JPH0843162A - Thermal air flow rate detector - Google Patents

Thermal air flow rate detector

Info

Publication number
JPH0843162A
JPH0843162A JP6195915A JP19591594A JPH0843162A JP H0843162 A JPH0843162 A JP H0843162A JP 6195915 A JP6195915 A JP 6195915A JP 19591594 A JP19591594 A JP 19591594A JP H0843162 A JPH0843162 A JP H0843162A
Authority
JP
Japan
Prior art keywords
flow rate
resistor
heating resistor
intake air
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6195915A
Other languages
Japanese (ja)
Inventor
Masao Tsukada
正夫 塚田
Hiroshi Aoi
寛 青井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corp filed Critical Unisia Jecs Corp
Priority to JP6195915A priority Critical patent/JPH0843162A/en
Publication of JPH0843162A publication Critical patent/JPH0843162A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Flowmeters (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To enhance accuracy in the detection of flow rate of sucked air by deciding whether air is flowing forward or reversely. CONSTITUTION:A first heating resistor 29 and a second heating resistor 30 are formed, respectively, in the upstream and downstream on an insulating board. Variation of each resistance RH1, RH2 is inputted, in the form of flow rate voltage V1, V2, to a differential amplifier 41. In case of forward air flow, V1>V2 and the differential amplifier 41 delivers an output voltage Vout higher than a bias voltage V0. In case of reverse air flow, V1<V2 and the differential amplifier 41 delivers an output voltage Vout lower than the bias voltage V0. Consequently, the output voltage Vout can be detected accurately.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば自動車用エンジ
ン等の吸入空気流量を検出するのに好適に用いられる熱
式空気流量検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal type air flow rate detecting device which is preferably used for detecting an intake air flow rate of an automobile engine or the like.

【0002】[0002]

【従来の技術】一般に、自動車用エンジン等では、エン
ジン本体の燃焼室内で燃料と吸入空気との混合気を燃焼
させ、その燃焼圧からエンジンの回転出力を取出すよう
にしており、燃料の噴射量を演算する上で吸入空気流量
を検出することが重要なファクターとなっている。
2. Description of the Related Art Generally, in an engine for an automobile or the like, a mixture of fuel and intake air is burned in a combustion chamber of an engine body, and a rotational output of the engine is taken out from the combustion pressure. Detecting the intake air flow rate is an important factor in calculating

【0003】そこで、図6および図7に従来技術の熱式
空気流量検出装置を示す。
Therefore, FIGS. 6 and 7 show a conventional thermal air flow rate detecting device.

【0004】図において、1は吸気管2の途中に設けら
れた熱式空気流量検出装置を示し、該熱式空気流量検出
装置1は、エンジン本体の燃焼室(図示せず)に向けて
矢示A方向に流通する吸入空気の流量を検出すべく、吸
気管2の途中に取付穴2Aを介して配設されている。
In the figure, reference numeral 1 denotes a thermal type air flow rate detecting device provided in the middle of an intake pipe 2. The thermal type air flow rate detecting device 1 is directed toward a combustion chamber (not shown) of an engine body. In order to detect the flow rate of the intake air flowing in the direction A shown, the intake pipe 2 is provided with a mounting hole 2A in the middle thereof.

【0005】3は熱式空気流量検出装置1の本体部を構
成する流量計本体を示し、該流量計本体3はインサート
モールド等の手段により図7に示すように成形され、巻
線状をなす後述の基準抵抗14を巻回すべく段付き円柱
状に形成された巻線部4と、該巻線部4の基端側に位置
して略円板状に形成され、後述の端子ピン8A〜8Dが
一体的に設けられた端子部5と、巻線部4の先端側から
吸気管2の径方向に延設され、吸気管2の中心部で後述
の発熱抵抗9および温度補償抵抗11を位置決めする検
出ホルダ6と、吸気管2の外側に位置して端子部5が接
続された後述の回路ケーシング7とから大略構成されて
いる。
Reference numeral 3 denotes a flow meter main body which constitutes the main body of the thermal air flow rate detecting device 1. The flow meter main body 3 is formed by means such as insert molding as shown in FIG. A winding portion 4 formed in a stepped columnar shape for winding a reference resistor 14 described below, and a substantially disk-shaped portion located on the base end side of the winding portion 4 and having terminal pins 8A to 8D is integrally provided, and is extended in the radial direction of the intake pipe 2 from the tip end side of the winding part 4, and a heating resistor 9 and a temperature compensating resistor 11 to be described later are provided at the center of the intake pipe 2. A detection holder 6 for positioning and a circuit casing 7 to be described later, which is located outside the intake pipe 2 and to which a terminal portion 5 is connected, are roughly configured.

【0006】7は吸気管2の取付穴2Aを閉塞するよう
に該吸気管2の外周側に設けられた回路ケーシングを示
し、該回路ケーシング7は絶縁性の樹脂材料等によって
形成され、その底部側には吸気管2の取付穴2Aに嵌合
する嵌合部7Aが一体的に設けられている。そして、該
回路ケーシング7は、例えばセラミック材料等からなる
絶縁基板上に流量調整抵抗および差動増幅器(いずれも
図示せず)等を実装した状態で、これらを内蔵するよう
になっている。
Reference numeral 7 denotes a circuit casing provided on the outer peripheral side of the intake pipe 2 so as to close the mounting hole 2A of the intake pipe 2, and the circuit casing 7 is made of an insulating resin material or the like and has a bottom portion. A fitting portion 7A that fits into the mounting hole 2A of the intake pipe 2 is integrally provided on the side. The circuit casing 7 incorporates a flow rate adjusting resistor, a differential amplifier (both not shown), and the like mounted on an insulating substrate made of, for example, a ceramic material.

【0007】8A,8B,8C,8Dは流量計本体3の
端子部5から軸方向に突出した4本の端子ピン(全体と
して各端子ピン8という)を示し、該各端子ピン8は流
量計本体3の巻線部4および検出ホルダ6内に埋設され
た例えば4本の端子板(図示せず)に一体化して設けら
れ、回路ケーシング7のコネクタ部(図示せず)に着脱
可能に接続されるものである。
Reference numerals 8A, 8B, 8C, and 8D denote four terminal pins (collectively referred to as terminal pins 8) axially protruding from the terminal portion 5 of the flowmeter body 3, and each of the terminal pins 8 is a flowmeter. It is provided integrally with, for example, four terminal plates (not shown) embedded in the winding portion 4 of the main body 3 and the detection holder 6, and is detachably connected to the connector portion (not shown) of the circuit casing 7. It is what is done.

【0008】9は流量計本体3の検出ホルダ6にターミ
ナル10A,10Bを介して設けられたホットフィルム
型の発熱抵抗を示し、該発熱抵抗9は温度変化に敏感に
反応して抵抗値が変化する白金等の感温性材料からな
り、例えばアルミナ等のセラミック材料からなる絶縁性
の筒体に白金線を巻回したり、白金膜を蒸着したりして
形成される小径の発熱抵抗素子によって構成されてい
る。そして、該発熱抵抗9はバッテリ(図示せず)から
の通電により、例えば240℃前,後の温度をもって発
熱した状態となり、吸気管2内を矢示A方向に流れる吸
入空気によって冷却されるときには、この吸入空気の流
量に応じて抵抗値が変化し流量の検出信号を出力させる
ものである。
Reference numeral 9 denotes a hot film type heating resistor provided on the detection holder 6 of the flowmeter main body 3 via terminals 10A and 10B. The heating resistor 9 is sensitive to temperature changes and its resistance value changes. It is composed of a small-diameter heating resistor element formed by winding a platinum wire or depositing a platinum film on an insulating cylinder made of a temperature-sensitive material such as platinum and made of a ceramic material such as alumina. Has been done. When the heating resistor 9 is energized by a battery (not shown), the heating resistor 9 is heated at a temperature of, for example, 240 ° C. before and after it is cooled by the intake air flowing in the intake pipe 2 in the direction of arrow A. The resistance value changes according to the flow rate of the intake air, and a detection signal of the flow rate is output.

【0009】11は発熱抵抗9の上流側に位置して流量
計本体3の検出ホルダ6に設けられた温度補償抵抗を示
し、該温度補償抵抗11は例えばアルミナ等のセラミッ
ク材料からなる絶縁基板上にスパッタリング等の手段を
用いて白金膜を着膜させることにより形成され、白金膜
の両端は前記検出ホルダ6に立設されたターミナル12
A,12B間に接続されている。
Reference numeral 11 denotes a temperature compensating resistor provided on the upstream side of the heat generating resistor 9 and provided in the detection holder 6 of the flowmeter main body 3. The temperature compensating resistor 11 is on an insulating substrate made of a ceramic material such as alumina. It is formed by depositing a platinum film on the substrate by means of sputtering or the like, and both ends of the platinum film are terminals 12 provided upright on the detection holder 6.
It is connected between A and 12B.

【0010】13は流量計本体3の検出ホルダ6上に装
着される保護カバーを示し、該保護カバー13は検出ホ
ルダ6上に発熱抵抗9および温度補償抵抗11を実装し
た後に、図7中に矢印で示す如く検出ホルダ6に被着さ
れ、発熱抵抗9および温度補償抵抗11を保護すると共
に、吸入空気の流通を許すようになっている。なお、図
6中では発熱抵抗9および温度補償抵抗11を明示すべ
く、保護カバー13を検出ホルダ6から取外した状態で
示している。
Reference numeral 13 denotes a protective cover which is mounted on the detection holder 6 of the flowmeter main body 3. The protective cover 13 is mounted on the detection holder 6 with a heat generating resistor 9 and a temperature compensating resistor 11, and then, in FIG. As shown by the arrow, it is attached to the detection holder 6 to protect the heat generating resistance 9 and the temperature compensating resistance 11 and allow the intake air to flow. In FIG. 6, the protective cover 13 is removed from the detection holder 6 in order to clearly show the heat generating resistor 9 and the temperature compensating resistor 11.

【0011】さらに、14は流量計本体3の巻線部4に
巻回された巻線抵抗からなる基準抵抗を示し、該基準抵
抗14はその両端が、巻線部4に立設されたターミナル
15A,15Bに接続され、前記発熱抵抗9に直列接続
されている。ここで、前記各端子ピン8のうち、端子ピ
ン8Aはターミナル15Aに前記端子板を介して接続さ
れ、端子ピン8Bは他の端子板を介してターミナル15
B,10Aに接続されている。また、端子ピン8Cは別
の端子板を介してターミナル10B,12Bに接続さ
れ、端子ピン8Dはターミナル12Aにさらに別の端子
板を介して接続されている。
Reference numeral 14 denotes a reference resistance consisting of a winding resistance wound around the winding portion 4 of the flowmeter main body 3, and the reference resistance 14 has terminals at both ends thereof standing on the winding portion 4. 15A and 15B, which are connected in series with the heating resistor 9. Here, among the terminal pins 8, the terminal pin 8A is connected to the terminal 15A via the terminal plate, and the terminal pin 8B is connected to the terminal 15A via another terminal plate.
B, 10A. The terminal pin 8C is connected to the terminals 10B and 12B via another terminal plate, and the terminal pin 8D is connected to the terminal 12A via another terminal plate.

【0012】このように構成される従来技術の熱式空気
流量検出装置1は、自動車用エンジン等の吸入空気流量
を検出するときに、流量計本体3の端子部5を各端子ピ
ン8を介して回路ケーシング7のコネクタ部に接続した
状態で、流量計本体3の検出ホルダ6等を吸気管2内に
取付穴2Aを介して挿入し、該取付穴2Aに吸気管2の
外周側から回路ケーシング7を取付けることによって、
検出ホルダ6に設けた発熱抵抗9および温度補償抵抗1
1を吸気管2の中心部に配設する。
In the conventional thermal air flow rate detecting device 1 thus constructed, when detecting the intake air flow rate of an automobile engine or the like, the terminal portion 5 of the flow meter main body 3 is inserted through the terminal pins 8. The detection holder 6 of the flowmeter main body 3 is inserted into the intake pipe 2 through the mounting hole 2A in a state where it is connected to the connector portion of the circuit casing 7 and the circuit is inserted into the mounting hole 2A from the outer peripheral side of the intake pipe 2. By installing the casing 7,
Heating resistor 9 and temperature compensation resistor 1 provided on the detection holder 6
1 is arranged at the center of the intake pipe 2.

【0013】この場合、発熱抵抗9を基準抵抗14に直
列接続すると共に、温度補償抵抗11を回路ケーシング
7内の流量調整抵抗に直列接続することによって、これ
らの発熱抵抗9、基準抵抗14、温度補償抵抗11およ
び流量調整抵抗からブリッジ回路を構成する。そして、
該ブリッジ回路にはエンジンの始動と共に外部から電流
を印加し続けることにより発熱抵抗9を、例えば240
℃前,後の所定温度をもって発熱させるようにする。
In this case, the heating resistor 9 and the reference resistor 14 are connected in series, and the temperature compensating resistor 11 is connected in series to the flow rate adjusting resistor in the circuit casing 7. The compensating resistor 11 and the flow rate adjusting resistor form a bridge circuit. And
By continuously applying an electric current from the outside to the bridge circuit when the engine is started, the heating resistor 9 is connected to, for example, 240
Make sure to generate heat at the specified temperature before and after ℃.

【0014】そして、この状態で吸気管2内をエンジン
本体の燃焼室に向けて矢示A方向に吸入空気が流通する
ときには、この吸入空気の流れにより発熱抵抗9が冷却
されて該発熱抵抗9の抵抗値が変化するから、該発熱抵
抗9に直列接続された基準抵抗14の両端電圧に基づい
て吸入空気の流量に対応した検出信号を出力電圧の変化
として検出する。
In this state, when intake air flows through the intake pipe 2 toward the combustion chamber of the engine body in the direction of arrow A, the flow of the intake air cools the heat generating resistor 9 and the heat generating resistor 9 is cooled. Of the reference resistor 14 connected in series with the heating resistor 9, a detection signal corresponding to the flow rate of the intake air is detected as a change in the output voltage.

【0015】[0015]

【発明が解決しようとする課題】ところで、上述した従
来技術では、吸気管2内を流れる吸入空気の流れで発熱
抵抗9が冷却されるのを利用して、該発熱抵抗9の抵抗
値変化に基づき吸入空気流量を検出する構成であるか
ら、該発熱抵抗9は図6中の矢示A方向(順方向)に流
れる吸入空気流によって冷却されると共に、矢示B方向
(逆方向)に流れる空気流によっても冷却されてしま
い、この逆方向の空気流により吸入空気流量を誤検出す
るという問題がある。
By the way, in the above-mentioned prior art, the fact that the heating resistor 9 is cooled by the flow of the intake air flowing through the intake pipe 2 is utilized to change the resistance value of the heating resistor 9. Since the intake air flow rate is detected based on this, the heat generating resistor 9 is cooled by the intake air flow flowing in the direction A (forward direction) indicated by the arrow in FIG. 6 and flows in the direction B indicated by the arrow (reverse direction). There is a problem in that the air flow is also cooled and the intake air flow rate is erroneously detected by the air flow in the opposite direction.

【0016】即ち、多気筒のシリンダを備えたエンジン
本体では、各シリンダ内でそれぞれピストンが往復動す
るのに応じて各吸気弁(図示せず)が開弁する毎に、吸
入空気が各シリンダ内に向けて矢示A方向(順方向)に
吸込まれるから、吸気管2内を流れる空気の流速は各吸
気弁の開,閉弁に応じて図8に例示する如く増,減を繰
返し脈動するようになる。
That is, in an engine body having a multi-cylinder, intake air is supplied to each cylinder each time an intake valve (not shown) is opened in response to reciprocating motion of the piston in each cylinder. Since it is sucked inward in the direction of arrow A (forward direction), the flow velocity of the air flowing in the intake pipe 2 is repeatedly increased and decreased as illustrated in FIG. 8 in accordance with the opening and closing of each intake valve. Becomes pulsating.

【0017】特に、エンジンの回転数が低速域から中速
域等に達して吸,排気量が増大してくると、吸気弁と排
気弁(図示せず)とがオーバラップし、排気の一部が吸
気弁の開弁に伴って吸気管2内に吹返すことがあるた
め、このときに吸気管2内では図8に示す時間t1 ,t
2 間のように流速が負(マイナス)となって、矢示B方
向(逆方向)に流れる空気流が発生し、この空気流で吸
入空気流量が実流量よりも過大に検出され、A/F制御
を正確に行えなくなるという問題が生じる。
In particular, when the engine speed reaches from a low speed region to a medium speed region and the like, and the intake and exhaust amounts increase, the intake valve and the exhaust valve (not shown) overlap each other and the exhaust gas Since the part may blow back into the intake pipe 2 when the intake valve is opened, the time t1, t shown in FIG.
The flow velocity becomes negative (negative) like between 2 and an air flow that flows in the direction of the arrow B (reverse direction) is generated, and the intake air flow rate is detected to be excessive than the actual flow rate by this air flow, and A / There is a problem that the F control cannot be performed accurately.

【0018】本発明は上述した従来技術の問題に鑑みな
されたもので、本発明は逆方向の空気流により吸入空気
流量を誤検出するのを防止でき、流量の検出精度を大幅
に向上できるようにした熱式空気流量検出装置を提供す
ることを目的としている。
The present invention has been made in view of the above-mentioned problems of the prior art, and the present invention can prevent erroneous detection of the intake air flow rate due to the air flow in the opposite direction, and can greatly improve the flow rate detection accuracy. It is an object of the present invention to provide a thermal type air flow rate detecting device.

【0019】[0019]

【課題を解決するための手段】上述した課題を解決する
ために本発明は、吸気管の途中に取付けられ、流量調整
抵抗および基準抵抗が設けられた流量計本体と、前記吸
気管内に位置して該流量計本体に設けられ、前記吸気管
内を流れる吸入空気によって冷却される発熱抵抗とから
なる熱式空気流量検出装置に適用される。
In order to solve the above-mentioned problems, the present invention provides a flowmeter main body provided in the middle of an intake pipe and provided with a flow rate adjusting resistance and a reference resistance, and a flowmeter main body which is located in the intake pipe. The present invention is applied to a thermal type air flow rate detecting device which is provided in the flowmeter main body and is composed of a heat generating resistance cooled by intake air flowing in the intake pipe.

【0020】そして、請求項1の発明が採用する構成の
特徴は、前記発熱抵抗を前記流量計本体に取付けられた
絶縁基板上に膜状に形成され、吸入空気の流れ方向に対
して上流側に位置した第1の発熱抵抗体と下流側に位置
した第2の発熱抵抗体とから構成し、前記第1の発熱抵
抗体の抵抗値変化から第1の流量信号を出力する第1の
流量検出手段と、第2の発熱抵抗体の抵抗値変化から第
2の流量信号を出力する第2の流量検出手段と、前記第
1の流量検出手段から出力される第1の流量信号と第2
の流量検出手段から出力される第2の流量信号との差を
流量検出信号として出力する差算演算手段とを備えたこ
とにある。
The feature of the configuration adopted by the invention of claim 1 is that the heat generating resistor is formed in a film shape on an insulating substrate attached to the flowmeter body, and is located on the upstream side with respect to the flow direction of the intake air. A first flow rate that outputs a first flow rate signal from a change in the resistance value of the first heat generation resistor, which is composed of a first heat generation resistor located at Detecting means; second flow rate detecting means for outputting a second flow rate signal based on a change in resistance value of the second heating resistor; first flow rate signal for outputting the second flow rate signal; and second flow rate signal for outputting from the first flow rate detecting means.
The difference calculation means for outputting the difference from the second flow rate signal output from the flow rate detection means as the flow rate detection signal.

【0021】請求項2の発明では、前記差算演算手段か
ら出力される流量検出信号に基準信号を加算したことに
ある。
According to the second aspect of the invention, the reference signal is added to the flow rate detection signal output from the difference calculation means.

【0022】請求項3の発明は、前記第1の流量検出手
段および第2の流量検出手段には、前記吸入空気の温度
を補償する温度補償抵抗をそれぞれ設けたことにある。
According to a third aspect of the present invention, the first flow rate detecting means and the second flow rate detecting means are respectively provided with temperature compensating resistors for compensating the temperature of the intake air.

【0023】[0023]

【作用】上記構成により、請求項1の発明では、絶縁基
板上には、吸入空気の流れ方向に対し上流側に位置した
第1の発熱抵抗体と下流側に位置した第2の発熱抵抗体
を膜状に形成し、該第1の発熱抵抗体と第2の発熱抵抗
体とでは、前記吸入空気の流れ方向に応じて抵抗値の変
化が異なり、この抵抗値の相違は第1の流量信号と第2
の流量信号として出力される。そして、差算演算手段で
は第1の流量信号と第2の流量信号の差を演算し、吸入
空気の流れ方向および流量を検出した流量検出信号とし
て出力することができる。
With the above construction, in the first aspect of the invention, the first heating resistor located on the upstream side and the second heating resistor located on the downstream side in the flow direction of the intake air are provided on the insulating substrate. Are formed in a film shape, and the first heating resistor and the second heating resistor have different resistance values depending on the flow direction of the intake air, and the difference in the resistance value is the first flow rate. Signal and second
Is output as a flow rate signal. Then, the difference calculation means can calculate the difference between the first flow rate signal and the second flow rate signal and output it as a flow rate detection signal that detects the flow direction and flow rate of the intake air.

【0024】請求項2の発明においては、前記差算演算
手段からの出力信号に基準信号を加算することにより、
流量検出信号を電気的に正の範囲で検出できる。
In the invention of claim 2, the reference signal is added to the output signal from the difference calculation means,
The flow rate detection signal can be detected electrically in a positive range.

【0025】請求項3の発明では、前記流量計本体には
第1の流量検出手段および第2の流量検出手段に、前記
吸入空気の温度を補償する温度補償抵抗をそれぞれ設け
ることにより、吸入空気の温度に拘らず、第1,第2の
発熱抵抗体の温度を一定温度に保つことができる。
In the third aspect of the present invention, the intake air is provided by providing the first flow rate detecting means and the second flow rate detecting means in the flowmeter main body with temperature compensation resistors for compensating the temperature of the intake air. The temperature of the first and second heating resistors can be maintained at a constant temperature regardless of the temperature.

【0026】[0026]

【実施例】以下、本発明の実施例を図1ないし図5に基
づいて説明する。なお、実施例では前述した図6および
図7に示す従来技術と同一の構成要素に同一の符号を付
し、その説明を省略するものとする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. In the embodiment, the same components as those of the prior art shown in FIGS. 6 and 7 described above are designated by the same reference numerals, and the description thereof will be omitted.

【0027】而して、図1ないし図4は本発明の第1の
実施例を示している。
1 to 4 show the first embodiment of the present invention.

【0028】図中、21は本実施例による熱式空気流量
検出装置、22は該熱式空気流量検出装置21の本体部
を構成する流量計本体を示し、該流量計本体22は従来
技術で述べた流量計本体3とほぼ同様に、基準抵抗23
A,23Bが巻回される巻線部24と、該巻線部24の
基端側に位置し、複数の端子ピン(図示せず)が一体的
に設けられた端子部25と、巻線部24の先端側から吸
気管2の径方向に延設された検出ホルダ26と、後述の
回路ケーシング27とから大略構成される。
In the figure, reference numeral 21 is a thermal air flow rate detecting device according to this embodiment, 22 is a flow meter main body which constitutes the main body of the thermal air flow rate detecting device 21, and the flow meter main body 22 is a conventional technique. Almost the same as the flowmeter body 3 described above, the reference resistance 23
A winding portion 24 around which the windings A and 23B are wound, a terminal portion 25 located on the base end side of the winding portion 24 and integrally provided with a plurality of terminal pins (not shown), A detection holder 26 extending from the tip end side of the portion 24 in the radial direction of the intake pipe 2 and a circuit casing 27 described later are roughly configured.

【0029】しかし、該流量計本体22には検出ホルダ
26の基端側に後述の絶縁基板28を着脱可能に取付け
るためのスロット(図示せず)が形成され、該検出ホル
ダ26は図1中に示す如く吸気管2の中心部に、絶縁基
板28を介して後述の発熱抵抗体30等を位置決めする
構成となっている。なお、該流量計本体22の検出ホル
ダ26にも従来技術で述べた保護カバー13とほぼ同様
の保護カバー(図示せず)が取付けられる。
However, a slot (not shown) for detachably mounting an insulating substrate 28, which will be described later, is formed on the flowmeter main body 22 at the base end side of the detection holder 26, and the detection holder 26 is shown in FIG. As shown in FIG. 3, a heating resistor 30 and the like, which will be described later, are positioned in the center of the intake pipe 2 via an insulating substrate 28. A protective cover (not shown) similar to the protective cover 13 described in the prior art is attached to the detection holder 26 of the flowmeter main body 22.

【0030】27は吸気管2の取付穴2Aを閉塞するよ
うに該吸気管2の外周側に設けられた回路ケーシングを
示し、該回路ケーシング27は従来技術で述べた回路ケ
ーシング7とほぼ同様に形成され、吸気管2の取付穴2
Aに嵌合する嵌合部27Aを有しているものの、該回路
ケーシング27は、例えばセラミック材料等からなる絶
縁基板(図示せず)上に後述の流量調整抵抗37A,3
7Bおよび差動増幅器39等を実装した状態で、これら
を内蔵するようになっている。
Reference numeral 27 denotes a circuit casing provided on the outer peripheral side of the intake pipe 2 so as to close the mounting hole 2A of the intake pipe 2, and the circuit casing 27 is substantially the same as the circuit casing 7 described in the prior art. Formed, mounting hole 2 for intake pipe 2
Although having a fitting portion 27A that fits into A, the circuit casing 27 has a flow rate adjustment resistor 37A, 3A to be described later on an insulating substrate (not shown) made of, for example, a ceramic material.
7B, the differential amplifier 39, etc. are mounted, and these are built in.

【0031】28は検出ホルダ26に取付けられる絶縁
基板を示し、該絶縁基板28は、例えばガラスセラミッ
ク,酸化アルミニウム(アルミナ)または窒化アルミニ
ウム等の絶縁性材料により、長方形の平板状に形成され
ている。
Reference numeral 28 denotes an insulating substrate attached to the detection holder 26. The insulating substrate 28 is made of an insulating material such as glass ceramic, aluminum oxide (alumina) or aluminum nitride, and is formed in a rectangular flat plate shape. .

【0032】また、前記絶縁基板28は基端側が検出ホ
ルダ26のスロットに着脱可能に取付けられる固定端と
なり、先端側が自由端となった第1基板部28Aと第2
基板部28Bとからなり、該基板部28A,28Bの間
には先端側から基端側に向けて延びるスリット28Cが
形成されている。なお、第1基板部28Aは吸入空気の
順方向(矢示A方向)の流れに対して第2基板部28B
よりも上流側に位置して形成されている。
The insulating substrate 28 has a base end side which is a fixed end detachably attached to the slot of the detection holder 26, and a front end side which is a free end, and a second substrate portion 28A and a second end.
A slit 28C is formed between the base plate portion 28B and the base plate portion 28B and extends between the front end side and the base end side between the base plate portions 28A and 28B. In addition, the first substrate portion 28A is configured so that the second substrate portion 28B acts against the flow of the intake air in the forward direction (direction indicated by an arrow A).
It is formed on the upstream side of.

【0033】29,30は発熱抵抗を構成する第1の発
熱抵抗体,第2の発熱抵抗体をそれぞれ示し、該発熱抵
抗体29,30はプリント印刷またはスパッタリング等
の手段を用いて絶縁基板28の基板部28A,28B上
に白金膜を着膜することによって等しい抵抗値RH1,R
H2に形成され、第1の発熱抵抗体29は吸入空気の上流
側(矢示A側)に位置し、第2の発熱抵抗体30は吸入
空気の下流側(矢示B側)に位置して配設されている。
さらに、スリット28Cによって発熱抵抗体29,30
間を断熱させている。
Reference numerals 29 and 30 denote a first heat generating resistor and a second heat generating resistor, respectively, which constitute a heat generating resistor. The heat generating resistors 29 and 30 are made of an insulating substrate 28 by means such as print printing or sputtering. By depositing a platinum film on the substrate parts 28A, 28B of
H2 is formed, the first heating resistor 29 is located upstream of the intake air (arrow A side), and the second heating resistor 30 is located downstream of the intake air (arrow B side). Are arranged.
Further, the slit 28C allows the heating resistors 29, 30 to be formed.
The spaces are insulated.

【0034】また、該発熱抵抗体29,30は所定温度
(例えば、240℃)の状態で、吸気管2内を流れる矢
示A,B方向の空気に接触したときに、この空気流で冷
却されることによってそれぞれの抵抗値RH1,RH2が変
化する。そして、吸気管2内を矢示A方向(順方向)に
吸入空気が流れるときには、上流側に位置する第1の発
熱抵抗体29がこの空気流によって大きく冷却されるか
ら、該発熱抵抗体29の抵抗値RH1は大幅に減少する。
これに対して、下流側に位置する第2の発熱抵抗体30
は第1の発熱抵抗体29からの熱で暖められた後の空気
流に接触することにより、発熱抵抗体30はそれ程冷却
されることはなく、該発熱抵抗体30の抵抗値RT2は実
質的に変化しない。
When the heating resistors 29 and 30 come into contact with the air flowing in the intake pipe 2 in the directions of arrows A and B at a predetermined temperature (for example, 240 ° C.), they are cooled by this air flow. By doing so, the respective resistance values RH1 and RH2 change. Then, when the intake air flows in the intake pipe 2 in the direction of arrow A (forward direction), the first heating resistor 29 located on the upstream side is greatly cooled by this air flow. The resistance value RH1 of is greatly reduced.
On the other hand, the second heating resistor 30 located on the downstream side
Comes into contact with the air flow after being heated by the heat from the first heating resistor 29, the heating resistor 30 is not cooled so much, and the resistance value RT2 of the heating resistor 30 is substantially Does not change to

【0035】一方、吸気管2内を矢示B方向(逆方向)
に空気が流れるときには、矢示B方向の流れに対して上
流側に位置する第2の発熱抵抗体30がこの逆方向の空
気流によって大きく冷却され、該発熱抵抗体30の抵抗
値RH2が大幅に減少するのに対し、下流側となる第1の
発熱抵抗体29の抵抗値RH1はほとんど変化することは
ない。従って、発熱抵抗体29,30間の抵抗値RH1,
RH2の差に基づいて空気流が順方向であるか、逆方向で
あるかを判別することが可能となる。
On the other hand, the inside of the intake pipe 2 is in the direction of arrow B (reverse direction).
When the air flows to the second heating resistor 30, the second heating resistor 30 located on the upstream side with respect to the flow in the arrow B direction is greatly cooled by the air flow in the opposite direction, and the resistance value RH2 of the heating resistor 30 is greatly increased. On the other hand, the resistance value RH1 of the first heat generating resistor 29 on the downstream side hardly changes. Therefore, the resistance value RH1 between the heating resistors 29 and 30,
It is possible to determine whether the airflow is in the forward direction or the reverse direction based on the difference in RH2.

【0036】31,31,…は絶縁基板28の基端側に
形成された例えば4個の電極を示し、該各電極31は絶
縁基板28の幅方向に所定間隔をもって列設され、絶縁
基板28の基端側を前記検出ホルダ26のスロット内に
差込むことにより、該検出ホルダ26側の各ターミナル
(図示せず)に接続される。そして、各電極31はこの
ときに前記発熱抵抗体29,30を後述する電流制御用
トランジスタ33,34のエミッタ側と基準抵抗23
A,23Bとの間に接続し、これらの発熱抵抗体29,
30は回路ケーシング27内に設けた各電子部品と共に
図3に示す流量検出用の処理回路を構成している。
Reference numerals 31, 31, ... Show, for example, four electrodes formed on the base end side of the insulating substrate 28. The electrodes 31 are arranged in a row in the width direction of the insulating substrate 28 at predetermined intervals. By inserting the base end side of the above into the slot of the detection holder 26, it is connected to each terminal (not shown) on the side of the detection holder 26. At this time, each electrode 31 connects the heating resistors 29 and 30 to the emitter side of the current control transistors 33 and 34, which will be described later, and the reference resistor 23.
It is connected between A and 23B, and these heating resistors 29,
Reference numeral 30 constitutes a processing circuit for flow rate detection shown in FIG. 3 together with each electronic component provided in the circuit casing 27.

【0037】次に、図3を参照して流量検出用の処理回
路について説明する。
Next, the processing circuit for flow rate detection will be described with reference to FIG.

【0038】図中、32はバッテリ電圧VB をもった直
流電源、33,34はコレクタ側が該直流電源32に接
続された電流制御用トランジスタを示し、該電流制御用
トランジスタ33,34はエミッタ側が発熱抵抗体2
9,30および温度補償抵抗36A,36Bに接続点c
1 ,c2 を介して接続され、ベース側が差動増幅器3
9,40の出力端子に接続されている。そして、該電流
制御用トランジスタ33,34は直流電源32から発熱
抵抗体29,30および温度補償抵抗36A,36B等
に印加(供給)する電流を、差動増幅器39,40から
の電流制御電圧Vb1,Vb2に基づいて制御している。
In the figure, 32 is a DC power supply having a battery voltage VB, 33 and 34 are current control transistors whose collectors are connected to the DC power supply 32, and the current control transistors 33 and 34 have their emitters heated. Resistor 2
Connection point c to 9, 30 and temperature compensation resistors 36A, 36B
1 and c2 are connected, and the base side is a differential amplifier 3
It is connected to the output terminals of 9, 40. Then, the current control transistors 33 and 34 apply the currents applied (supplied) from the DC power source 32 to the heating resistors 29 and 30 and the temperature compensation resistors 36A and 36B, etc. from the differential amplifiers 39 and 40. , Vb2.

【0039】35は第1の流量検出手段を構成する一方
のブリッジ回路を示し、該ブリッジ回路35は、発熱抵
抗体29、温度補償抵抗36A、基準抵抗23Aおよび
抵抗値R2 を有する流量調整抵抗37Aとからなり、そ
れぞれ抵抗する辺の抵抗値の積が等しくなるブリッジと
して構成されている。また、発熱抵抗体29と基準抵抗
23A、温度補償抵抗36Aと流量調整抵抗37Aは、
それぞれ直列に接続されてそれぞれの接続点a1 ,b1
は後述する差動増幅器39の入力端子に接続され、接続
点a1 は後述する他の差動増幅器41の入力端子に接続
されている。さらに、発熱抵抗体29と温度補償抵抗3
6Aとの接続点c1 は電流制御用トランジスタ33のエ
ミッタ側に接続され、基準抵抗23Aと流量調整抵抗3
7Aとの接続点d1 はアースに接続されている。
Reference numeral 35 denotes one bridge circuit which constitutes the first flow rate detecting means. The bridge circuit 35 includes a heating resistor 29, a temperature compensating resistor 36A, a reference resistor 23A and a flow rate adjusting resistor 37A having a resistance value R2. And is configured as a bridge in which the products of the resistance values of the respective resistance sides are equal. Further, the heating resistor 29 and the reference resistor 23A, the temperature compensation resistor 36A and the flow rate adjusting resistor 37A are
They are connected in series, and their connection points are a1 and b1.
Is connected to the input terminal of a differential amplifier 39 described later, and the connection point a1 is connected to the input terminal of another differential amplifier 41 described later. Further, the heating resistor 29 and the temperature compensation resistor 3
The connection point c1 with 6A is connected to the emitter side of the current controlling transistor 33, and the reference resistor 23A and the flow rate adjusting resistor 3 are connected.
The connection point d1 with 7A is connected to the ground.

【0040】そして、前記ブリッジ回路35は、矢示A
方向の空気流で発熱抵抗体29が冷却されるときに、該
発熱抵抗体29の抵抗値RH1が変化することにより、基
準抵抗23Aと発熱抵抗体29との接続点a1 から基準
抵抗23Aの両端電圧に基づいて第1の流量信号として
の第1の流量電圧V1 が出力される。また、吸入空気の
温度変化は、温度補償抵抗36Aの抵抗値RT 変化とし
て検出され、この抵抗値RT の変化は接続点b1 から温
度補償電圧VT1として差動増幅器39に出力される。
Then, the bridge circuit 35 has an arrow A
When the heating resistor 29 is cooled by the directional air flow, the resistance value RH1 of the heating resistor 29 changes, so that the reference resistor 23A and the heating resistor 29 are connected at both ends of the reference resistor 23A. The first flow rate voltage V1 as the first flow rate signal is output based on the voltage. A change in the temperature of the intake air is detected as a change in the resistance value RT of the temperature compensation resistor 36A, and this change in the resistance value RT is output from the connection point b1 to the differential amplifier 39 as the temperature compensation voltage VT1.

【0041】38は前記ブリッジ回路35とほぼ同様に
構成された第2の流量検出手段としての他方のブリッジ
回路を示し、該ブリッジ回路38は、発熱抵抗体30、
温度補償抵抗36B、基準抵抗23Bおよび抵抗値R2
を有する流量調整抵抗37Bとからなり、発熱抵抗体3
0と基準抵抗23B、温度補償抵抗36Bと流量調整抵
抗37Bは、それぞれ直列に接続されてそれぞれの接続
点a2 ,b2 は後述する差動増幅器40の入力端子に接
続され、接続点a2 は他の差動増幅器41の入力端子に
接続されている。さらに、発熱抵抗体30と温度補償抵
抗36Bとの接続点c2 は電流制御用トランジスタ34
のエミッタ側に接続され、基準抵抗23Bと流量調整抵
抗37Bとの接続点d2 はアースに接続されている。
Reference numeral 38 denotes the other bridge circuit as the second flow rate detecting means having substantially the same structure as that of the bridge circuit 35. The bridge circuit 38 is the heating resistor 30,
Temperature compensation resistor 36B, reference resistor 23B and resistance value R2
Flow rate adjusting resistor 37B having a heat generating resistor 3
0 and the reference resistor 23B, and the temperature compensation resistor 36B and the flow rate adjusting resistor 37B are connected in series, and their connection points a2 and b2 are connected to the input terminal of the differential amplifier 40 described later, and the connection point a2 is the other. It is connected to the input terminal of the differential amplifier 41. Further, the connection point c2 between the heating resistor 30 and the temperature compensating resistor 36B is connected to the current controlling transistor 34.
The connection point d2 between the reference resistor 23B and the flow rate adjusting resistor 37B is connected to the ground.

【0042】そして、前記ブリッジ回路38は、矢示B
方向の空気流で発熱抵抗体30が冷却されるときに、該
発熱抵抗体30の抵抗値RH2が変化することにより、基
準抵抗23Bと発熱抵抗体30との接続点a2 から基準
抵抗23Bの両端電圧に基づいて第2の流量信号として
の第2の流量電圧V2 が出力される。また、吸入空気の
温度変化は、温度補償抵抗36Bの抵抗値RT 変化とし
て検出され、この抵抗値RT の変化は接続点b2 から温
度補償電圧VT2として差動増幅器40に出力される。
The bridge circuit 38 is connected to the arrow B.
When the heating resistor 30 is cooled by the air flow in the directional direction, the resistance value RH2 of the heating resistor 30 changes, so that both ends of the reference resistor 23B from the connection point a2 between the reference resistor 23B and the heating resistor 30 are changed. A second flow rate voltage V2 is output as a second flow rate signal based on the voltage. Further, a change in the temperature of the intake air is detected as a change in the resistance value RT of the temperature compensation resistor 36B, and this change in the resistance value RT is output from the connection point b2 to the differential amplifier 40 as a temperature compensation voltage VT2.

【0043】39,40は回路ケーシング27内に内蔵
された第1,第2の差動増幅器を示し、該差動増幅器3
9,40の反転入力端子は温度補償抵抗36A,36B
と流量調整抵抗37A,37Bとの間の接続点b1 , b
2 に接続され、非反転入力端子は発熱抵抗体29,30
と基準抵抗23A,23Bとの間の接続点a1 , a2に
接続され、該差動増幅器39(40)の出力端子が電流
制御用トランジスタ33(34)のベースに接続されて
いる。そして、差動増幅器39,40からは、接続点a
1 , b1 (接続点a2 , b2 )間の電位差に基づいた電
流制御電圧Vb1,Vb2を電流制御用トランジスタ33
(34)のベースに入力し、該電流制御用トランジスタ
33(34)では直流電源32から発熱抵抗体29(3
0)および温度補償抵抗36A(36B)に印加する電
流を制御する。
Reference numerals 39 and 40 denote first and second differential amplifiers built in the circuit casing 27, respectively.
The inverting input terminals of 9, 40 are temperature compensation resistors 36A, 36B.
Connection points b1 and b between the flow rate adjusting resistors 37A and 37B
2 and the non-inverting input terminals are heating resistors 29, 30
Is connected to the connection points a1 and a2 between the reference resistances 23A and 23B, and the output terminal of the differential amplifier 39 (40) is connected to the base of the current control transistor 33 (34). From the differential amplifiers 39 and 40, the connection point a
The current control voltages Vb1 and Vb2 based on the potential difference between 1 and b1 (connection points a2 and b2) are supplied to the current control transistor 33.
Input to the base of (34), and in the current control transistor 33 (34), the heating resistor 29 (3
0) and the current applied to the temperature compensation resistor 36A (36B) are controlled.

【0044】41は差算演算手段を構成する他の差動増
幅器を示し、該差動増幅器41は非反転端子が第1のブ
リッジ回路35の接続点a1 に入力抵抗42を介して接
続され、反転入力端子が第2のブリッジ回路38の接続
点a2 に入力抵抗43を介して接続されている。なお、
入力抵抗42と43は同一の抵抗値となっている。
Reference numeral 41 denotes another differential amplifier which constitutes the difference calculation means, and the non-inverting terminal of the differential amplifier 41 is connected to the connection point a1 of the first bridge circuit 35 via the input resistor 42. The inverting input terminal is connected to the connection point a2 of the second bridge circuit 38 via the input resistor 43. In addition,
The input resistors 42 and 43 have the same resistance value.

【0045】また、44は基準電源を示し、該基準電源
44からは基準信号としての基準電圧VS が出力され、
第1の流量電圧V1 に加算印加される。
Reference numeral 44 denotes a reference power supply, and the reference power supply 44 outputs a reference voltage VS as a reference signal.
The first flow rate voltage V1 is added and applied.

【0046】そして、該差動増幅器41は接続点a1 ,
a2 からの流量信号V1 ,V2 の差を演算し、
The differential amplifier 41 has a connection point a1,
Calculate the difference between the flow rate signals V1 and V2 from a2,

【0047】[0047]

【数1】 Vout =K×(V1 +VS −V2 ) =K×(V1 −V2 )+K×VS =K×(V1 −V2 )+V0 但し、K :増幅率 V0 :バイアス電圧 なる演算を行うことによって、吸気管2内を流れる吸入
空気の流量に対応した出力電圧Vout を出力端子45か
ら出力する。
## EQU1 ## Vout = K.times. (V1 + VS-V2) = K.times. (V1-V2) + K.times.VS = K.times. (V1-V2) + V0 where K is the amplification factor V0 is the bias voltage. The output voltage Vout corresponding to the flow rate of the intake air flowing through the intake pipe 2 is output from the output terminal 45.

【0048】本実施例による熱式空気流量検出装置21
は上述の如き構成を有するもので、次に吸気管2内を流
れる吸入空気の流量検出動作について説明する。
Thermal air flow rate detection device 21 according to the present embodiment
Has a configuration as described above. Next, a flow rate detecting operation of the intake air flowing through the intake pipe 2 will be described.

【0049】まず、エンジンの始動と同時に直流電源3
2から電流制御用トランジスタ33,34を介して発熱
抵抗体29,30および温度補償抵抗36A,36B等
に電圧を印加し、例えば240℃前,後の温度で該発熱
抵抗体29,30を発熱させる。
First, at the same time when the engine is started, the DC power source 3
2 applies a voltage to the heating resistors 29, 30 and the temperature compensating resistors 36A, 36B via the current controlling transistors 33, 34, and heats the heating resistors 29, 30 at a temperature of 240 ° C. before and after, for example. Let

【0050】そして、この状態で吸入空気が図1に示す
矢示A方向(正方向)に流れるときには、空気流に対し
て上流側に位置した第1の発熱抵抗体29はこの空気の
流れによって冷やされ、下流側に位置した第2の発熱抵
抗体30は第1の発熱抵抗体29からの熱を受けてほと
んど冷やされないから、第1の発熱抵抗体29は大きく
冷やされて抵抗値RH1は小さくなり、第2の発熱抵抗体
30は余り冷やされないから抵抗値RH2は変化しない。
この結果、ブリッジ回路35の接続点a1 から出力され
る第1の流量電圧V1 は大きくなり、ブリッジ回路38
の接続点a2 から出力される第2の流量電圧V2 はあま
り変化しない。これにより、差動増幅器41からは順方
向の流量Qに対して、図4に示すような出力電圧Vout
(特性線46A)が得られる。なお、流量Qが零のとき
には、出力電圧Vout はバイアス電圧V0 となる。
In this state, when the intake air flows in the direction A (the positive direction) shown by the arrow in FIG. 1, the first heating resistor 29 located on the upstream side of the air flow is affected by this air flow. The second heating resistor 30 that is cooled and positioned downstream is hardly cooled by receiving heat from the first heating resistor 29, so that the first heating resistor 29 is cooled significantly and the resistance value RH1 is The resistance value RH2 does not change because the second heating resistor 30 is not cooled so much.
As a result, the first flow rate voltage V1 output from the connection point a1 of the bridge circuit 35 increases and the bridge circuit 38
The second flow rate voltage V2 output from the connection point a2 of the above does not change much. As a result, the differential amplifier 41 outputs the output voltage Vout as shown in FIG.
(Characteristic line 46A) is obtained. When the flow rate Q is zero, the output voltage Vout becomes the bias voltage V0.

【0051】一方、吸入空気が図1の矢示B方向(逆方
向)に流れるときには、空気流に対して上流側に位置し
た第2の発熱抵抗体30はこの空気の流れによって冷や
されて抵抗値RH2は小さくなり、下流側に位置した第1
の発熱抵抗体29は第2の発熱抵抗体30からの熱を受
けてほとんど冷やされずに抵抗値RH1は変化しない。こ
の結果、他のブリッジ回路38の接続点a2 から出力さ
れる第2の流量電圧V2 は大きくなり、一のブリッジ回
路35の接続点a1 から出力される第1の流量電圧V1
はあまり変化しない。これにより、差動増幅器41から
は逆方向の流量Qに対して、図4に示すような出力電圧
Vout (特性線46B)が得られる。
On the other hand, when the intake air flows in the direction B (reverse direction) shown by the arrow in FIG. 1, the second heat generating resistor 30 located upstream of the air flow is cooled by the flow of the air and the resistance is reduced. The value RH2 becomes smaller and the first
The heat generating resistor 29 receives the heat from the second heat generating resistor 30 and is hardly cooled, and the resistance value RH1 does not change. As a result, the second flow rate voltage V2 output from the connection point a2 of the other bridge circuit 38 increases, and the first flow rate voltage V1 output from the connection point a1 of the one bridge circuit 35.
Does not change much. As a result, the output voltage Vout (characteristic line 46B) as shown in FIG. 4 is obtained from the differential amplifier 41 with respect to the flow rate Q in the reverse direction.

【0052】また、ブリッジ回路35,38では発熱抵
抗体29,30がこのときの空気流で冷却され、接続点
a1 ,a2 の電圧レベルが接続点b1 ,b2 の電圧レベ
ルよりも大きくなっているから、差動増幅器39,40
は接続点a1 ,a2 と接続点b1 ,b2 との電位差(温
度補償電圧Vb1,Vb2)に基づいて、直流電源32から
発熱抵抗体29,30および温度補償抵抗36A,36
B等に印加(給電)する電源を電流制御用トランジスタ
33,34を介して制御する。なお、発熱抵抗体29,
30には温度補償抵抗36A,36Bに比べて大きな電
流が供給され、発熱抵抗体29,30がこれによって再
び240℃に近い温度で発熱するようになっている。
In the bridge circuits 35 and 38, the heating resistors 29 and 30 are cooled by the airflow at this time, and the voltage level at the connection points a1 and a2 is higher than the voltage level at the connection points b1 and b2. From the differential amplifier 39, 40
Is based on the potential difference (temperature compensation voltage Vb1, Vb2) between the connection points a1 and a2 and the connection points b1 and b2 from the DC power supply 32 to the heating resistors 29 and 30 and the temperature compensation resistors 36A and 36A.
A power supply applied (powered) to B or the like is controlled via the current control transistors 33 and 34. The heating resistor 29,
A larger current is supplied to the temperature compensating resistors 36A and 36B, so that the heat generating resistors 29 and 30 generate heat again at a temperature close to 240 ° C.

【0053】そして、このときには発熱抵抗体29,3
0および基準抵抗23A,23Bに供給させる電流に応
じて接続点a1 ,a2 の電圧レベルが上昇し、これは吸
気管2内を流れる吸入空気の流量に対応して増減するの
で、差動増幅器41は接続点a1 ,a2 からの流量電圧
V1 ,V2 に基づき、順方向の流れのときには、出力電
圧Vout をバイアス電圧V0 よりも大きい電圧として出
力端子45に出力させ、逆方向の流れのときには、出力
電圧Vout をバイアス電圧V0 よりも小さい電圧として
出力端子45に出力し、このときの吸入空気の流量を出
力電圧Vout によって検出できる。
At this time, the heating resistors 29, 3
0 and the current levels supplied to the reference resistors 23A and 23B, the voltage levels at the connection points a1 and a2 increase, which increases or decreases in accordance with the flow rate of the intake air flowing through the intake pipe 2. Therefore, the differential amplifier 41 Is based on the flow rate voltages V1 and V2 from the connection points a1 and a2, the output voltage Vout is output to the output terminal 45 as a voltage larger than the bias voltage V0 in the forward flow, and is output in the reverse flow. The voltage Vout is output to the output terminal 45 as a voltage smaller than the bias voltage V0, and the flow rate of the intake air at this time can be detected by the output voltage Vout.

【0054】一方、エンジン回転数が低速域から中速域
等に達して吸、排気量が増大し、吸気弁と排気弁(いず
れも図示せず)とがオーバラップする等の理由で、排気
の一部が吸気弁の開弁に伴って排気管2内に吹返し流速
が負(マイナス)となって、図8の時間t1 ,t2 とし
て例示したように吸気管2内に矢示B方向の逆流が発生
したときには、第2の発熱抵抗体30の冷却量が第1の
発熱抵抗体29の冷却量よりも大きくなる。この結果、
第2の発熱抵抗体30の抵抗値RH2は第1の発熱抵抗体
29の抵抗値RH1よりも大きく減少し、他のブリッジ回
路38の接続点a2 における電圧レベルが一のブリッジ
回路35の接続点a1 における電圧レベルよりも大きく
なり、この接続点a1 ,a2 から各基準抵抗23A,2
3Bの両端電圧として出力される第1,第2の流量電圧
V1 ,V2 には、このときの空気流量に対応した電圧差
が生じる。
On the other hand, when the engine speed reaches from a low speed region to a medium speed region and the like, intake is performed, the exhaust amount is increased, and the intake valve and the exhaust valve (neither is shown) overlap, so that the exhaust gas is exhausted. Part of the air flow rate becomes negative (minus) in the exhaust pipe 2 due to the opening of the intake valve, and as shown as time t1 and t2 in FIG. When the reverse flow occurs, the cooling amount of the second heating resistor 30 becomes larger than the cooling amount of the first heating resistor 29. As a result,
The resistance value RH2 of the second heating resistor 30 is much smaller than the resistance value RH1 of the first heating resistor 29, and the connection point of the bridge circuit 35 whose voltage level at the connection point a2 of the other bridge circuit 38 is one. The voltage level becomes larger than the voltage level at a1, and the reference resistors 23A, 2 are connected from the connection points a1, a2.
A voltage difference corresponding to the air flow rate at this time occurs in the first and second flow rate voltages V1 and V2 output as the voltage across 3B.

【0055】そして、差動増幅器41はこのときの流量
電圧V1,V2 に基づき前記数1の式による出力電圧Vou
t を出力端子45から出力し、この出力電圧Vout によ
って実際の吸入空気流量に対応した流量信号を取出し、
この場合には、流量電圧V1が流量電圧V2 よりも小さ
な電圧値となり、出力電圧Vout はバイアス電圧V0よ
りも小さい電圧が出力される(図4の特性線46B参
照)ようになる。
The differential amplifier 41 outputs the output voltage Vou according to the equation (1) based on the flow rate voltages V1 and V2 at this time.
t is output from the output terminal 45, and the output voltage Vout is used to extract a flow rate signal corresponding to the actual intake air flow rate.
In this case, the flow rate voltage V1 has a smaller voltage value than the flow rate voltage V2, and the output voltage Vout is a voltage smaller than the bias voltage V0 (see the characteristic line 46B in FIG. 4).

【0056】而して、本実施例による熱式空気流量検出
装置においては、吸気管2の途中に流量計本体22を設
け、該流量計本体22には、吸入空気の流れ方向に対し
て上流側に位置した第1の発熱抵抗体29と下流側に位
置した第2の発熱抵抗体30とを膜状に形成した絶縁基
板28を設け、当該空気流量検出装置の処理回路を、前
記第1の発熱抵抗体29の抵抗値RH1の変化から第1の
流量電圧V1 を出力するブリッジ回路35と、下流側に
位置した第2の発熱抵抗体30の抵抗値RH2の変化から
第2の流量電圧V2 を出力するブリッジ回路38と、前
記第1の流量電圧V1 と第2の流量電圧V2 との差から
出力電圧Vout を出力する差動増幅器41とを備える構
成としたから、下記のような作用効果を得ることができ
る。
Thus, in the thermal air flow rate detecting device according to the present embodiment, the flowmeter main body 22 is provided in the middle of the intake pipe 2, and the flowmeter main body 22 is provided with the upstream side in the flow direction of the intake air. The first heat generating resistor 29 located on the side and the second heat generating resistor 30 located on the downstream side are provided in the insulating substrate 28 in the form of a film, and the processing circuit of the air flow rate detecting device is provided with the first heat generating resistor. Bridge circuit 35 which outputs the first flow rate voltage V1 from the change of the resistance value RH1 of the heating resistor 29 and the change of the resistance value RH2 of the second heat generating resistor 30 located on the downstream side to the second flow rate voltage V1. The bridge circuit 38 that outputs V2 and the differential amplifier 41 that outputs the output voltage Vout from the difference between the first flow rate voltage V1 and the second flow rate voltage V2 are provided. The effect can be obtained.

【0057】即ち、絶縁基板28上には、空気流の順方
向(矢示A方向)の流れに対して上流側に第1の発熱抵
抗体29を膜状に形成し、下流側に第2の発熱抵抗体3
0を膜状に形成したから、順方向(矢示A方向)の空気
流においては、第1の発熱抵抗体29は大きく冷やさ
れ、第2の発熱抵抗体30は上流側に位置した第1の発
熱抵抗体29の熱を受けてあまり冷却されないから、そ
の抵抗値RH1<RH2となり、この抵抗値の差によって流
れ方向と流量を検出することができる。一方、逆方向
(矢示B方向)の空気流においては、第2の発熱抵抗体
30は大きく冷やされ、第1の発熱抵抗体29は上流側
に位置した第2の発熱抵抗体30の熱を受けてあまり冷
やされないから、その抵抗値RH1>RH2となり、この抵
抗値の差によって流れ方向と吸入空気流量を検出するこ
とができる。
That is, on the insulating substrate 28, the first heating resistor 29 is formed in the form of a film on the upstream side with respect to the forward direction of the air flow (the direction of arrow A), and the second heating resistor 29 is formed on the downstream side. Heating resistor 3
Since 0 is formed in a film shape, the first heat generating resistor 29 is cooled significantly and the second heat generating resistor 30 is positioned on the upstream side in the forward air flow (direction indicated by the arrow A). Since the heat generating resistor 29 receives the heat and is not cooled so much, its resistance value becomes RH1 <RH2, and the flow direction and the flow rate can be detected by the difference in the resistance value. On the other hand, in the air flow in the opposite direction (arrow B direction), the second heating resistor 30 is cooled significantly, and the first heating resistor 29 heats the second heating resistor 30 located on the upstream side. Since it is not cooled down so much, the resistance value becomes RH1> RH2, and the flow direction and the intake air flow rate can be detected by the difference in the resistance value.

【0058】この結果、吸入空気が順方向(矢示A方
向)の流れのときには、第1,第2の発熱抵抗体29,
30のうち、発熱抵抗体29が発熱抵抗体30よりも大
きくこのときの空気流で冷却され、発熱抵抗29の抵抗
値RH1は発熱抵抗体30の抵抗値RH2よりも大きく減少
する。そして、図3に示すブリッジ回路35の接続点a
1 とブリッジ回路38の接続点a2 とから各基準抵抗2
3A,23Bの両端電圧として出力される第1,第2の
流量電圧V1 ,V2 に、このときの空気流量に対応した
電圧差を発生させることができる。
As a result, when the intake air flows in the forward direction (direction indicated by the arrow A), the first and second heating resistors 29,
Among the heat generating resistors 30, the heat generating resistor 29 is larger than the heat generating resistor 30 and is cooled by the air flow at this time, and the resistance value RH1 of the heat generating resistor 29 is greatly reduced than the resistance value RH2 of the heat generating resistor 30. The connection point a of the bridge circuit 35 shown in FIG.
1 and each reference resistor 2 from the connection point a2 of the bridge circuit 38
A voltage difference corresponding to the air flow rate at this time can be generated in the first and second flow rate voltages V1 and V2 output as the voltages across 3A and 23B.

【0059】これにより、差動増幅器41で流量電圧V
1 ,V2 に基づき前記数1の式による出力電圧Vout を
出力端子45から出力すると共に、この出力電圧Vout
によって実際の吸入空気流量に対応した流量検出信号を
取出すことができ、この場合の第1の流量電圧V1 は第
2の流量電圧V2 よりも大きな電圧値となるから、出力
電圧Vout をバイアス電圧V0 よりも大きい出力にでき
る。
As a result, the flow rate voltage V is increased by the differential amplifier 41.
Based on 1 and V2, the output voltage Vout according to the equation 1 is output from the output terminal 45 and the output voltage Vout is output.
Therefore, the flow rate detection signal corresponding to the actual intake air flow rate can be taken out. In this case, the first flow rate voltage V1 has a larger voltage value than the second flow rate voltage V2. Therefore, the output voltage Vout is changed to the bias voltage V0. Output can be greater than.

【0060】また、吸気管2内を流れる吸入空気が逆方
向(矢示B方向)となったときには、第1,第2の発熱
抵抗体29,30のうち、発熱抵抗体30が発熱抵抗体
29よりも大きくこのときの空気流で冷却され、発熱抵
抗体30の抵抗値RH2は発熱抵抗体29の抵抗値RH1よ
りも大きく減少する。そして、図3に示すブリッジ回路
35の接続点a1 とブリッジ回路38の接続点a2 とか
ら各基準抵抗23A,23Bの両端電圧として出力され
る第1,第2の流量電圧V1 ,V2 に、このときの空気
流量に対応した電圧差を発生させることができる。
When the intake air flowing through the intake pipe 2 is in the opposite direction (the direction of arrow B), the heating resistor 30 of the first and second heating resistors 29, 30 is the heating resistor. The resistance value RH2 of the heat generating resistor 30 decreases more than the resistance value RH1 of the heat generating resistor 29. Then, from the connection point a1 of the bridge circuit 35 and the connection point a2 of the bridge circuit 38 shown in FIG. 3, to the first and second flow rate voltages V1 and V2 output as the voltages across the reference resistors 23A and 23B, A voltage difference corresponding to the air flow rate can be generated.

【0061】これにより、差動増幅器41で流量電圧V
1 ,V2 に基づき前記数1の式による出力電圧Vout を
出力端子45から出力できると共に、この出力電圧Vou
t によって実際の吸入空気流量に対応した流量検出信号
を取出すことができ、この場合の第2の流量電圧V2 は
第1の流量電圧V1 よりも大きな電圧値となるから、出
力電圧Vout をバイアス電圧V0 よりも小さい出力にで
きる。
As a result, the flow rate voltage V is increased by the differential amplifier 41.
Based on 1 and V2, the output voltage Vout according to the equation 1 can be output from the output terminal 45, and the output voltage Vou can be output.
A flow rate detection signal corresponding to the actual intake air flow rate can be obtained by t, and the second flow rate voltage V2 in this case has a voltage value larger than the first flow rate voltage V1. Therefore, the output voltage Vout is set to the bias voltage. The output can be smaller than V0.

【0062】かくして、本実施例によれば、吸気管2内
を流れる吸入空気の流量を、発熱抵抗体29,30の抵
抗値RH1,RH2に基づいて接続点a1 ,a2 から出力さ
れる流量電圧V1 ,V2 の電圧差により、出力電圧Vou
t として取出すことができると共に、このときの空気流
の方向も出力電圧Vout がバイアス電圧V0 よりも大き
いか否かで確実に検出することができる。従って、エン
ジンの中速域等で吸気管2内に排気が吹返して逆流が生
じるようなときでも、吸入空気の流量を高精度に検出す
ることができ、A/F制御の信頼性を確実に向上できる
等、種々の効果を奏する。
Thus, according to this embodiment, the flow rate of the intake air flowing through the intake pipe 2 is determined by the flow rate voltage output from the connection points a1 and a2 based on the resistance values RH1 and RH2 of the heating resistors 29 and 30. Due to the voltage difference between V1 and V2, the output voltage Vou
It can be taken out as t, and the direction of the air flow at this time can also be reliably detected depending on whether the output voltage Vout is larger than the bias voltage V0. Therefore, the flow rate of the intake air can be detected with high accuracy even when the exhaust gas is blown back into the intake pipe 2 in the middle speed range of the engine or the like to cause a backflow, and the reliability of the A / F control is ensured. It has various effects such as being improved.

【0063】次に、図5に本発明による第2の実施例を
示すに、本実施例の特徴は、前記第1の発熱抵抗体,第
2の発熱抵抗体にそれぞれ温度補償抵抗を設けたことに
ある。なお、前述した第1の実施例と同一の構成要素に
同一の符号を付し、その説明を省略するものとする。
Next, FIG. 5 shows a second embodiment according to the present invention. The feature of this embodiment is that temperature compensation resistors are provided in the first heating resistor and the second heating resistor, respectively. Especially. The same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.

【0064】図中、51は検出ホルダ26に取付けられ
る絶縁基板を示し、該絶縁基板51は、例えばガラスセ
ラミック,酸化アルミニウム(アルミナ)または窒化ア
ルミニウム等の絶縁性材料により、長方形の平板状に形
成されている。
In the figure, reference numeral 51 denotes an insulating substrate attached to the detection holder 26. The insulating substrate 51 is made of an insulating material such as glass ceramic, aluminum oxide (alumina), or aluminum nitride in the shape of a rectangular flat plate. Has been done.

【0065】また、前記絶縁基板51は基端側が検出ホ
ルダ26のスロットに着脱可能に取付けられる固定端と
なり、先端側が自由端となった第1基板部51Aと第2
基板部51Bとからなり、該基板部51A,51Bの間
には先端側から基端側に向けて延びるスリット51Cが
形成されている。なお、第1基板部51Aは吸入空気の
順方向(矢示A方向)の流れに対して第2基板部51B
よりも上流側に位置して形成されている。
The insulating substrate 51 has a base end side which is a fixed end detachably attached to the slot of the detection holder 26 and a front end side which is a free end and a second substrate portion 51A.
A slit 51C is formed between the base plate portion 51B and the base plate portion 51B and extends from the front end side toward the base end side between the base plate portions 51A and 51B. In addition, the first substrate portion 51A has a second substrate portion 51B with respect to the flow of the intake air in the forward direction (arrow A direction).
It is formed on the upstream side of.

【0066】52,53は発熱抵抗を構成する第1の発
熱抵抗体,第2の発熱抵抗体をそれぞれ示し、該発熱抵
抗体52,53はプリント印刷またはスパッタリング等
の手段を用いて絶縁基板51の基板部51B上に白金膜
を着膜することによって等しい抵抗値RH1,RH2に形成
され、第1の発熱抵抗体52は吸入空気の上流側(矢示
A側)に位置し、第2の発熱抵抗体53は吸入空気の下
流側(矢示B側)に位置して配設されている。
Reference numerals 52 and 53 denote a first heat generating resistor and a second heat generating resistor, respectively, which constitute a heat generating resistor. The heat generating resistors 52 and 53 are made of an insulating substrate 51 by means such as print printing or sputtering. By forming a platinum film on the substrate portion 51B of the above, the resistance values RH1 and RH2 are formed to be equal, and the first heating resistor 52 is located on the upstream side of the intake air (arrow A side) and The heating resistor 53 is arranged at the downstream side of the intake air (the arrow B side).

【0067】54,55は温度補償抵抗を構成する第1
の温度補償抵抗体,第2の温度補償抵抗体をそれぞれ示
し、該温度補償抵抗体54,55はプリント印刷または
スパッタリング等の手段を用いて絶縁基板51の基板部
51A上に白金膜を着膜することによって等しい抵抗値
RK ,RK を有して形成されている。また、絶縁基板5
1のスリット51Cによって発熱抵抗体52,53と温
度補償抵抗体54,55間を断熱している。
Reference numerals 54 and 55 denote first temperature compensating resistors.
Of the temperature compensating resistor and the second temperature compensating resistor, respectively. The temperature compensating resistors 54 and 55 are formed by depositing a platinum film on the substrate portion 51A of the insulating substrate 51 by means of printing or sputtering. By doing so, they are formed to have equal resistance values RK and RK. Also, the insulating substrate 5
The slit 51C of 1 heat-insulates between the heat generating resistors 52 and 53 and the temperature compensating resistors 54 and 55.

【0068】56,56,…は絶縁基板51の基端側に
形成された例えば8個の電極を示し、該各電極56は絶
縁基板51の幅方向に所定間隔をもって列設され、絶縁
基板51の基端側を前記検出ホルダ26のスロット内に
差込むことにより、該検出ホルダ26側の各ターミナル
(図示せず)に接続される。そして、各電極56はこの
ときに前記発熱抵抗体52,53を後述する電流制御用
トランジスタ33,34のエミッタ側と基準抵抗23
A,23Bとの間に接続し、これらの発熱抵抗体52,
53は回路ケーシング27内に設けた各電子部品と共に
図3に示す流量検出用の処理回路を構成している。
Reference numerals 56, 56, ... Depict, for example, eight electrodes formed on the base end side of the insulating substrate 51. The electrodes 56 are arranged in a row in the width direction of the insulating substrate 51 at predetermined intervals. By inserting the base end side of the above into the slot of the detection holder 26, it is connected to each terminal (not shown) on the side of the detection holder 26. At this time, each electrode 56 connects the heating resistors 52 and 53 to the emitter side of the current controlling transistors 33 and 34, which will be described later, and the reference resistor 23.
A and 23B are connected between these heating resistors 52,
Reference numeral 53 constitutes a processing circuit for flow rate detection shown in FIG. 3 together with each electronic component provided in the circuit casing 27.

【0069】このように構成される本実施例において
も、その吸入空気の流量と流れ方向の検出動作において
は第1の実施例とほぼ同様に検出することができる。
Also in this embodiment having such a configuration, the flow rate and flow direction of the intake air can be detected almost in the same manner as in the first embodiment.

【0070】さらに、本実施例では、絶縁基板51上に
発熱抵抗体52,53と温度補償抵抗54,55を膜状
に形成したから、コンパクトに形成することができる。
Further, in this embodiment, since the heat generating resistors 52 and 53 and the temperature compensating resistors 54 and 55 are formed in a film shape on the insulating substrate 51, it can be made compact.

【0071】なお、前記各実施例では、第1の流量検出
手段となるブリッジ回路35からの第1の流量電圧V1
に基準電源44からの基準電圧VS を印加し、加算する
ようにしたが、本発明はこれに限らず、出力端子45に
基準電源44を接続しても、第2の流量電圧V2 に負の
基準電圧を印加するようにしてもよい。
In each of the above-mentioned embodiments, the first flow rate voltage V1 from the bridge circuit 35 which serves as the first flow rate detecting means.
Although the reference voltage VS from the reference power source 44 is applied to and added to, the present invention is not limited to this, and even if the reference power source 44 is connected to the output terminal 45, the second flow rate voltage V2 is negative. A reference voltage may be applied.

【0072】また、前記各実施例では、流量計本体22
の巻線部24に巻回した基準抵抗23(23A,23
B)を吸気管2内に突出させて設けるものとして述べた
が、本発明はこれに限らず、例えば吸気管2の外側に設
ける回路ケーシング27内に基準抵抗23を流量調整抵
抗37A,37B等と共に配設する構成としてもよい。
In each of the above embodiments, the flowmeter main body 22
Of the reference resistor 23 (23A, 23
B) has been described as being provided so as to project into the intake pipe 2, but the present invention is not limited to this, and for example, the reference resistor 23 is provided in the circuit casing 27 provided outside the intake pipe 2, and the flow rate adjustment resistors 37A, 37B, etc. It may be arranged together with the above.

【0073】[0073]

【発明の効果】以上詳述した如く、請求項1の発明で
は、発熱抵抗を前記流量計本体に取付けられた絶縁基板
上に、吸入空気の流れ方向に対して上流側に第1の発熱
抵抗体、下流側に第2の発熱抵抗体を膜状に形成すると
共に、前記第1の発熱抵抗体の抵抗値変化から第1の流
量信号を出力する第1の流量検出手段と、第2の発熱抵
抗体の抵抗値変化から第2の流量信号を出力する第2の
流量検出手段と、前記第1の流量信号と第2の流量信号
との差を流量検出信号として出力する差算演算手段とを
備える構成とする。例えば、吸入空気の流れ方向が順方
向のときには、第1の発熱抵抗体の方が第2の発熱抵抗
体よりも大きく冷却され、抵抗値が低くなり、各流量検
出手段から出力される各流量信号には差が発生する。そ
して、この各流量信号の差を差算演算手段で演算するこ
とにより、吸入空気の流れ方向と流量を含む流量検出信
号を出力することができる。この結果、吸入空気流量を
正確に検出することができ、エンジンのA/F制御を高
精度に行うことができる。
As described in detail above, in the invention of claim 1, the heat generating resistance is provided on the insulating substrate mounted on the flowmeter main body on the upstream side with respect to the flow direction of the intake air. A second heat generating resistor formed in a film shape on the downstream side of the body, and a first flow rate detecting means for outputting a first flow rate signal based on a change in resistance value of the first heat generating resistor; Second flow rate detection means for outputting a second flow rate signal based on a change in resistance value of the heating resistor, and difference calculation means for outputting a difference between the first flow rate signal and the second flow rate signal as a flow rate detection signal. And a configuration including. For example, when the flow direction of the intake air is the forward direction, the first heating resistor is cooled more than the second heating resistor, the resistance value becomes lower, and each flow rate output from each flow rate detecting unit is decreased. Differences occur in the signals. Then, the difference between the respective flow rate signals is calculated by the difference calculating means, whereby the flow rate detection signal including the flow direction and flow rate of the intake air can be output. As a result, the intake air flow rate can be accurately detected, and the A / F control of the engine can be performed with high accuracy.

【0074】請求項2の発明においては、差算演算手段
から出力される流量検出信号に基準信号を加算するよう
にしたから、差算演算手段から出力される流量検出信号
に基準信号を加算することになり、吸入空気流量を電気
的に正の範囲で出力することができる。
According to the second aspect of the invention, the reference signal is added to the flow rate detection signal output from the difference calculation means, so the reference signal is added to the flow rate detection signal output from the difference calculation means. Therefore, the intake air flow rate can be electrically output within a positive range.

【0075】請求項3の発明においては、前記第1の流
量検出手段および第2の流量検出手段には、前記吸入空
気の温度を補償する温度補償抵抗をそれぞれ設けること
により、吸入空気の温度に拘らず、第1,第2の発熱抵
抗体の温度を一定温度に保つことができ、吸入空気の流
れ方向と流量を正確に検出することができる。
In the third aspect of the present invention, the temperature of the intake air is adjusted by providing the first flow rate detecting means and the second flow rate detecting means with temperature compensation resistors for compensating the temperature of the intake air. Regardless, the temperatures of the first and second heating resistors can be maintained at a constant temperature, and the flow direction and flow rate of the intake air can be accurately detected.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施例による熱式空気流量検出装置を吸
気管に取付けた状態を示す縦断面図である。
FIG. 1 is a vertical cross-sectional view showing a state in which a thermal air flow rate detection device according to a first embodiment is attached to an intake pipe.

【図2】絶縁基板上に形成された第1,第2の発熱抵抗
体を示す平面図である。
FIG. 2 is a plan view showing first and second heating resistors formed on an insulating substrate.

【図3】第1の実施例による熱式空気流量検出装置の回
路構成を示す回路図である。
FIG. 3 is a circuit diagram showing a circuit configuration of a thermal type air flow rate detecting device according to a first embodiment.

【図4】1吸入空気の流量Qに対する出力電圧Vout を
示す特性線図である。
FIG. 4 is a characteristic diagram showing an output voltage Vout with respect to a flow rate Q of one intake air.

【図5】第2の実施例による絶縁基板上に形成された第
1,第2の発熱抵抗体と一対の温度補償抵抗体を示す平
面図である。
FIG. 5 is a plan view showing first and second heat generating resistors and a pair of temperature compensating resistors formed on an insulating substrate according to the second embodiment.

【図6】従来技術による熱式空気流量検出装置を吸気管
に取付けた状態を示す縦断面図である。
FIG. 6 is a vertical cross-sectional view showing a state in which a thermal air flow rate detecting device according to a conventional technique is attached to an intake pipe.

【図7】従来技術による流量計本体および発熱抵抗等を
示す斜視図である。
FIG. 7 is a perspective view showing a flowmeter main body, heat generation resistance and the like according to a conventional technique.

【図8】吸入空気による流速の変動を示す特性線図であ
る。
FIG. 8 is a characteristic diagram showing a change in flow velocity due to intake air.

【符号の説明】[Explanation of symbols]

21 熱式空気流量検出装置 22 流量計本体 23A,23B 基準抵抗 24 巻線部 28,51 絶縁基板 29,52 第1の発熱抵抗体 30,53 第2の発熱抵抗体 35 ブリッジ回路(第1の流量検出手段) 36A,36B 温度補償抵抗 38 ブリッジ回路(第2の流量検出手段) 39,40 差動増幅器 41 差動増幅器(差算演算手段) 44 基準電源 54,55 温度補償抵抗体(温度補償抵抗) V1 第1の流量電圧(第1の流量信号) V2 第2の流量電圧(第2の流量信号) Vout 出力電圧(流量検出信号) VS 基準電圧 21 Thermal Air Flow Detector 22 Flowmeter Main Body 23A, 23B Reference Resistance 24 Winding Part 28,51 Insulation Substrate 29,52 First Heating Resistor 30,53 Second Heating Resistor 35 Bridge Circuit (First Flow rate detection means) 36A, 36B Temperature compensation resistance 38 Bridge circuit (second flow rate detection means) 39, 40 Differential amplifier 41 Differential amplifier (difference calculation means) 44 Reference power supply 54, 55 Temperature compensation resistor (temperature compensation) Resistance) V1 first flow rate voltage (first flow rate signal) V2 second flow rate voltage (second flow rate signal) Vout output voltage (flow rate detection signal) VS reference voltage

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 吸気管の途中に取付けられる流量計本体
と、該流量計本体に設けられ、前記吸気管内を流れる吸
入空気によって冷却される発熱抵抗とを備えてなる熱式
空気流量検出装置において、前記発熱抵抗を前記流量計
本体に取付けられた絶縁基板上に膜状に形成され、吸入
空気の流れ方向に対して上流側に位置した第1の発熱抵
抗体と下流側に位置した第2の発熱抵抗体とから構成
し、前記第1の発熱抵抗体の抵抗値変化から第1の流量
信号を出力する第1の流量検出手段と、第2の発熱抵抗
体の抵抗値変化から第2の流量信号を出力する第2の流
量検出手段と、前記第1の流量検出手段から出力される
第1の流量信号と第2の流量検出手段から出力される第
2の流量信号との差を流量検出信号として出力する差算
演算手段とを備えたことを特徴とする熱式空気流量検出
装置。
1. A thermal type air flow rate detecting device comprising: a flowmeter main body mounted in the middle of an intake pipe; and a heat generating resistance provided in the flowmeter main body and cooled by intake air flowing in the intake pipe. A first heating resistor located upstream in the flow direction of the intake air and a second heating resistor located downstream in the flow direction of the intake air. And a second flow rate detecting means for outputting a first flow rate signal from a change in the resistance value of the first heat generating resistor, and a second flow rate detecting means for changing the resistance value of the second heat generating resistor. Of the second flow rate signal output from the first flow rate detection means and the second flow rate signal output from the second flow rate detection means. And a difference calculation means for outputting as a flow rate detection signal. And a thermal type air flow rate detecting device.
【請求項2】 前記差算演算手段から出力される流量検
出信号に基準信号を加算してなる請求項1記載の熱式空
気流量検出装置。
2. The thermal air flow rate detection device according to claim 1, wherein a reference signal is added to the flow rate detection signal output from the difference calculation means.
【請求項3】 前記第1の流量検出手段および第2の流
量検出手段には、前記吸入空気の温度を補償する温度補
償抵抗をそれぞれ設けてなる請求項1,2記載の熱式空
気流量検出手段。
3. The thermal air flow rate detection device according to claim 1, wherein each of the first flow rate detection means and the second flow rate detection means is provided with a temperature compensation resistor for compensating the temperature of the intake air. means.
JP6195915A 1994-07-28 1994-07-28 Thermal air flow rate detector Pending JPH0843162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6195915A JPH0843162A (en) 1994-07-28 1994-07-28 Thermal air flow rate detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6195915A JPH0843162A (en) 1994-07-28 1994-07-28 Thermal air flow rate detector

Publications (1)

Publication Number Publication Date
JPH0843162A true JPH0843162A (en) 1996-02-16

Family

ID=16349108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6195915A Pending JPH0843162A (en) 1994-07-28 1994-07-28 Thermal air flow rate detector

Country Status (1)

Country Link
JP (1) JPH0843162A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0785417A2 (en) * 1996-01-17 1997-07-23 Hitachi, Ltd. Heating resistor type air flow rate measuring apparatus
JPH10318813A (en) * 1997-05-15 1998-12-04 Omron Corp Device for measuring flow rate
US7251995B2 (en) 2005-01-19 2007-08-07 Denso Corporation Fluid flow sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0785417A2 (en) * 1996-01-17 1997-07-23 Hitachi, Ltd. Heating resistor type air flow rate measuring apparatus
EP0785417A3 (en) * 1996-01-17 1998-04-15 Hitachi, Ltd. Heating resistor type air flow rate measuring apparatus
US6435023B1 (en) 1996-01-17 2002-08-20 Hitachi, Ltd. Heating resistor type air flow rate measuring apparatus
JPH10318813A (en) * 1997-05-15 1998-12-04 Omron Corp Device for measuring flow rate
US7251995B2 (en) 2005-01-19 2007-08-07 Denso Corporation Fluid flow sensor

Similar Documents

Publication Publication Date Title
KR100488213B1 (en) Thermal Air Flow Meter
US4870860A (en) Direct-heated flow measuring apparatus having improved response characteristics
US5753815A (en) Thermo-sensitive flow sensor for measuring flow velocity and flow rate of a gas
JP3133608B2 (en) Thermal air flow detector
JP4157034B2 (en) Thermal flow meter
US6134960A (en) Thermal-type flow sensor
JPH0625684B2 (en) Fluid flow rate detection sensor
JPH0843162A (en) Thermal air flow rate detector
JP3184401B2 (en) Thermal air flow detector
JP3095322B2 (en) Thermal air flow detector
JP2944890B2 (en) Thermal air flow detector
JPH0829228A (en) Thermal air flow rate detection device
JP3184402B2 (en) Thermal air flow detector
JP3174234B2 (en) Thermal air flow detector
JP3133617B2 (en) Thermal air flow detector
JP3174222B2 (en) Thermal air flow detector
JP3133609B2 (en) Thermal air flow detector
JPH07280613A (en) Air flow rate detector
JPH08105779A (en) Thermal-type air flow-rate detector
KR0163636B1 (en) Thermal air flow rate detector
JPH0843160A (en) Thermal air flow rate detector
JPH0422268Y2 (en)
JPH0143883B2 (en)
JP2616150B2 (en) Thermal air flow meter
JP3663267B2 (en) Thermal air flow meter