給用増幅器7の入力端に
接続されている。この電流供給用増幅器7には電源9C
より電力が供給されるようになつている。なお、10は
流量検出用信号、14は発熱抵抗値検出用信号である。
The connection point C between the fixed resistors 4 and 5 and the connection point B1 between the fixed resistor 6 and the heating resistor 2 are connected to the input end of the current supply amplifier 7. The current supply amplifier 7 has a power supply 9C
More power is being supplied. Reference numeral 10 is a flow rate detection signal, and 14 is a heat generation resistance value detection signal.

次に、この第1図によりこの発明の流体温度測定方法に
ついて説明する。発熱抵抗体2、温度補償用抵抗体3、
固定抵抗4〜6のそれぞれの抵抗値をRH,RK,R4
5,R6とする。ブリツジ回路が平衡状態にあるとき、
次式が成立する。
Next, the fluid temperature measuring method of the present invention will be described with reference to FIG. Heating resistor 2, temperature compensating resistor 3,
The resistance values of the fixed resistors 4 to 6 are set to R H , R K , R 4 ,
Let them be R 5 and R 6 . When the bridge circuit is in equilibrium,
The following equation holds.

一方、流量検出用信号10の電圧をV10とし、発熱体抵
抗検出用信号14の電圧をV14とすると、 V10=IR6 ……(2) V14=I(R6+RH) ……(3) である。
On the other hand, if the voltage of the flow rate detection signal 10 is V 10 and the voltage of the heating element resistance detection signal 14 is V 14 , then V 10 = IR 6 (2) V 14 = I (R 6 + RH ) ... … (3).

この(2),(3)式より、 この(4)式を(1)式に代入すると、 となる。From these equations (2) and (3), Substituting equation (4) into equation (1), Becomes

抵抗値R5,R4が既知であるならば、流量検出用信号V
10と発熱抵抗検出用信号14の電圧V14から温度補償用
抵抗体3の抵抗値を導くことができる。
If the resistance values R 5 and R 4 are known, the flow rate detection signal V
The resistance value of the temperature compensating resistor 3 can be derived from 10 and the voltage V 14 of the heating resistance detecting signal 14.

したがつて、上記二つの信号をA/D変換器を介してマイ
クロコンピユータに取り込んだ後演算処理することによ
り、流量が測定できると同時に流体温度も検知できる。
Therefore, the flow rate can be measured and at the same time the fluid temperature can be detected by performing arithmetic processing after capturing the above two signals into the microcomputer via the A / D converter.

なお、上記実施例では、発熱抵抗検出用信号14として
電流供給用増幅器7の出力端A1を採用したが、A/D変
換器の入力電圧範囲を越える場合は出力端A1点と接続
点B1点を差動増幅器の入力とし、この差動増幅器の出
力を発熱体抵抗検出用信号として上記実施例と同様に演
算処理し、流体温度を検知することも可能である。
In the above embodiment, the output terminal A1 of the current supply amplifier 7 is used as the heating resistance detection signal 14, but when the input voltage range of the A / D converter is exceeded, the output terminal A1 point and the connection point B1 point are used. Can be used as the input of the differential amplifier, and the output of this differential amplifier can be used as the heating element resistance detection signal to perform arithmetic processing in the same manner as in the above embodiment to detect the fluid temperature.

〔発明の効果〕〔The invention's effect〕

この発明は以上説明したとおり、定温度型熱式流量計の
発熱抵抗体の抵抗値に比例した電圧と、加熱電流に比例
した電圧を検出し、演算することにより、ブリツジ回路
を変更させることなく空気温度も同時に検出できるの
で、流体温度変化の大きいエンジン制御に適用する場合
きわめて有用である。
As described above, the present invention detects the voltage proportional to the resistance value of the heating resistor of the constant temperature type thermal flow meter and the voltage proportional to the heating current, and calculates the voltage without changing the bridge circuit. Since the air temperature can be detected at the same time, it is extremely useful when applied to engine control in which fluid temperature changes greatly.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の熱式流量計の流体温度測定方法の一
実施例に適用される熱式流量計の回路図、第2図は従来
の熱式流量計の流体温度測定方法に適用される熱式流量
計の回路図である。 1……流路、2……発熱抵抗体、3……温度補償用抵抗
体、4〜6……固定抵抗、7……電流供給用増幅器、9
C……電源。 なお、図中同一符号は同一または相当部分を示す。
FIG. 1 is a circuit diagram of a thermal type flow meter applied to an embodiment of a method for measuring a fluid temperature of a thermal type flow meter of the present invention, and FIG. 2 is applied to a conventional fluid temperature measuring method of a thermal type flow meter. FIG. 3 is a circuit diagram of a thermal type flow meter. 1 ... Flow path, 2 ... Heating resistor, 3 ... Temperature compensation resistor, 4-6 ... Fixed resistor, 7 ... Current supply amplifier, 9
C ... power supply. The same reference numerals in the drawings indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一方のブリツジ分岐に吸気管の空気流中に
配設されかつ加熱電流によつて発熱した温度依存性の発
熱抵抗体と固定抵抗を接続し、他方のブリツジ分岐に流
体温度に応じて抵抗値が変化する温度補償用抵抗体を接
続してブリツジ回路を形成し、このブリツジ回路の対角
線分岐を加熱電流を制御する電流供給用増幅器の入力端
子に接続し、前記発熱抵抗体と温度補償用抵抗体との温
度差をほぼ一定になるように前記加熱電流を制御する熱
式流量計において、前記発熱抵抗体と接続した固定抵抗
の両端電圧と前記発熱抵抗体の抵抗値に比例した電圧を
検出し演算処理して流体温度を検出することを特徴とす
る流体温度測定方法。
1. A bridging branch is connected to a temperature-dependent heating resistor, which is arranged in the air flow of an intake pipe and generates heat by a heating current, and a fixed resistance, and the other bridging branch is connected to a fluid temperature. A bridge circuit is formed by connecting a temperature compensating resistor whose resistance value changes according to the diagonal line branch of the bridge circuit is connected to an input terminal of a current supply amplifier for controlling a heating current, and the heating resistor In a thermal type flow meter that controls the heating current so that the temperature difference between the temperature compensating resistor and the temperature compensating resistor becomes substantially constant, the voltage across the fixed resistor connected to the heating resistor is proportional to the resistance value of the heating resistor. A method for measuring a fluid temperature, which comprises detecting the applied voltage and performing arithmetic processing to detect the fluid temperature.
JP62040955A 1987-02-23 1987-02-23 How to measure fluid temperature of thermal flow meter Expired - Fee Related JPH0629748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62040955A JPH0629748B2 (en) 1987-02-23 1987-02-23 How to measure fluid temperature of thermal flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62040955A JPH0629748B2 (en) 1987-02-23 1987-02-23 How to measure fluid temperature of thermal flow meter

Publications (2)

Publication Number Publication Date
JPS63206616A JPS63206616A (en) 1988-08-25
JPH0629748B2 true JPH0629748B2 (en) 1994-04-20

Family

ID=12594915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62040955A Expired - Fee Related JPH0629748B2 (en) 1987-02-23 1987-02-23 How to measure fluid temperature of thermal flow meter

Country Status (1)

Country Link
JP (1) JPH0629748B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4790405B2 (en) * 2005-12-16 2011-10-12 三菱電機株式会社 Thermal flow sensor

Also Published As

Publication number Publication date
JPS63206616A (en) 1988-08-25

Similar Documents

Publication Publication Date Title
EP1564532B1 (en) Thermal mass flowmeter and method with temperature correction
JP2631481B2 (en) Mass flow meter and its measurement method
JP4355792B2 (en) Thermal flow meter
JPH0663803B2 (en) Zero compensation method
KR900005880B1 (en) Thermo-water meter
EP0324620B1 (en) Angular velocity sensor
JP2000146651A (en) Thermal air flow meter
JPH0629748B2 (en) How to measure fluid temperature of thermal flow meter
US6086251A (en) Process for operating a thermocouple to measure velocity or thermal conductivity of a gas
JP2788329B2 (en) Method and apparatus for measuring flow velocity and flow direction of fluid
JPH0356409B2 (en)
JPS61105422A (en) Flow rate measuring instrument
JP2879256B2 (en) Thermal flow meter
JPH06109506A (en) Heating element type air flowmeter
US4122722A (en) Anemometer compensator linearizer
KR100262225B1 (en) A measurement circuit of flow rate
JP3019009U (en) Mass flow meter
JP2771949B2 (en) Thermal flow sensor
JPS5826346Y2 (en) Karman vortex flow meter or current meter
JPS5912571Y2 (en) Intake air amount measuring device
JPH01245119A (en) Hot-wire type flow rate measuring instrument
JP2949527B2 (en) Mass flow meter
JP2008046143A (en) Thermal fluid sensor and flow sensor
KR20020080137A (en) Sensor for detecting the mass flow rate and device and method for controlling mass flow rate using it
GB1489874A (en) Apparatus and methods of measuring fluid flow

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees