JP2964186B2 - Thermal flow meter - Google Patents

Thermal flow meter

Info

Publication number
JP2964186B2
JP2964186B2 JP3298137A JP29813791A JP2964186B2 JP 2964186 B2 JP2964186 B2 JP 2964186B2 JP 3298137 A JP3298137 A JP 3298137A JP 29813791 A JP29813791 A JP 29813791A JP 2964186 B2 JP2964186 B2 JP 2964186B2
Authority
JP
Japan
Prior art keywords
fluid
flow rate
heat capacity
temperature
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3298137A
Other languages
Japanese (ja)
Other versions
JPH05107093A (en
Inventor
明 中村
達郎 黒丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKIKO KK
Original Assignee
TOKIKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKIKO KK filed Critical TOKIKO KK
Priority to JP3298137A priority Critical patent/JP2964186B2/en
Publication of JPH05107093A publication Critical patent/JPH05107093A/en
Application granted granted Critical
Publication of JP2964186B2 publication Critical patent/JP2964186B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、流体に生じる温度差を
検出して流体の流量を計測する熱式流量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal flow meter for measuring a flow rate of a fluid by detecting a temperature difference generated in the fluid.

【0002】[0002]

【従来の技術】従来の熱式流量計の一例として、流体を
通す管にヒータを設け、管の、ヒータの上流側及び下流
側にそれぞれ上流側及び下流側温度検出センサを設け、
かつヒータによる流体への加熱量、両温度検出センサの
検出温度差及び流体の物性データに基づいて管を通過す
る流体の流量を求める演算手段を設けたものがある。こ
の熱式流量計は、管内を流れる流体を発熱体により加熱
し、その際に上流側及び下流側温度センサで温度検出を
行ない、流体への加熱量、両温度検出センサの検出温度
差及び流体の物性データに基づいて流体の流量(質量流
量)を計測するようにしている。
2. Description of the Related Art As an example of a conventional thermal flow meter, a heater is provided in a pipe through which a fluid passes, and upstream and downstream temperature detection sensors are provided on the upstream and downstream sides of the heater, respectively.
In addition, there is provided an arithmetic unit for calculating the flow rate of the fluid passing through the pipe based on the amount of heating of the fluid by the heater, the difference between the temperatures detected by the two temperature detection sensors, and the physical property data of the fluid. In this thermal type flow meter, a fluid flowing in a pipe is heated by a heating element, and at that time, the temperature is detected by upstream and downstream temperature sensors. The flow rate (mass flow rate) of the fluid is measured based on the physical property data.

【0003】[0003]

【発明が解決しようとする課題】ところで、熱式流量計
では種々の流体に対して迅速かつ容易に流量計測できる
ことが望まれている。しかしながら、上述した熱式流量
計では、異なる種類の流体の流量を計測する場合には、
流量計測に先立ってあらかじめその流体の物性データに
対応させて各部材及び設定データ等に対して較正を施し
ておき、その後流量計則を行なうことになり、多種類に
わたる流体の流量計則を行なうには流体毎に各部の較正
が必要となり多くの時間がかかってしまい、上述した要
望に応えられていないというのが実状であった。
By the way, it is desired that the thermal type flow meter can measure the flow rate of various fluids quickly and easily. However, with the above-described thermal flow meter, when measuring the flow rates of different types of fluids,
Prior to the flow rate measurement, calibration is performed on each member and setting data in advance in correspondence with the physical property data of the fluid, and thereafter the flow rate regulation is performed, and the flow rate regulation of various kinds of fluids is performed. However, it is necessary to calibrate each part for each fluid, and it takes a lot of time, and it has not been possible to meet the above-mentioned demands.

【0004】なお、異なる種類の流体の流量を計測する
方策として、複数種類の流体の物性データをあらかじめ
メモリに格納しておき、流体の流量計則を行なう場合、
メモリから対応する物性データを読み出すようにするこ
とが考えられるが、この方策の場合は、計測できる流体
はあらかじめ選択しておいた種類のものに限定されるこ
ととなり、前記要望に対して適切には応えられていない
というのが実状であった。
As a measure for measuring the flow rates of different types of fluids, when the physical property data of a plurality of types of fluids is stored in a memory in advance and the flow rate of the fluid is measured,
It is conceivable to read out the corresponding physical property data from the memory, but in the case of this measure, the fluid that can be measured is limited to a preselected type, and it is appropriate to meet the demand. In fact, it was not answered.

【0005】本発明は、上記事情に鑑みてなされたもの
で、流体の種類に応じた適正な流量計測を迅速かつ容易
に達成できる熱式流量計を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a thermal flow meter capable of quickly and easily achieving appropriate flow measurement according to the type of fluid.

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成するために、流体を通す管に取付けた発熱体と、前記
管の前記発熱体の上流側及び下流側にそれぞれ設けた上
流側及び下流側温度検出手段と、前記発熱体による前記
流体への加熱量、前記両温度検出手段の検出温度差に基
づいて前記管を通過する流体の流量を求める演算手段と
を有した熱式流量計において、前記両温度検出手段のう
ち少なくとも一方に接続し、かつ停止状態において管内
流体に対する積算加熱量及び接続された前記温度検出手
段で得られる温度変化に基づいて前記流体の熱容量を測
定する熱容量測定手段を備えたことを特徴とする。
In order to achieve the above object, the present invention provides a heating element mounted on a pipe through which a fluid passes, and an upstream side provided on the upstream and downstream sides of the heating element of the pipe, respectively. And a downstream-side temperature detecting means, and a calculating means for calculating the flow rate of the fluid passing through the pipe based on the amount of heating of the fluid by the heating element and the temperature difference detected by the two temperature detecting means. A heat capacity connected to at least one of the two temperature detecting means, and measuring a heat capacity of the fluid based on an integrated heating amount for the fluid in the pipe and a temperature change obtained by the connected temperature detecting means in a stopped state. It is characterized by having measuring means.

【0007】[0007]

【作用】このような構成とすれば、熱容量測定手段が、
停止状態における管内流体に対する積算加熱量及び温度
検出手段で得られる温度変化に基づいて流体の熱容量を
得るので、任意の流体の物性データを用いて流量計測す
ることにより、流体を変更することに伴う装置各部に対
する較正を施すことなく、任意の流体の流量を流体の種
類に応じて計測できる。
According to this structure, the heat capacity measuring means is
Since the heat capacity of the fluid is obtained based on the integrated heating amount of the fluid in the pipe in the stopped state and the temperature change obtained by the temperature detecting means, the flow rate is measured by using the physical property data of the arbitrary fluid, thereby changing the fluid. It is possible to measure the flow rate of an arbitrary fluid according to the type of fluid without performing calibration on each part of the device.

【0008】[0008]

【実施例】以下、本発明の一実施例の熱式流量計を図1
ないし図3に基づいて説明する。図において、1は流体
を通す管で、この管1は肉厚の薄いステンレス等の金属
材料またはフッ素樹脂等の樹脂材料で構成されている。
管1の途中にはコイル状のヒータ2が密着した状態で嵌
装されている。ヒータ2には電力供給回路3が接続され
ていてヒータ2に電力を供給してヒータ2を発熱させ、
このヒータ2の発熱により流体を加熱するようになって
いる。この場合、電力供給回路3は常時は後述する流量
演算回路4からの計測制御信号aに応じて流体を加熱す
る一方、後述する熱容量測定回路5からの変更時制御信
号bを入力することにより前記計測制御信号aによる流
体加熱を中断し、変更時制御信号bに応じて流体を加熱
するようになっている。
FIG. 1 shows a thermal flow meter according to an embodiment of the present invention.
A description will be given based on FIG. In the figure, reference numeral 1 denotes a pipe through which a fluid passes, and this pipe 1 is made of a thin metal material such as stainless steel or a resin material such as fluororesin.
A coil-shaped heater 2 is fitted in the middle of the tube 1 in a state of being in close contact therewith. A power supply circuit 3 is connected to the heater 2 and supplies power to the heater 2 to cause the heater 2 to generate heat.
The fluid is heated by the heat generated by the heater 2. In this case, the power supply circuit 3 always heats the fluid in accordance with the measurement control signal a from the flow rate calculation circuit 4 described later, while inputting the change control signal b from the heat capacity measurement circuit 5 described later, The fluid heating by the measurement control signal a is interrupted, and the fluid is heated in accordance with the change control signal b.

【0009】管1の、ヒータ2の上流側部分及び下流側
部分には上流側及び下流側温度センサ6,7がそれぞれ
設けられている。上流側及び下流側温度センサ6,7の
それぞれは、小型のサーミスタ、薄膜の白金測温抵抗体
または白金等の温度係数が大きい金属製の細線等により
構成されており、応答性の優れたものになっている。
Upstream and downstream temperature sensors 6 and 7 are provided at the upstream and downstream portions of the heater 1 of the tube 1, respectively. Each of the upstream and downstream temperature sensors 6 and 7 is made of a small thermistor, a thin-film platinum resistance temperature detector, or a thin metal wire having a large temperature coefficient, such as platinum, and has excellent responsiveness. It has become.

【0010】上流側及び下流側温度センサ6,7及び電
力供給回路3に接続して演算手段8が設けられており、
また下流側温度センサ7に接続して熱容量測定回路5が
設けられている。
An arithmetic means 8 is provided connected to the upstream and downstream temperature sensors 6, 7 and the power supply circuit 3.
Further, a heat capacity measuring circuit 5 is provided connected to the downstream temperature sensor 7.

【0011】演算手段8は、温度差検出回路9と、前記
流量演算回路4と、物性データ変更回路10とから概略構
成されている。
The calculating means 8 is generally constituted by a temperature difference detecting circuit 9, the flow rate calculating circuit 4, and a physical property data changing circuit 10.

【0012】温度差検出回路9は、上流側及び下流側温
度センサ6,7のそれぞれが検出する上流側及び下流側
検出温度Ta ,Tb を入力して温度差ΔT(ΔT=Tb
−Ta )を求め、この温度差ΔTを流量演算回路4に出
力する。
[0012] Temperature difference detecting circuit 9, upstream and downstream detection temperature T a respective upstream and downstream temperature sensors 6 and 7 detects, type T b temperature difference [Delta] T ([Delta] T = T b
−T a ), and outputs the temperature difference ΔT to the flow rate calculation circuit 4.

【0013】流量演算回路4は、基準となる(較正用)
流体Sf の比熱CP 、流体Sf の熱容量Cf 等により定
まる、流体Sf の物性データとしての係数kf 及び温度
差検出回路9からの温度差ΔT等に次式(1)の関係が
あることに基づき、この式(1)の演算を行なって質量
流量Qを求めるようになっている。 W=kf ・CP ・Q・ΔT … … (1) W:流体に対する加熱量
The flow rate calculation circuit 4 serves as a reference (for calibration).
Specific heat C P of the fluid S f, determined by the heat capacity C f, etc. of the fluid S f, the relationship of the following equation (1) to the temperature difference ΔT and the like from the coefficient k f and the temperature difference detecting circuit 9 as property data of the fluid S f Based on the above, there is calculated the mass flow rate Q by performing the calculation of the equation (1). W = k f · C P · Q · ΔT (1) W: Heating amount of fluid

【0014】物性データ変更回路10は、熱容量測定回路
5から、任意の流体である測定対象流体Sa の熱容量C
a を示すデータを入力することによりその熱容量Ca
応じて次式(2)の演算を行ない、測定対象流体Sa
物性データである係数ka を求め、流量演算回路4にお
ける流量算出に用いられる前記係数kf に替えてこの測
定対象流体Sa の係数ka を流量演算回路4に用いさせ
る。 ka =Ca /Cf … … (2) Cf :あらかじめ求められる較正用流体Sf の熱容量 (ただし、測定対象流体としてのCf やCa は、熱容量
に相当する量である。すなわち、Ca =k・C(k:係
数、C:熱容量)である。)
The physical property data changing circuit 10 outputs the heat capacity C of the fluid S a , which is an arbitrary fluid, from the heat capacity measuring circuit 5.
performs the following calculation (2) in accordance with the heat capacity C a by inputting data indicating a, obtains the coefficients k a is the physical property data of the measurement target fluid S a, the flow rate calculation of the flow rate operation circuit 4 instead of the coefficient k f used makes use of a coefficient k a of the measurement object fluid S a flow rate computation circuit 4. k a = C a / C f ... (2) C f : heat capacity of the calibration fluid S f determined in advance (however, C f and C a as the fluid to be measured are amounts corresponding to the heat capacity. , C a = k · C (k: coefficient, C: heat capacity).)

【0015】熱容量測定回路5は、スイッチ11を接続し
ており、スイッチ11がオン操作されることにより電力供
給回路3に変更時制御信号bを出力すると共に、後述す
るようにして測定対象流体Sa の熱容量Ca の測定処理
を行なって、この測定処理によって得られた熱容量Ca
を物性データ変更回路10に出力する。
The heat capacity measuring circuit 5 has a switch 11 connected thereto, and when the switch 11 is turned on, outputs a change-time control signal b to the power supply circuit 3 and, as will be described later, a fluid S to be measured. a) to measure the heat capacity C a , and obtain the heat capacity C a obtained by the measurement processing.
Is output to the physical property data change circuit 10.

【0016】熱容量測定回路5による測定対象流体Sa
の熱容量Ca の測定処理について説明する。まず、スイ
ッチ11をオン操作して計測時制御信号aによる電力供給
回路3の作動を停止させ、この状態で管1に測定対象流
体Sa を封入して流量ゼロの状態にしておく。次に、加
熱量W〔 cal/秒〕で測定対象流体Sa への加熱を開始
し、時間tf 秒後における温度Tb =Tf を測定する。
上記各データに基づいて熱容量測定回路5は次式(3)
の演算を行なって熱容量Ca を求める。 Ca =W・tf /(Tf −T0 ) … … (3) T0 :初期状態における下流側温度検出センサ5の検出
温度
The fluid S a to be measured by the heat capacity measuring circuit 5
The measurement processing of the heat capacity C a will be described. First, the operation of the power supply circuit 3 by the time the control signal a measuring switch 11 is turned on to stop, keep the state of zero flow by sealing measurement target fluid S a to the tube 1 in this state. Next, the heating of the fluid S a to be measured is started with the heating amount W [cal / sec], and the temperature T b = T f after the time t f seconds is measured.
Based on the above data, the heat capacity measuring circuit 5 calculates the following equation (3)
Is calculated to find the heat capacity C a . C a = W · t f / (T f −T 0 ) (3) T 0 : temperature detected by the downstream temperature detection sensor 5 in the initial state

【0017】以上のように構成された熱式流量計では、
管1内を流れる流体をヒータ2により加熱し、その際に
上流側及び下流側温度センサ6,7で温度検出を行な
い、流体への加熱量、両温度検出センサ6,7の検出温
度差及び流体の物性データに基づいて流体の流量(質量
流量)を計測することになるが、その流量計則に先立っ
て比熱CP 等が明らかになっている較正用流体f につい
てあらかじめ装置各部の較正を実施すると共に、流量演
算回路4等に対し較正用流体f の固有データを設定して
おく。
In the thermal type flow meter configured as described above,
The fluid flowing through the pipe 1 is heated by the heater 2, and at that time, the temperature is detected by the upstream and downstream temperature sensors 6, 7. becomes to measure the fluid flow rate (mass flow rate) on the basis of the property data of the fluid, the calibration of the pre respective units for the calibration fluid f specific heat C P in advance of its flowmeter law is revealed At the same time, specific data of the calibration fluid f is set in the flow rate calculation circuit 4 and the like.

【0018】そして、測定対象流体Sa の流量を測定す
る場合、あらかじめ時間t=0かつ加熱量W=0におい
て下流側温度検出センサ5の検出温度Tb =T0 を測定
し(ステップS1,S2)、この段階で、スイッチ11をオン
操作し、時間計測を開始すると共に、ヒータ2を発熱さ
せて測定対象流体Sa を加熱量W〔 cal/秒〕で加熱し
て熱容量測定処理を開始する(ステップS3)。
[0018] Then, when measuring the flow rate of the measurement target fluid S a, to measure the detected temperature T b = T 0 of the downstream side temperature detecting sensor 5 in advance the time t = 0 and the heating amount W = 0 (step S1, S2), at this stage, the switch 11 is turned on, and starts a time measurement, starting the heat capacity measurement process by heating the measurement object fluid S a by heating the heater 2 at a heating amount W [cal / sec] (Step S3).

【0019】下流側温度検出センサ7が検出温度Tb
熱容量測定回路5に出力する(ステップS4)一方、熱容
量測定回路5が、ステップS3からの時間tが時間tf
同等になった段階での下流側温度検出センサ7の検出温
度Tf を入力する(ステップS5,S6)ことにより、前記
式(3)の演算を行なって熱容量Ca を求めて、この熱
容量Ca を物性データ変更回路10に出力する(ステップ
S7)。
The downstream temperature sensor 7 outputs a detected temperature T b to the heat capacity measurement circuit 5 (step S4) On the other hand, stage heat capacity measuring circuit 5, the time t from the step S3 becomes equal to the time t f inputting a detected temperature T f of the downstream temperature sensor 7 at (step S5, S6) by, seeking heat capacity C a by performing calculation of the equation (3), the physical data change heat capacity C a Output to circuit 10 (step
S7).

【0020】物性データ変更回路10は、熱容量Ca を入
力することにより前記式(2)の演算を行なって係数k
a を求め(ステップS8)、この係数ka を流量演算回路
4に出力して流量演算回路4で流量算出に用いられる式
(1)の係数kに、この係数ka を替えて用いさせ(ス
テップS9)、この処理終了によりスイッチ11をオフ操作
して変更時制御信号bによる電力供給回路3の作動を停
止した状態にする。
The physical property data changing circuit 10 calculates the coefficient k by inputting the heat capacity C a and performing the operation of the above equation (2).
seeking a (step S8), and the coefficient k of the coefficient k a a is output to the flow rate calculation circuit 4 flow rate calculation circuit 4 used in the flow rate calculated by the equation (1), let used instead of the coefficients k a ( In step S9), upon completion of this process, the switch 11 is turned off, and the operation of the power supply circuit 3 by the change-time control signal b is stopped.

【0021】以上の処理を終了した段階で、測定対象流
体Sa を管1中に流し、管1内を流れる測定対象流体S
a をヒータ2により加熱し、その際に上流側及び下流側
温度センサ6,7で温度検出を行ない、測定対象流体S
a への加熱量W、両温度検出センサ6,7の検出温度差
ΔT及びステップS9で変更された係数ka に基づいて前
記(1)の演算を行なって測定対象流体Sa の流量(質
量流量)Qを得る。
At the stage where the above processing is completed, the fluid S a to be measured flows into the pipe 1 and the fluid S a flowing through the pipe 1
a is heated by the heater 2, and at that time, the temperature is detected by the upstream and downstream temperature sensors 6 and 7, and the fluid S to be measured is
heating amount W to a, of the measurement object fluid S a and performs the calculation of the based on the modified coefficients ka at the detected temperature difference ΔT and S9 both temperature sensors 6, 7 (1) flow rate (mass flow rate ) Get Q.

【0022】また、他の種類の流体の流量を計測する場
合には、上述した図3に示す処理をこの新たな測定対象
の流体に対して上述した説明と同様に実施することによ
り新たな測定対象の流体の流量を精度高く計測できる。
When measuring the flow rate of another type of fluid, the above-described processing shown in FIG. 3 is performed on the new fluid to be measured in the same manner as described above, thereby obtaining a new measurement. The flow rate of the target fluid can be measured with high accuracy.

