JPS5826346Y2 - Karman vortex flow meter or current meter - Google Patents

Karman vortex flow meter or current meter

Info

Publication number
JPS5826346Y2
JPS5826346Y2 JP1978163901U JP16390178U JPS5826346Y2 JP S5826346 Y2 JPS5826346 Y2 JP S5826346Y2 JP 1978163901 U JP1978163901 U JP 1978163901U JP 16390178 U JP16390178 U JP 16390178U JP S5826346 Y2 JPS5826346 Y2 JP S5826346Y2
Authority
JP
Japan
Prior art keywords
output
component
karman vortex
current
meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1978163901U
Other languages
Japanese (ja)
Other versions
JPS5580717U (en
Inventor
徹 喜多
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP1978163901U priority Critical patent/JPS5826346Y2/en
Publication of JPS5580717U publication Critical patent/JPS5580717U/ja
Application granted granted Critical
Publication of JPS5826346Y2 publication Critical patent/JPS5826346Y2/en
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は熱線を用いてカルマン渦を検出する流量計又は
流速計に関し、特に低流量域に釦ける出力特性を改良し
た装置に関する。
[Detailed Description of the Invention] The present invention relates to a flowmeter or current meter that detects Karman vortices using a hot wire, and particularly relates to a device with improved output characteristics that can be pressed in a low flow rate region.

カルマン渦流量計は、流体中におかれた柱状物体によっ
て発生するカルマン渦の発生周波数が、流体の流量(流
速)に比例することを利用したものであり、例えば渦発
生個所に設けた熱線(電熱線)の抵抗変化をブリッジ回
路で検出することによって渦の周波数を検出するように
構成されている。
The Karman vortex flow meter utilizes the fact that the frequency of Karman vortex generated by a columnar object placed in a fluid is proportional to the flow rate (flow velocity) of the fluid. For example, a hot wire ( It is configured to detect the frequency of the vortex by detecting the change in resistance of the heating wire using a bridge circuit.

しかし、上記のように熱線に一定電流を流し、渦による
抵抗変化を検出する方式(以下、定電流方式と記す)に
ふ・いては、高流速、大流量の範囲では周波数応答性が
低下して感度が著しく低下し、かつ低周波のゆらぎが相
対的に大きくなる等の欠点があシ、高精度で高範囲の測
定をすることが困難であった。
However, with the method described above, in which a constant current is passed through a hot wire and resistance changes due to eddies are detected (hereinafter referred to as constant current method), the frequency response decreases in the range of high flow velocity and large flow rate. This method has drawbacks such as a significant decrease in sensitivity and a relatively large fluctuation in low frequencies, making it difficult to measure with high precision over a wide range.

上記の欠点を解決するため定温度方式が提案されている
A constant temperature method has been proposed to solve the above drawbacks.

この定温度方式は、例えば第1図に示すごとく、熱線R
jを含んだブリッジ回路1の出力を増幅器2で増幅した
後、帰還抵抗Rfを介してブリッジ回路1に負帰還し、
熱線Rtが常に一定温度になるように制御するものであ
る。
In this constant temperature method, for example, as shown in FIG.
After the output of the bridge circuit 1 including j is amplified by the amplifier 2, it is negatively fed back to the bridge circuit 1 via the feedback resistor Rf,
This is to control the heat wire Rt so that it always has a constant temperature.

上記のごとき定温度方式においては、低周波のゆらぎが
遮断され、高流速、大流量の範囲筐で正確に測定するこ
とが出来る。
In the constant temperature method described above, low frequency fluctuations are blocked and accurate measurements can be made in a range of high flow velocity and large flow rate.

しかし、従来の定温度方式においては、ブリッジ回路1
の出力を増幅してその11負帰還させているので、低流
速でカルマン渦の発生周波数が低く、熱線自身の応答性
で十分追従出来る範囲では、負帰還のためにかえって出
力電圧の振幅が著しく減衰するという欠点がある。
However, in the conventional constant temperature method, the bridge circuit 1
Since the output of 11 is amplified and negative feedback is provided, in the range where the flow velocity is low, the frequency of Karman vortex generation is low, and the response of the hot wire itself is sufficient to track it, the amplitude of the output voltage will be significantly increased due to the negative feedback. It has the disadvantage of being attenuated.

な督第1図において、3はカウンタ、4は電源である。Note that in FIG. 1, 3 is a counter and 4 is a power supply.

第2図は定温度方式の特性の一例図であり、渦周波数の
低い範囲(低流速範囲)で出力電圧が低下していること
が判る(ここで出力電圧は増幅器2の出力電圧の最大と
最小の差の値を示す。
Figure 2 shows an example of the characteristics of the constant temperature method, and it can be seen that the output voltage decreases in the low vortex frequency range (low flow velocity range) (here, the output voltage is the maximum output voltage of amplifier 2). Indicates the minimum difference value.

)また第3図イは前記の定電流方式の出力波形図、口は
上記の定温度方式の出力波形図である。
3A is an output waveform diagram of the constant current method described above, and FIG. 3B is an output waveform diagram of the constant temperature method described above.

第3図から判るように、定電流方式では大流量の範囲で
出力が低下し、また定温度方式では小流量の範囲で振幅
が減少する。
As can be seen from FIG. 3, in the constant current method, the output decreases in the range of large flow rates, and in the constant temperature method, the amplitude decreases in the range of small flow rates.

本考案は上記のごとき従来方式の欠点をなくし小流量か
ら大流量1で正確に測定することの出来るカルマン渦流
量計(又は流速計)を提供することを目的とする。
The object of the present invention is to provide a Karman vortex flowmeter (or current meter) that eliminates the drawbacks of the conventional method as described above and can accurately measure flow rates from small to large flow rates.

上記の目的を達成するため本考案においては、ブリッジ
回路の出力を直流成分と交流成分とに分け、熱線自身の
応答性のみで十分追従可能な低周波域(小流量域)では
上記直流成分及び交流成分のうち交流成分の負帰還を遮
断することにより1小流量域の出力特性を改善したもの
である。
In order to achieve the above object, the present invention divides the output of the bridge circuit into a DC component and an AC component, and in the low frequency range (small flow range) that can be sufficiently tracked only by the response of the hot wire itself, the DC component and This improves the output characteristics in a small flow rate region by blocking the negative feedback of the AC component among the AC components.

以下図面に基づいて本考案を詳細に説明する。The present invention will be explained in detail below based on the drawings.

第4図は本考案の一実施例図である。FIG. 4 is a diagram showing one embodiment of the present invention.

第4図において、熱線R5及び抵抗R1〜R3はブリッ
ジ回路5を構成し、演算増幅器OP1及び抵抗R4〜R
7は差動増幅回路6を構成し、コンデンサC1及ヒ抵抗
R8,R9はローパスフィルタ1を構成し、コンデンサ
C2及び抵抗R1o、R11はバイパスフィルタ8を構
成し、またトランジスタQ1及び抵抗R12pR13は
電流制御回路9を構成している。
In FIG. 4, a hot wire R5 and resistors R1 to R3 constitute a bridge circuit 5, and an operational amplifier OP1 and resistors R4 to R3 constitute a bridge circuit 5.
7 constitutes a differential amplifier circuit 6, a capacitor C1 and resistors R8 and R9 constitute a low-pass filter 1, a capacitor C2 and resistors R1o and R11 constitute a bypass filter 8, and a transistor Q1 and a resistor R12pR13 constitute a current It constitutes a control circuit 9.

また10は信号の出力端子である。Further, 10 is a signal output terminal.

ブリッジ回路5の出力は差動増幅回路6で増幅されたの
ち、ローパスフィルタ7とバイパスフィルタ8とに送ら
れる。
The output of the bridge circuit 5 is amplified by a differential amplifier circuit 6 and then sent to a low pass filter 7 and a bypass filter 8.

バイパスフィルタ8のカットオフ周波数は、熱線自身の
応答性で十分追従出来る周波数範囲の上限の値に定めら
れており、上記の周波数範囲の交流分を遮断又は減衰さ
せる。
The cutoff frequency of the bypass filter 8 is set at the upper limit of a frequency range that can be sufficiently followed by the response of the hot wire itself, and cuts off or attenuates the alternating current component in the above frequency range.

またローパスフィルタIのカットオフ周波数は、バイパ
スフィルタ8のカットオフ周波数よう十分低い値に設定
されており、はとんど直流成分のみを出力する。
Furthermore, the cutoff frequency of the low-pass filter I is set to a sufficiently low value, similar to the cutoff frequency of the bypass filter 8, and mostly outputs only the DC component.

例エバローパスフィルタ7の出力は第5図イ。For example, the output of the EVA low-pass filter 7 is shown in Fig. 5A.

バイパスフィルタ8の出力は第5図口に示すごとき特性
となる(ここで出力電圧は差動増幅器6の出力電圧の最
大と最小の差の値を示す。
The output of the bypass filter 8 has a characteristic as shown in FIG. 5 (here, the output voltage indicates the value of the difference between the maximum and minimum output voltages of the differential amplifier 6.

)。次にローパスフィルタTの出力とバイパスフィルタ
8の出力とは共に電流制御回路9に与えられ電流制御回
路9は入力信号に対応した電流をブリッジ回路5へ送る
). Next, both the output of the low-pass filter T and the output of the bypass filter 8 are applied to a current control circuit 9, and the current control circuit 9 sends a current corresponding to the input signal to the bridge circuit 5.

上記のごとく第4図の回路においては、ブリッジ回路5
の出力を増幅した信号の交流成分の所定周波数以上の成
分と直流成分との和の信号に比例した電流がブリッジ回
路5に帰還される。
As mentioned above, in the circuit of FIG. 4, the bridge circuit 5
A current proportional to the sum of the DC component and the AC component having a predetermined frequency or higher and the DC component of the amplified signal is fed back to the bridge circuit 5.

そのため直流成分によって平均温度が一定になるように
帰還され、また交流成分は低周波域での帰還量が低下す
る。
Therefore, the direct current component is fed back so that the average temperature is constant, and the amount of feedback of the alternating current component is reduced in the low frequency range.

したがって出力端子10から出力される信号の特性は、
第6図の実線りで示すごとく、低周波域(小流量域)l
で減衰のない優れた特性となる。
Therefore, the characteristics of the signal output from the output terminal 10 are:
As shown by the solid line in Figure 6, the low frequency region (small flow region)
It has excellent characteristics with no attenuation.

な督第6図において、破線Eは従来の定温度方式の特性
、一点鎖線Fは第4図で直流成分だけを帰還させた場合
(バイパスフィルタ8を削除した場合、この場合はほぼ
定電流方式に等しい)の特性を示す(ここでり、E、F
はブリッジの出力端に発生する最大と最小の電圧の差と
渦周波数との関係を示したもの)。
Note that in Figure 6, the broken line E is the characteristic of the conventional constant temperature method, and the dashed line F is the characteristic of the conventional constant current method when only the DC component is fed back (when the bypass filter 8 is removed). , where E, F
(shows the relationship between the difference between the maximum and minimum voltages generated at the output end of the bridge and the vortex frequency).

なお出力端子10の信号は、流速又は流量に比例した周
波数の信号であるから、カウンタ等を用いてその周波数
を計測すれば、流速又は流量を検出することが出来る。
Note that since the signal at the output terminal 10 is a signal with a frequency proportional to the flow rate or flow rate, the flow rate or flow rate can be detected by measuring the frequency using a counter or the like.

以上説明したごとく本考案によれば、ブリッジ回路の出
力の直流成分及び交流成分のうち交流成分の低周波域を
遮断して帰還させることにより、従来の低温度方式の欠
点であった小流量、低流速域での信号の減衰をなくシ、
小流量から大流量1での広い範囲で安定な出力を得るこ
とが出来るという効果がある。
As explained above, according to the present invention, by blocking and returning the low frequency range of the AC component of the DC and AC components of the output of the bridge circuit, the small flow rate, which was a drawback of the conventional low temperature method, can be reduced. Eliminates signal attenuation in low flow velocity range,
The effect is that stable output can be obtained over a wide range from small flow rate to large flow rate 1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来装置の一例図、第2図は従来装置の出力特
性図、第3図は従来装置の出力波形図、第4図は本考案
の一実施例図、第5図はローパスフィルタ及びバイパス
フィルタの出力特性図、第6図は出力特性図である。 符号の説明、1・・・・・・ブリッジ回路、2・・・・
・・増幅器、3・・・・・・カウンタ、4・・・・・・
電源、5・・・・・・ブリッジ回路、6・・・・・・差
動増幅回路、I・・・・・・ローパスフィルタ、8・・
・・・・バイパスフィルタ、9・・・・・・電流制御回
路、10・・・・・・出力端子。
Fig. 1 is an example of a conventional device, Fig. 2 is an output characteristic diagram of the conventional device, Fig. 3 is an output waveform diagram of the conventional device, Fig. 4 is an example of an embodiment of the present invention, and Fig. 5 is a low-pass filter. FIG. 6 is an output characteristic diagram of the bypass filter. Explanation of symbols, 1...Bridge circuit, 2...
...Amplifier, 3...Counter, 4...
Power supply, 5... Bridge circuit, 6... Differential amplifier circuit, I... Low pass filter, 8...
... Bypass filter, 9 ... Current control circuit, 10 ... Output terminal.

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] (1)柱状物体に設けた貫通孔内の加熱体の冷却を利用
した流体変位感応素子でカルマン渦の生成数を検出し、
かつ該検出出力を加熱体の温度が一定となるように帰還
するカルマン渦流量計又は流速計において、カルマン渦
の発生周波数が低下したとき上記帰還量の交流成分を低
下させる手段を備えたことを特徴とするカルマン渦流量
計又は流速計。
(1) Detecting the number of Karman vortices generated using a fluid displacement sensing element that utilizes cooling of a heating element in a through hole provided in a columnar object,
and a Karman vortex flowmeter or current meter that feeds back the detected output so that the temperature of the heating element is constant, comprising means for reducing the alternating current component of the feedback amount when the frequency of occurrence of the Karman vortex decreases. Features Karman vortex flowmeter or current meter.
(2)流体感応素子で検出された検出出力を増幅する第
1の手段と、該第1の手段の出力の直流成分を出力する
第2の手段と、上記第1の手段の出力の交流成分のうち
低周波成分を減衰させた出力を送出する第3の手段と、
上記第2の手段の出力と第3の手段の出力との和に対応
して帰還量を制御する第4の手段とを備え、直流成分は
加熱体の平均温度が一定になるように常時帰還させ、交
流成分の帰還量は低周波域で減衰させることを特徴とす
る実用新案登録請求の範囲第1項記載のカルマン渦流量
計又は流速計。
(2) a first means for amplifying the detection output detected by the fluid sensing element; a second means for outputting a DC component of the output of the first means; and an AC component of the output of the first means. a third means for transmitting an output with attenuated low frequency components;
and a fourth means for controlling the amount of feedback in accordance with the sum of the output of the second means and the output of the third means, and the DC component is constantly fed back so that the average temperature of the heating element is constant. The Karman vortex flowmeter or current velocity meter according to claim 1, wherein the amount of feedback of the alternating current component is attenuated in a low frequency range.
JP1978163901U 1978-11-30 1978-11-30 Karman vortex flow meter or current meter Expired JPS5826346Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1978163901U JPS5826346Y2 (en) 1978-11-30 1978-11-30 Karman vortex flow meter or current meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1978163901U JPS5826346Y2 (en) 1978-11-30 1978-11-30 Karman vortex flow meter or current meter

Publications (2)

Publication Number Publication Date
JPS5580717U JPS5580717U (en) 1980-06-03
JPS5826346Y2 true JPS5826346Y2 (en) 1983-06-07

Family

ID=29160950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1978163901U Expired JPS5826346Y2 (en) 1978-11-30 1978-11-30 Karman vortex flow meter or current meter

Country Status (1)

Country Link
JP (1) JPS5826346Y2 (en)

Also Published As

Publication number Publication date
JPS5580717U (en) 1980-06-03

Similar Documents

Publication Publication Date Title
JP2631481B2 (en) Mass flow meter and its measurement method
US3803913A (en) Apparatus for determining heat-transfer rates and thus the flow rates or thermal conductivities of fluids
JPS6213605B2 (en)
US4459847A (en) Vortex shedding device
CN109297553A (en) MEMS heat membrane type flow sensor constant temperature difference control circuit
US5654507A (en) Pulse width modulated constant temperature anemometer
JPS5826346Y2 (en) Karman vortex flow meter or current meter
CN107014452A (en) The flow sensing circuit of constant difference thermal flow rate sensor
JP4052378B2 (en) Thermal flow meter
EP0088827B1 (en) Flow velocity measuring apparatus
JPH0663800B2 (en) Heater temperature control circuit
JPS6032567Y2 (en) Flow rate/flow rate detection device
SU1315834A1 (en) Device for measuring flow temperature and velocity
JPH075009A (en) Air flowrate measuring device of engine, fuel injection controller, and flow sensor to be used therein
JP2965808B2 (en) Eddy detection circuit
JPH0557624U (en) Flowmeter
JPS59136619A (en) Vortex flowmeter
JPH0476050B2 (en)
JPS63206616A (en) Measurement of fluid temperature by thermal flowmeter
JP3019009U (en) Mass flow meter
GB1489874A (en) Apparatus and methods of measuring fluid flow
JPS61247977A (en) Clog detector for filter
JP2001296165A (en) Flow rate measuring device and electronic flowmeter
SU613248A1 (en) Gas stream speed transducer
JPS6261890B2 (en)