【0023】このように熱容量測定回路5が測定対象流
体Sa の熱容量Ca を求め、熱容量測定回路5が測定対
象流体Sa の熱容量Ca に基づいて測定対象流体Sa
係数ka を求め、流量演算回路4で用いられる、あらか
じめ設定された所定流体Sfの係数kf に替えてこの測
定対象流体Sa の係数ka を用いさせるので、流体を変
更することに伴う装置各部に対する流体毎の較正を施す
ことなく、測定対象流体Sa の流量を計測できることに
なる。装置各部に対する較正を施さなくて済むことによ
り、多種類の流体の流量計測を短時間でかつ容易に実施
できることになる。また、メモリに流体の物性データ等
格納しておいて流体の流量を計測するようにした従来の
熱式流量計では、計測できる流体の種類があらかじめメ
モリにデータが格納されたものに限定されるのに比し
て、本発明の熱式流量計では多種類にわたって流体の流
量を計測できることになる。
[0023] Thus determined the heat capacity C a heat capacity measuring circuit 5 is measured fluid S a, the coefficient k a measurement target fluid S a on the basis of the heat capacity measurement circuit 5 in the heat capacity C a measurement target fluid S a Since the coefficient k a of the fluid S a to be measured is used instead of the coefficient k f of the predetermined fluid S f used in the flow rate calculation circuit 4, the flow rate of the fluid is changed. without performing a calibration for each fluid, becomes possible to measure the flow rate of the measurement target fluid S a. Since it is not necessary to perform calibration for each part of the apparatus, the flow rate measurement of various kinds of fluids can be easily performed in a short time. Further, in a conventional thermal flow meter in which the physical property data of a fluid is stored in a memory and the flow rate of the fluid is measured, the types of fluid that can be measured are limited to those in which data is stored in the memory in advance. In contrast, the thermal type flow meter according to the present invention can measure the flow rate of the fluid over many types.

【0024】なお、上述した実施例では熱容量測定回路
5を下流側温度検出センサ7に接続して設けた場合を例
にしたが、本発明は、これに限定されるものではなく、
上流側温度検出センサ6に接続して設けたり、あるいは
例えば平均値を利用するように上流側及び下流側温度検
出センサ6,7に接続して設けて構成してもよい。
In the above-described embodiment, the case where the heat capacity measuring circuit 5 is provided so as to be connected to the downstream temperature detecting sensor 7 is taken as an example. However, the present invention is not limited to this.
It may be configured to be connected to the upstream temperature detection sensor 6 or to be connected to the upstream and downstream temperature detection sensors 6 and 7 to use, for example, an average value.

【0025】[0025]

【発明の効果】本発明は、以上説明したように構成され
た熱式流量計であるから、流体毎の装置各部に対する較
正を施すことなく、測定対象流体の流量の、流体の種類
に応じた計測を図れるので、多種類の流体の流量計測を
短時間でかつ容易に実施できる。また、流体の種類に応
じて流量計測できることにより、多種類にわたって流体
の流量を計測できることになる。
Since the present invention is a thermal flow meter constructed as described above, the flow rate of the fluid to be measured can be adjusted according to the type of fluid without performing calibration for each part of the apparatus for each fluid. Since measurement can be performed, the flow rate measurement of various types of fluids can be performed easily in a short time. Further, since the flow rate can be measured in accordance with the type of the fluid, the flow rate of the fluid can be measured in various types.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の熱式流量計を模式的に示す
図である。
FIG. 1 is a view schematically showing a thermal flow meter according to one embodiment of the present invention.

【図2】同熱式流量計の回路部分を示すブロック図であ
る。
FIG. 2 is a block diagram showing a circuit portion of the thermal type flow meter.

【図3】同熱式流量計の作用を示すフローチャートであ
る。
FIG. 3 is a flowchart showing the operation of the thermal type flow meter.

【符号の説明】[Explanation of symbols]

1 管 2 ヒータ 4 流量演算回路 5 熱容量測定回路 6 上流側温度センサ 7 下流側温度センサ 8 演算手段 10 物性データ変更回路 W 流体に対する加熱量 ΔT 検出温度差 Sf 所定流体 Sa 測定対象流体(任意の流体) kf 係数(所定流体の物性データ) ka 係数(任意の流体の物性データ) Qa 任意の流体熱容量1 tube 2 heater 4 flow rate computation circuit 5 heat capacity measuring circuit 6 upstream temperature sensor 7 downstream temperature sensor 8 arithmetic unit 10 physical data changing circuit W fluid to the heat quantity ΔT detected temperature difference S f predetermined fluid S a measurement target fluid (optionally fluid) property data of k f factor (physical data of a predetermined fluid) k a coefficient (any fluid) Q a any fluid heat capacity

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01F 1/68 G01P 5/12 Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) G01F 1/68 G01P 5/12

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 流体を通す管に取付けた発熱体と、前記
管の前記発熱体の上流側及び下流側にそれぞれ設けた上
流側及び下流側温度検出手段と、前記発熱体による前記
流体への加熱量、前記両温度検出手段の検出温度差に基
づいて前記管を通過する流体の流量を求める演算手段と
を有した熱式流量計において、前記両温度検出手段のう
ち少なくとも一方に接続し、かつ停止状態において管内
流体に対する積算加熱量及び接続された前記温度検出手
段で得られる温度変化に基づいて前記流体の熱容量を測
定する熱容量測定手段を備えたことを特徴とする熱式流
量計。
1. A heating element attached to a pipe through which a fluid passes, upstream and downstream temperature detecting means provided on an upstream side and a downstream side of the heating element of the pipe, respectively; Heating amount, in a thermal flow meter having computing means for calculating the flow rate of the fluid passing through the pipe based on the difference between the detected temperatures of the two temperature detecting means, connected to at least one of the two temperature detecting means, A thermal type flow meter further comprising a heat capacity measuring means for measuring a heat capacity of the fluid based on an integrated heating amount of the fluid in the pipe in a stopped state and a temperature change obtained by the connected temperature detecting means.
JP3298137A 1991-10-18 1991-10-18 Thermal flow meter Expired - Fee Related JP2964186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3298137A JP2964186B2 (en) 1991-10-18 1991-10-18 Thermal flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3298137A JP2964186B2 (en) 1991-10-18 1991-10-18 Thermal flow meter

Publications (2)

Publication Number Publication Date
JPH05107093A JPH05107093A (en) 1993-04-27
JP2964186B2 true JP2964186B2 (en) 1999-10-18

Family

ID=17855667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3298137A Expired - Fee Related JP2964186B2 (en) 1991-10-18 1991-10-18 Thermal flow meter

Country Status (1)

Country Link
JP (1) JP2964186B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4050857B2 (en) * 1999-04-27 2008-02-20 矢崎総業株式会社 Fluid discrimination device and flow rate measuring device
JP6110073B2 (en) * 2012-03-29 2017-04-05 高砂熱学工業株式会社 Flow rate measuring device and flow rate measuring method
AT513674B1 (en) * 2012-11-28 2014-08-15 Fronius Int Gmbh Method and device for monitoring the protective gas in a welding process
JP6499851B2 (en) * 2014-12-05 2019-04-10 新日本空調株式会社 Flow rate measurement method

Also Published As

Publication number Publication date
JPH05107093A (en) 1993-04-27

Similar Documents

Publication Publication Date Title
US6125695A (en) Method and apparatus for measuring a fluid
KR100485944B1 (en) Thermal flow sensor, method and apparatus for identifying fluid, flow sensor, and method and apparatus for flow measurement
US4464932A (en) Thermal mass flowmetering
US7647843B2 (en) Universal sensor controller for a thermal anemometer
JP2631481B2 (en) Mass flow meter and its measurement method
US6474155B1 (en) Constant-temperature-difference flow sensor
JPH086268Y2 (en) Thermal flow meter
JPH07218308A (en) Flow-rate measuring device
JP2964186B2 (en) Thermal flow meter
JPH04339218A (en) Thermal flowmeter
JP2788329B2 (en) Method and apparatus for measuring flow velocity and flow direction of fluid
JP2952438B2 (en) Thermal flow meter
JP3998295B2 (en) Mass flow meter
JP2879256B2 (en) Thermal flow meter
JP2004093174A (en) Flowmeter
JP2929356B2 (en) Flowmeter
JPH05107094A (en) Flow detection method of thermal flowmeter
JP2965464B2 (en) Flowmeter
JP4081639B2 (en) Thermal mass flow meter for liquids
JP2771949B2 (en) Thermal flow sensor
JP4907959B2 (en) Flow sensor correction unit, fluid discrimination device, and flow measurement device
JP3019009U (en) Mass flow meter
JP5522826B2 (en) Thermal flow meter
JP3766601B2 (en) Flow sensor and flow measurement device
KR20210018471A (en) Pressure insensitive thermal flow meter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees