JP3184401B2 - Thermal air flow detector - Google Patents

Thermal air flow detector

Info

Publication number
JP3184401B2
JP3184401B2 JP15042894A JP15042894A JP3184401B2 JP 3184401 B2 JP3184401 B2 JP 3184401B2 JP 15042894 A JP15042894 A JP 15042894A JP 15042894 A JP15042894 A JP 15042894A JP 3184401 B2 JP3184401 B2 JP 3184401B2
Authority
JP
Japan
Prior art keywords
resistor
flow
temperature
air
heating resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15042894A
Other languages
Japanese (ja)
Other versions
JPH07286876A (en
Inventor
寛 青井
正夫 塚田
Original Assignee
株式会社ユニシアジェックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユニシアジェックス filed Critical 株式会社ユニシアジェックス
Priority to JP15042894A priority Critical patent/JP3184401B2/en
Priority to KR1019950004110A priority patent/KR0163637B1/en
Publication of JPH07286876A publication Critical patent/JPH07286876A/en
Application granted granted Critical
Publication of JP3184401B2 publication Critical patent/JP3184401B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えば自動車用エンジ
ン等の吸入空気流量を検出するのに好適に用いられる熱
式空気流量検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal air flow detecting device which is suitably used for detecting an intake air flow rate of, for example, an automobile engine.

【0002】[0002]

【従来の技術】一般に、自動車用エンジン等では、エン
ジン本体の燃焼室内で燃料と吸入空気との混合気を燃焼
させ、その燃焼圧からエンジンの回転出力を取出すよう
にしており、燃料の噴射量を演算する上で吸入空気流量
を検出することが重要なファクターとなっている。
2. Description of the Related Art In general, in an automobile engine or the like, a mixture of fuel and intake air is burned in a combustion chamber of an engine body, and the rotational output of the engine is obtained from the combustion pressure. Detecting the intake air flow rate is an important factor in calculating the following equation.

【0003】そこで、図8および図9に従来技術の熱式
空気流量検出装置を示す。
FIGS. 8 and 9 show a conventional thermal air flow detecting device.

【0004】図において、1は吸気管2の途中に設けら
れた熱式空気流量検出装置を示し、該熱式空気流量検出
装置1は、エンジン本体の燃焼室(図示せず)に向けて
矢示A方向に流通する吸入空気の流量を検出すべく、吸
気管2の途中に取付穴2Aを介して配設されている。
[0004] In the drawing, reference numeral 1 denotes a thermal air flow detecting device provided in the middle of an intake pipe 2. The thermal air flow detecting device 1 is directed toward a combustion chamber (not shown) of an engine body. In order to detect the flow rate of the intake air flowing in the direction A shown in the drawing, it is provided in the middle of the intake pipe 2 via a mounting hole 2A.

【0005】3は熱式空気流量検出装置1の本体部を構
成する流量計本体を示し、該流量計本体3はインサート
モールド等の手段により図9に示すように成形され、巻
線状をなす後述の基準抵抗14を巻回すべく段付き円柱
状に形成された巻線部4と、該巻線部4の基端側に位置
して略円板状に形成され、後述の端子ピン8A〜8Dが
一体的に設けられた端子部5と、巻線部4の先端側から
吸気管2の径方向に延設され、吸気管2の中心部で後述
の発熱抵抗9および温度補償抵抗11を位置決めする検
出ホルダ6と、吸気管2の外側に位置して端子部5が接
続された後述の回路ケーシング7とから大略構成されて
いる。
Reference numeral 3 denotes a flow meter main body which constitutes a main body of the thermal type air flow detecting device 1. The flow meter main body 3 is formed as shown in FIG. 9 by means such as insert molding and has a winding shape. A winding portion 4 formed in a stepped cylindrical shape for winding a later-described reference resistor 14, and a substantially disk-shaped portion located on the base end side of the winding portion 4 and having terminal pins 8 A to 8 8D is provided integrally with the terminal portion 5 and extends in the radial direction of the intake pipe 2 from the distal end side of the winding section 4. It comprises a detection holder 6 to be positioned and a circuit casing 7 described below to which the terminal 5 is connected outside the intake pipe 2.

【0006】7は吸気管2の取付穴2Aを閉塞するよう
に該吸気管2の外周側に設けられた回路ケーシングを示
し、該回路ケーシング7は絶縁性の樹脂材料等によって
形成され、その底部側には吸気管2の取付穴2Aに嵌合
する嵌合部7Aが一体的に設けられている。そして、該
回路ケーシング7は、例えばセラミック材料等からなる
絶縁基板上に流量調整抵抗および差動増幅器(いずれも
図示せず)等を実装した状態で、これらを内蔵するよう
になっている。
Reference numeral 7 denotes a circuit casing provided on the outer peripheral side of the intake pipe 2 so as to close the mounting hole 2A of the intake pipe 2. The circuit casing 7 is formed of an insulating resin material or the like, and has a bottom portion. On the side, a fitting portion 7A that fits into the mounting hole 2A of the intake pipe 2 is integrally provided. The circuit casing 7 has a flow rate adjusting resistor and a differential amplifier (both not shown) mounted on an insulating substrate made of, for example, a ceramic material, and incorporates them.

【0007】8A,8B,8C,8Dは流量計本体3の
端子部5から軸方向に突出した4本の端子ピン(全体と
して各端子ピン8という)を示し、該各端子ピン8は流
量計本体3の巻線部4および検出ホルダ6内に埋設され
た例えば4本の端子板(図示せず)に一体化して設けら
れ、回路ケーシング7のコネクタ部(図示せず)に着脱
可能に接続されるものである。
Reference numerals 8A, 8B, 8C, and 8D denote four terminal pins (generally referred to as terminal pins 8) projecting in the axial direction from the terminal portion 5 of the flowmeter main body 3, and each of the terminal pins 8 is a flowmeter. It is provided integrally with, for example, four terminal plates (not shown) embedded in the winding part 4 of the main body 3 and the detection holder 6 and is detachably connected to a connector part (not shown) of the circuit casing 7. Is what is done.

【0008】9は流量計本体3の検出ホルダ6にターミ
ナル10A,10Bを介して設けられたホットフィルム
型の発熱抵抗を示し、該発熱抵抗9は温度変化に敏感に
反応して抵抗値が変化する白金等の感温性材料からな
り、例えば酸化アルミニウム(以下、「アルミナ」とい
う)等のセラミック材料からなる絶縁性の筒体に白金線
を巻回したり、白金膜を蒸着したりして形成される小径
の発熱抵抗素子によって構成されている。そして、該発
熱抵抗9はバッテリ(図示せず)からの通電により、例
えば240℃前,後の温度をもって発熱した状態とな
り、吸気管2内を矢示A方向に流れる吸入空気によって
冷却されるときには、この吸入空気の流量に応じて抵抗
値が変化し流量の検出信号を出力させるものである。
Reference numeral 9 denotes a hot film type heating resistor provided on the detection holder 6 of the flow meter main body 3 via the terminals 10A and 10B. The heating resistor 9 changes its resistance value in response to a temperature change. A platinum wire is wound around an insulating cylinder made of a ceramic material such as aluminum oxide (hereinafter, referred to as "alumina") or a platinum film is formed by depositing a platinum film. And a heating resistor element having a small diameter. The heat generating resistor 9 is heated by, for example, a temperature before and after 240 ° C. by energization from a battery (not shown), and is cooled by intake air flowing in the intake pipe 2 in the direction of arrow A. The resistance value changes in accordance with the flow rate of the intake air, and a flow rate detection signal is output.

【0009】11は発熱抵抗9の上流側に位置して流量
計本体3の検出ホルダ6に設けられた温度補償抵抗を示
し、該温度補償抵抗11は例えばアルミナ等のセラミッ
ク材料からなる絶縁基板上にスパッタリング等の手段を
用いて白金膜を着膜形成することにより形成され、白金
膜の両端は前記検出ホルダ6に立設されたターミナル1
2A,12B間に接続されている。
Reference numeral 11 denotes a temperature compensation resistor provided on the detection holder 6 of the flowmeter main body 3 located on the upstream side of the heating resistor 9, and the temperature compensation resistor 11 is formed on an insulating substrate made of a ceramic material such as alumina. Is formed by depositing a platinum film using a means such as sputtering, and both ends of the platinum film are connected to the terminal 1 provided upright on the detection holder 6.
It is connected between 2A and 12B.

【0010】13は流量計本体3の検出ホルダ6上に装
着される保護カバーを示し、該保護カバー13は検出ホ
ルダ6上に発熱抵抗9および温度補償抵抗11を実装し
た後に、図9中に矢印で示す如く検出ホルダ6に被着さ
れ、発熱抵抗9および温度補償抵抗11を保護すると共
に、吸入空気の流通を許すようになっている。なお、図
8中では発熱抵抗9および温度補償抵抗11を明示すべ
く、保護カバー13を検出ホルダ6から取外した状態で
示している。
Reference numeral 13 denotes a protection cover mounted on the detection holder 6 of the flowmeter main body 3. The protection cover 13 is shown in FIG. 9 after mounting the heating resistor 9 and the temperature compensation resistor 11 on the detection holder 6. As shown by the arrow, it is attached to the detection holder 6 to protect the heat generating resistor 9 and the temperature compensating resistor 11 and allow the flow of intake air. In FIG. 8, the protective cover 13 is removed from the detection holder 6 in order to clearly show the heating resistor 9 and the temperature compensation resistor 11.

【0011】さらに、14は流量計本体3の巻線部4に
巻回された巻線抵抗からなる基準抵抗を示し、該基準抵
抗14はその両端が、巻線部4に立設されたターミナル
15A,15Bに接続され、前記発熱抵抗9に直列接続
されている。ここで、前記各端子ピン8のうち、端子ピ
ン8Aはターミナル15Aに前記端子板を介して接続さ
れ、端子ピン8Bは他の端子板を介してターミナル15
B,10Aに接続されている。また、端子ピン8Cは別
の端子板を介してターミナル10B,12Bに接続さ
れ、端子ピン8Dはターミナル12Aにさらに別の端子
板を介して接続されている。
Further, reference numeral 14 denotes a reference resistance comprising a winding resistance wound around the winding part 4 of the flowmeter main body 3, and the reference resistance 14 has terminals at both ends thereof standing on the winding part 4. 15A and 15B, and connected in series to the heating resistor 9. Here, among the terminal pins 8, the terminal pin 8A is connected to the terminal 15A via the terminal plate, and the terminal pin 8B is connected to the terminal 15 via another terminal plate.
B, 10A. The terminal pin 8C is connected to the terminals 10B and 12B via another terminal plate, and the terminal pin 8D is connected to the terminal 12A via another terminal plate.

【0012】このように構成される従来技術の熱式空気
流量検出装置1は、自動車用エンジン等の吸入空気流量
を検出するときに、流量計本体3の端子部5を各端子ピ
ン8を介して回路ケーシング7のコネクタ部に接続した
状態で、流量計本体3の検出ホルダ6等を吸気管2内に
取付穴2Aを介して挿入し、該取付穴2Aに吸気管2の
外周側から回路ケーシング7を取付けることによって、
検出ホルダ6に設けた発熱抵抗9および温度補償抵抗1
1を吸気管2の中心部に配設する。
In the thermal air flow detecting device 1 of the prior art constructed as described above, when detecting the intake air flow rate of an automobile engine or the like, the terminal portion 5 of the flow meter main body 3 is connected via each terminal pin 8. Te while connected to the connector portion of the circuit casing 7, the flowmeter body 3 of the detection holder 6 or the like inserted through the mounting hole 2A into the intake pipe 2, from the outer periphery of the intake pipe 2 to the said mounting Tsukeana 2A By mounting the circuit casing 7,
Heating resistor 9 and temperature compensation resistor 1 provided on detection holder 6
1 is disposed at the center of the intake pipe 2.

【0013】この場合、発熱抵抗9を基準抵抗14に直
列接続すると共に、温度補償抵抗11を回路ケーシング
7内の流量調整抵抗に直列接続することによって、これ
らの発熱抵抗9、基準抵抗14、温度補償抵抗11およ
び流量調整抵抗からブリッジ回路を構成し、これらに外
部から通電を行うことにより発熱抵抗9を240℃前,
後の温度をもって発熱させる。
In this case, by connecting the heating resistor 9 in series with the reference resistor 14 and connecting the temperature compensating resistor 11 in series with the flow rate adjusting resistor in the circuit casing 7, the heating resistor 9, the reference resistor 14, and the temperature A bridge circuit is composed of the compensation resistor 11 and the flow rate adjustment resistor, and the bridge circuit is energized from the outside so that the heating resistor 9 is 240 ° C.
Heat is generated at a later temperature.

【0014】そして、この状態で吸気管2内をエンジン
本体の燃焼室に向けて矢示A方向に吸入空気が流通する
ときには、この吸入空気の流れにより発熱抵抗9が冷却
されて該発熱抵抗9の抵抗値が変化するから、該発熱抵
抗9に直列接続された基準抵抗14の両端電圧に基づい
て吸入空気の流量に対応した検出信号を出力電圧の変化
として検出する。
In this state, when the intake air flows in the intake pipe 2 toward the combustion chamber of the engine body in the direction indicated by the arrow A, the flow of the intake air cools the heating resistor 9 so that the heating resistor 9 is cooled. , The detection signal corresponding to the flow rate of the intake air is detected as a change in the output voltage based on the voltage across the reference resistor 14 connected in series with the heating resistor 9.

【0015】[0015]

【発明が解決しようとする課題】ところで、上述した従
来技術では、吸気管2内を流れる吸入空気の流れで発熱
抵抗9が冷却されるのを利用して、該発熱抵抗9の抵抗
値変化に基づき吸入空気流量を検出する構成であるか
ら、該発熱抵抗9は図8中の矢示A方向(順方向)に流
れる吸入空気流によって冷却されると共に、矢示B方向
(逆方向)に流れる空気流によっても冷却されてしま
い、この逆方向の空気流により吸入空気流量を誤検出す
るという問題がある。
By the way, in the above-mentioned prior art, the resistance value of the heating resistor 9 is changed by utilizing the cooling of the heating resistor 9 by the flow of the intake air flowing through the intake pipe 2. Since the configuration is such that the intake air flow is detected based on the intake air flow, the heating resistor 9 is cooled by the intake air flow flowing in the arrow A direction (forward direction) in FIG. 8 and flows in the arrow B direction (reverse direction). It is also cooled by the air flow, and there is a problem that the air flow in the opposite direction erroneously detects the intake air flow rate.

【0016】即ち、多気筒のシリンダを備えたエンジン
本体では、各シリンダ内でそれぞれピストンが往復動す
るに応じて各吸気弁(図示せず)が開弁する毎に、吸入
空気が各シリンダ内に向けて矢示A方向(順方向)に吸
込まれるから、吸気管2内を流れる空気の流速は各吸気
弁の開,閉弁に応じて図5に例示する如く増減を繰返し
脈動するようになる。
That is, in an engine body having a multi-cylinder cylinder, the intake air is forced into each cylinder every time each intake valve (not shown) is opened as the piston reciprocates in each cylinder. As shown in FIG. 5, the flow velocity of the air flowing through the intake pipe 2 is repeatedly increased and decreased in accordance with the opening and closing of each intake valve as shown in FIG. become.

【0017】特に、エンジンの回転数が低速域から中速
域等に達して吸,排気量が増大してくると、吸気弁と排
気弁(図示せず)とがオーバラップし、排気の一部が吸
気弁の開弁に伴って吸気管2内に吹返すことがあるた
め、このときに吸気管2内では図5に示す時間t1 ,t
2 間のように流速が負(マイナス)となって、矢示B方
向(逆方向)に流れる空気流が発生し、吸入空気流量を
誤検出するという問題が生じる。
In particular, when the engine speed reaches from a low speed range to a middle speed range and the intake and exhaust volumes increase, the intake valve and the exhaust valve (not shown) overlap, and one of the exhaust The part may blow back into the intake pipe 2 with the opening of the intake valve, and at this time, the times t1, t shown in FIG.
The flow velocity becomes negative (minus) as shown in FIG. 2, and an airflow flowing in the direction of arrow B (reverse direction) is generated, which causes a problem that the intake air flow rate is erroneously detected.

【0018】本発明は上述した従来技術の問題に鑑みな
されたもので、本発明は逆方向の空気流により吸入空気
流量を誤検出するのを防止でき、流量の検出精度を大幅
に向上できるようにした熱式空気流量検出装置を提供す
ることを目的としている。
The present invention has been made in view of the above-described problems of the prior art, and the present invention can prevent erroneous detection of an intake air flow rate due to a reverse air flow, and can greatly improve flow rate detection accuracy. It is an object of the present invention to provide a thermal air flow detecting device according to the present invention.

【0019】[0019]

【課題を解決するための手段】上述した課題を解決する
ために本発明は、基端側が吸気管に取付けられた流量計
本体と、前記吸気管内に位置して該流量計本体に設けら
れ、前記吸気管内を流れる空気によって冷却されるとき
の抵抗値の変化を空気の流量として検出する流量検出用
発熱抵抗とを備えてなる熱式空気流量検出装置に適用
される。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a flowmeter main body having a base end attached to an intake pipe, and provided on the flowmeter main body located in the intake pipe. When cooled by air flowing in the intake pipe
For flow rate detection that detects the change in resistance value of air as the flow rate of air
This is applied to a thermal air flow rate detecting device having a heat generating resistance.

【0020】そして、請求項1の発明が採用する構成の
特徴は、前記流量検出用の発熱抵抗は、前記流量計本体
に取付けられた絶縁基板上に形成され、該絶縁基板の少
なくとも長さ方向に膜状に延びた発熱抵抗体によって構
成し、前記絶縁基板上には、該発熱抵抗体から前記空気
の流れ方向下流側に離間して形成され、前記空気によっ
て冷却されるときの抵抗値が空気の流れ方向に応じて変
化する単一の感温抵抗体を設け、該感温抵抗体は、前記
流量計本体に設けられた固定抵抗と並列に接続すること
により該固定抵抗と共に空気の流れ方向を検出する流れ
方向検出手段を構成し、かつ前記感温抵抗体は、電圧を
印加することによって前記発熱抵抗体よりも低い温度で
発熱させる構成としたことにある。
A feature of the structure adopted in the first aspect of the present invention is that the heat generating resistor for detecting the flow rate is formed on an insulating substrate attached to the main body of the flow meter, and at least a length direction of the insulating substrate is measured. The heating resistor is formed on the insulating substrate so as to be separated from the heating resistor on the downstream side in the flow direction of the air, and has a resistance value when cooled by the air. A single temperature-sensitive resistor that changes according to the flow direction of air is provided, and the temperature-sensitive resistor is connected in parallel with a fixed resistor provided in the flowmeter main body, so that the airflow with the fixed resistor is established. A flow direction detecting means for detecting a direction , and the temperature-sensitive resistor detects a voltage;
By applying it at a lower temperature than the heating resistor
That is, the heat is generated .

【0021】[0021]

【0022】請求項の発明では、前記発熱抵抗体は前
記絶縁基板の基端側から先端側に延びるように形成し、
前記感温抵抗体は、前記空気の流れ方向に対し前記発熱
抵抗体よりも下流側に位置して前記絶縁基板の基端側か
ら先端側に延びる単一の抵抗膜により形成している。
In the invention according to claim 2, the heating resistor is formed so as to extend from a base end side to a front end side of the insulating substrate,
The temperature sensing resistor is formed by a single resistive film extending distally from the proximal side of the insulating substrate located downstream of the heating resistor to the flow direction of the air.

【0023】請求項の発明では、前記絶縁基板は、基
端側が前記流量計本体に取付けられる固定端となり先端
側が自由端となった主基板部と副基板部とから構成し、
該副基板部と主基板部との間には先端側から基端側に向
けて延びるスリットを形成すると共に、前記副基板部に
は空気の温度変化を補償するための温度補償抵抗を形成
し、前記主基板部には、基端側から先端側に延びる前記
発熱抵抗体と、該発熱抵抗体から空気の流れ方向に対し
下流側に離間して基端側から先端側に延びる前記感温抵
抗体とを形成してなる構成としている。
According to the third aspect of the present invention, the insulating substrate comprises a main substrate portion having a fixed end attached to the flowmeter main body at a base end side and a free end at a distal end side, and a sub-substrate portion.
A slit extending from the distal end toward the proximal end is formed between the sub-board portion and the main board portion, and a temperature compensation resistor for compensating a temperature change of air is formed in the sub-board portion. The main substrate portion, the heating resistor extending from the base end to the distal end, and the temperature-sensitive member extending from the base end to the distal end while being separated downstream from the heating resistor in the direction of air flow. it is a formed comprising constituting a resistor.

【0024】請求項の発明では、前記流れ方向検出手
段は、前記感温抵抗体の抵抗値が固定抵抗よりも減少す
るか否かで、空気の流れ方向に対応した流れ方向検出信
号を出力する構成としている。
According to a fourth aspect of the present invention, the flow direction detecting means outputs a flow direction detection signal corresponding to the flow direction of air based on whether or not the resistance value of the temperature-sensitive resistor is smaller than a fixed resistance. Configuration.

【0025】さらに、請求項の発明では、前記発熱抵
抗体は流量検出信号を出力するブリッジ回路を構成し、
さらに該ブリッジ回路から出力される流量検出信号と前
記流れ方向検出手段によって検出される流れ方向検出信
号とに基づいて、前記空気の流れ方向が順方向のときに
は前記流量検出信号をそのまま出力し、逆方向のときに
は前記流量検出信号を反転させて出力する流量信号出力
手段を備える構成としている。
Further, in the invention of claim 5 , the heating resistor forms a bridge circuit for outputting a flow rate detection signal,
Further, based on the flow rate detection signal output from the bridge circuit and the flow direction detection signal detected by the flow direction detection means, when the flow direction of the air is forward, the flow rate detection signal is output as it is, In the case of the direction, a flow signal output means for inverting and outputting the flow detection signal is provided.

【0026】[0026]

【作用】上記構成により、請求項1の発明では、絶縁基
板の限られた表面スペースを利用して発熱抵抗体と単一
の感温抵抗体を絶縁基板上にコンパクトに形成でき、発
熱抵抗体の表面積を可能な限り大きくすることができ
る。そして、絶縁基板上には単一の感温抵抗体を発熱抵
抗体から空気の流れ方向下流側に離間して形成している
ので、発熱抵抗体よりも下流側に位置する感温抵抗体
空気の流れ方向が順方向の場合に発熱抵抗体からの
熱影響を受け、順方向の空気流によって直接冷やされる
ことはなくなり、これによって、感温抵抗体は抵抗値
変化が小さくなる。一方、空気の流れ方向が逆方向にな
ると、感温抵抗体が発熱抵抗体よりも流側となるの
、感温抵抗体は発熱抵抗体からの熱影響を受けること
なく、空気流によって直接冷やされることになり、抵抗
が大きく変化る。このように、感温抵抗体の抵抗値
が大きく変化するか否かによって、空気の流れ方向を検
出することができる。
According to the above construction, according to the first aspect of the present invention, the heating resistor and a single temperature-sensitive resistor can be formed compactly on the insulating substrate by utilizing the limited surface space of the insulating substrate. Can be as large as possible. Since a single temperature-sensitive resistor is formed on the insulating substrate so as to be separated from the heat-generating resistor on the downstream side in the air flow direction, the temperature-sensitive resistor located downstream from the heat-generating resistor is , influenced by heat from the heating resistor when the air flow direction is forward, no longer be cooled directly I by the forward air flow, thereby, the temperature sensing resistor of resistance
Change is that a small. On the other hand, the air flow direction is reversed.
That when, the temperature sensitive resistors is ing the upper Nagaregawa than the heating resistor
In, the temperature sensitive resistors Rukoto affected by heat from the heating resistor
Without would be cooled directly by the air flow, the resistance value change significantly. As described above, the direction of air flow can be detected based on whether or not the resistance value of the temperature-sensitive resistor changes significantly.

【0027】また、感温抵抗体は、電圧を印加すること
によって発熱抵抗体よりも低い温度で発熱させる構成と
しているので、空気流による直接冷却と発熱抵抗体を介
した空気流による冷却との違いをより確実に判別するこ
とができる。
In addition, a voltage is applied to the temperature- sensitive resistor.
Configuration to generate heat at a lower temperature than the heating resistor
Therefore , the difference between the direct cooling by the air flow and the cooling by the air flow through the heating resistor can be more reliably determined.

【0028】請求項の発明では、単一の絶縁基板上で
基端側から先端側に向けて延びるように発熱抵抗体と感
温抵抗体を形成したから、空気流に対する接触面積を大
きくすることができ、抵抗値の変化を大きくできると共
に、部品点数を削減することができる。
According to the second aspect of the present invention, since the heating resistor and the temperature-sensitive resistor are formed on the single insulating substrate so as to extend from the base end to the tip end, the contact area with the air flow is increased. As a result, the change in resistance value can be increased, and the number of components can be reduced.

【0029】請求項の発明では、単一の絶縁基板上に
発熱抵抗体、感温抵抗体および温度補償抵抗を形成で
き、部品点数を削減することができる。そして、温度補
償抵抗が形成される副基板部と、前記発熱抵抗体と感温
抵抗体が形成される主基板部との間にスリットを形成す
ることにより、発熱抵抗体と感温抵抗体とで加熱される
主基板部から副基板部に熱が逃げるのを防止でき、主基
板部を早期に温度上昇させることができる。
According to the third aspect of the present invention, a heating resistor, a temperature-sensitive resistor, and a temperature compensation resistor can be formed on a single insulating substrate, and the number of components can be reduced. By forming a slit between the sub-substrate portion on which the temperature compensation resistor is formed and the main substrate portion on which the heating resistor and the temperature-sensitive resistor are formed, the heating resistor and the temperature-sensitive resistor can be formed. Thus, it is possible to prevent heat from escaping from the heated main substrate portion to the sub-substrate portion, and to raise the temperature of the main substrate portion at an early stage.

【0030】請求項の発明では、前記感温抵抗体と固
定抵抗とを並列に接続して構成される流れ方向検出手段
は、前記感温抵抗体の抵抗値が固定抵抗よりも減少する
か否かで、空気の流れ方向に対応した流れ方向検出信号
を出力する構成したから、固定抵抗よりも感温抵抗体
の抵抗値が大きい場合には、例えば順方向の空気流であ
ると判定でき、前記抵抗値が小さくなった場合には逆方
向の空気流であるとして判定できる。
According to a fourth aspect of the present invention, the flow direction detecting means is constituted by connecting the temperature-sensitive resistor and the fixed resistor in parallel.
Means that the resistance value of the temperature-sensitive resistor is smaller than the fixed resistance
Whether or not the flow direction detection signal corresponds to the air flow direction
Since it configured to output a if the fixed large resistance value of the temperature sensing resistor than resistor can, for example, determined to be the forward direction of the air flow, reverse if the resistance value is smaller It can be determined that it is an air flow.

【0031】さらに、請求項の発明では、発熱抵抗体
を含んでブリッジ回路を形成し、該ブリッジ回路中の発
熱抵抗体の抵抗値変化を流量検出信号として取出すと共
に、感温抵抗体の抵抗値を固定抵抗の抵抗値と比較する
流れ方向検出手段により空気の流れ方向を検出し、空気
の流れ方向が順方向のときには前記流量検出信号をその
まま正の電圧信号として出力でき、逆方向のときには反
転させて負の電圧信号として出力することができる。
Further, according to the fifth aspect of the present invention, a bridge circuit including the heating resistor is formed, a change in the resistance value of the heating resistor in the bridge circuit is extracted as a flow rate detection signal, and the resistance of the temperature-sensitive resistor is detected. The flow direction of the air is detected by a flow direction detecting means for comparing the value with the resistance value of the fixed resistor, and when the air flow direction is the forward direction, the flow rate detection signal can be output as it is as a positive voltage signal, and when the air flow direction is the reverse direction, It can be inverted and output as a negative voltage signal.

【0032】[0032]

【実施例】以下、本発明の実施例を図1ないし図7に基
づき説明する。なお、実施例では前述した従来技術と同
一の構成要素に同一の符号を付し、その説明を省略する
ものとする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. In the embodiments, the same components as those of the above-described conventional technology are denoted by the same reference numerals, and description thereof will be omitted.

【0033】まず、図1ないし図5に本発明による第1
の実施例を示す。
First, FIGS. 1 to 5 show a first embodiment according to the present invention.
The following shows an example.

【0034】図中、21は本実施例による熱式空気流量
検出装置、22は該熱式空気流量検出装置21の本体部
を構成する流量計本体を示し、該流量計本体22は従来
技術で述べた流量計本体3とほぼ同様に、抵抗値R1 を
有する基準抵抗23が巻回される巻線部24と、該巻線
部24の基端側に位置し、複数の端子ピン(図示せず)
が一体的に設けられた端子部25と、巻線部24の先端
側から吸気管2の径方向に延設された検出ホルダ26
と、後述する回路ケーシング27とから大略構成されて
いる。
In the drawing, reference numeral 21 denotes a thermal air flow detecting device according to the present embodiment, 22 denotes a flow meter main body constituting a main body of the thermal air flow detecting device 21, and the flow meter main body 22 is a conventional one. In substantially the same manner as the flowmeter body 3 described above, a winding portion 24 around which a reference resistor 23 having a resistance value R1 is wound, and a plurality of terminal pins (shown in FIG. Z)
And a detection holder 26 extending in the radial direction of the intake pipe 2 from the distal end side of the winding portion 24.
And a circuit casing 27 described later.

【0035】しかし、前記流量計本体22には検出ホル
ダ26の基端側に後述の絶縁基板29を着脱可能に取付
けるためのスロット(図示せず)が形成され、該検出ホ
ルダ26は図1中に示す如く吸気管2の中心部に、絶縁
基板29を介して後述の発熱抵抗体31等を位置決めす
る構成となっている。なお、検出ホルダ26には従来技
術で述べた保護カバー13と同様の保護カバー(図示せ
ず)が取付けられるようになっている。
However, a slot (not shown) for detachably mounting an insulating substrate 29 to be described later is formed at the base end side of the detection holder 26 in the flowmeter main body 22, and the detection holder 26 is shown in FIG. As shown in the figure, a heating resistor 31 and the like, which will be described later, are positioned at the center of the intake pipe 2 via an insulating substrate 29. The detection holder 26 is provided with a protective cover (not shown) similar to the protective cover 13 described in the related art.

【0036】27は吸気管2の取付穴2Aを閉塞するよ
うに該吸気管2の外周側に設けられた回路ケーシングを
示し、該回路ケーシング27は従来技術で述べた回路ケ
ーシング7とほぼ同様に形成され、吸気管2の取付穴2
Aに嵌合する嵌合部27Aを有しているものの、該回路
ケーシング27は、例えばセラミック材料等からなる絶
縁基板(図示せず)上に後述の流量調整抵抗35および
差動増幅回路36等を実装した状態で、これらを内蔵す
るようになっている。なお、28A,28Bは前記基準
抵抗23の巻線が接続されるターミナルである。
Reference numeral 27 denotes a circuit casing provided on the outer peripheral side of the intake pipe 2 so as to close the mounting hole 2A of the intake pipe 2. The circuit casing 27 is substantially the same as the circuit casing 7 described in the prior art. The mounting hole 2 of the intake pipe 2 is formed.
Although the circuit casing 27 has a fitting portion 27A that fits into the A, the circuit casing 27 is formed on an insulating substrate (not shown) made of, for example, a ceramic material or the like. These are built-in while mounted. 28A and 28B are terminals to which the windings of the reference resistor 23 are connected.

【0037】29は検出ホルダ26に取付けられる絶縁
基板を示し、該絶縁基板29は、図2に示すように、ガ
ラス,アルミナ,窒化アルミニウム等の絶縁材料によ
り、長さ寸法が15〜20mm前後、幅寸法が3〜7mm前
後となった長方形の平板状に形成されている。また、該
絶縁基板29は、基端側が検出ホルダ26のスロットに
着脱可能に取付けられる固定端となり、先端側が自由端
となっている。
Reference numeral 29 denotes an insulating substrate mounted on the detection holder 26. As shown in FIG. 2, the insulating substrate 29 is made of an insulating material such as glass, alumina, or aluminum nitride, and has a length of about 15 to 20 mm. It is formed in a rectangular flat plate having a width of about 3 to 7 mm. The base end of the insulating substrate 29 is a fixed end detachably attached to a slot of the detection holder 26, and the front end is a free end.

【0038】30は絶縁基板29上に形成された発熱抵
抗を構成する発熱抵抗体を示し、該発熱抵抗体30はプ
リント印刷またはスパッタリング等の手段を用いて絶縁
基板29上に白金膜を着膜させることにより、抵抗値R
H を有するように形成され、空気の流れ方向(矢示A方
向)に対して上流側に位置して形成され、該発熱抵抗体
30の表面積(実装面積)を可及的に増大させ、例えば
吸気管2内を流れる吸入空気との接触面積を大きくでき
るようにしている。
Reference numeral 30 denotes a heating resistor which forms a heating resistor formed on the insulating substrate 29. The heating resistor 30 is formed by depositing a platinum film on the insulating substrate 29 by means such as printing or sputtering. The resistance R
H, and is formed on the upstream side with respect to the air flow direction (the direction of arrow A) to increase the surface area (mounting area) of the heating resistor 30 as much as possible. The contact area with the intake air flowing through the intake pipe 2 can be increased.

【0039】また、前記発熱抵抗体30は後述する電流
制御用トランジスタ42によって電流値が制御され、温
度を一定温度(例えば約240℃)に保つように発熱す
る構成となっている。
The current value of the heating resistor 30 is controlled by a current control transistor 42 described later, and the heating resistor 30 generates heat so as to keep the temperature at a constant temperature (for example, about 240 ° C.).

【0040】31は発熱抵抗体30と共に絶縁基板29
上に形成された感温抵抗体を示し、該感温抵抗体31は
抵抗値RT を有するように、前記絶縁基板29上に白金
等の感温性材料をプリント印刷またはスパッタリング等
の手段で着膜させることによって形成され、例えば吸気
管2内を矢示A方向に流れる吸入空気の流れ方向(絶縁
基板29の幅方向)に対し発熱抵抗体30の下流側に離
間して絶縁基板29上に配設されている。また、前記感
温抵抗体31は、通常時には図3に示すようにサブ電源
VS から電流が印加され、発熱抵抗体30よりも低い温
度で発熱しているから、該感温抵抗体31は絶縁基板2
9の表面に沿って流れる空気で冷却されることにより、
抵抗値RT が大きく変化し、後述のブリッジ回路37お
よび比較回路41で空気の流れ方向を感度良く検出する
ことができる。
Numeral 31 denotes an insulating substrate 29 together with the heating resistor 30.
The temperature-sensitive resistor 31 is formed on the insulating substrate 29 by printing or sputtering or the like so that the temperature-sensitive resistor 31 has a resistance value RT. It is formed on the insulating substrate 29 by being separated downstream of the heating resistor 30 with respect to the flow direction of the intake air flowing in the intake pipe 2 in the direction indicated by the arrow A (the width direction of the insulating substrate 29). It is arranged. The temperature-sensitive resistor 31 is normally supplied with a current from the sub power supply VS as shown in FIG. 3 and generates heat at a lower temperature than the heat-generating resistor 30 as shown in FIG. Substrate 2
By cooling with air flowing along the surface of 9,
The resistance value RT changes greatly, and the direction of air flow can be detected with high sensitivity by the bridge circuit 37 and the comparison circuit 41 described later.

【0041】ここで、前記感温抵抗体31の抵抗値RT
は、図4に示すように空気の流れ方向および流速に対応
して変化する。そして、吸気管2内の空気の流れが順方
向の流れ(矢示A方向)の場合には、前記感温抵抗体3
1は発熱抵抗体30の下流側に位置しているから、該感
温抵抗体31は発熱抵抗体30で暖められた空気に接触
するようになる。このため、感温抵抗体31は発熱抵抗
体30からの熱影響を受けることによって、感温抵抗体
31の抵抗値RT は緩やかに減少し、流速が高速(流量
が増加)になっても後述する固定抵抗38の抵抗値RB
よりも小さくなることはない 方、吸気管2内の空気
流が逆方向(矢示B方向)となった場合には、前記感温
抵抗体31は発熱抵抗体30よりも上流側に位置してい
るから、該感温抵抗体31は発熱抵抗体30からの熱の
影響を受けることなく、逆方向の空気によって直接
やされ、感温抵抗体31の抵抗値RT は急激に減少して
固定抵抗38の抵抗値RB よりも小さくなる。
Here, the resistance value RT of the temperature-sensitive resistor 31 is shown.
Corresponds to the air flow direction and air velocity as shown in FIG.
And change . When the flow of air in the intake pipe 2 is a forward flow (the direction of arrow A), the temperature-sensitive resistor 3
Since 1 is located downstream of the heating resistor 30, temperature sensitive resistors 31 ing to contact the warmed by the heating resistor 30 air. For this reason, the temperature-sensitive resistor 31 is
Under the influence of heat from the body 30, the resistance value RT of the temperature-sensitive resistor 31 gradually decreases, and even when the flow velocity becomes high (the flow rate increases), the resistance value RB of a fixed resistor 38 described later.
It will never be smaller . Hand, if the air flow in the intake pipe 2 becomes reverse direction (arrow B direction), since the temperature sensitive resistor 31 is positioned upstream of the heating resistor 30, sensitive resistance temperature 31 without being affected by heat from the heating resistor 30, the reverse direction of the cold <br/> or directly by the air flow, the resistance value of the temperature sensitive resistor 31 RT is decreased rapidly
It becomes smaller than the resistance value RB of the fixed resistor 38 .

【0042】32,32,…は絶縁基板29の基端側に
位置して形成された例えば4個の電極を示し、該各電極
32は絶縁基板29の幅方向に所定間隔をもって列設さ
れ、絶縁基板29の基端側を前記検出ホルダ26のスロ
ット内に差込むことにより、該検出ホルダ26側の各タ
ーミナル(図示せず)に接続される。そして、該各電極
32を介して絶縁基板29上に形成された前記発熱抵抗
体30と感温抵抗体31とを回路ケーシング27内に設
けられた各電子部品に接続することにより、図3に示す
流量検出用の処理回路が構成されている。
.. Denote, for example, four electrodes formed at the base end side of the insulating substrate 29. The electrodes 32 are arranged in rows at a predetermined interval in the width direction of the insulating substrate 29. By inserting the base end side of the insulating substrate 29 into the slot of the detection holder 26, it is connected to each terminal (not shown) on the detection holder 26 side. Then, by connecting the heating resistor 30 and the temperature-sensitive resistor 31 formed on the insulating substrate 29 via the respective electrodes 32 to the respective electronic components provided in the circuit casing 27, FIG. The processing circuit for flow rate detection shown is configured.

【0043】次に、図3は本実施例による流量検出用の
処理回路を示す。
FIG. 3 shows a processing circuit for detecting a flow rate according to this embodiment.

【0044】図3において、33は流量検出信号を出力
する一方のブリッジ回路を示し、該ブリッジ回路33
は、発熱抵抗体30、温度補償抵抗34、基準抵抗23
および抵抗値R2 を有する流量調整抵抗35からなり、
それぞれ対向する辺の抵抗値の積が等しくなるブリッジ
として構成され、発熱抵抗体30と温度補償抵抗34と
の接続点aは後述する電流制御用トランジスタ42のエ
ミッタ側に接続され、基準抵抗23と流量調整抵抗35
との接続点bはアースに接続されている。
In FIG. 3, reference numeral 33 denotes one bridge circuit for outputting a flow rate detection signal.
Are the heating resistor 30, the temperature compensation resistor 34, and the reference resistor 23.
And a flow regulating resistor 35 having a resistance value R2.
Each of the bridges is configured as a bridge in which the products of the resistance values of the opposite sides are equal, and a connection point a between the heating resistor 30 and the temperature compensation resistor 34 is connected to the emitter side of a current control transistor 42 described later. Flow adjustment resistor 35
Is connected to the ground.

【0045】一方、前記ブリッジ回路33においては、
発熱抵抗体30と基準抵抗23、温度補償抵抗34と流
量調整抵抗35はそれぞれ直列接続され、それぞれの接
続点c,dは差動増幅回路36の入力端子に接続される
と共に、接続点cは後述する反転回路43と選択回路4
4に接続されている。
On the other hand, in the bridge circuit 33,
The heating resistor 30 and the reference resistor 23, the temperature compensating resistor 34 and the flow rate adjusting resistor 35 are respectively connected in series, and respective connection points c and d are connected to the input terminals of the differential amplifier circuit 36, and the connection point c is connected to the input terminal c. Inverting circuit 43 and selecting circuit 4 to be described later
4 is connected.

【0046】ここで、前記温度補償抵抗34は、発熱抵
抗体30の近傍に位置して検出ホルダ26に設けられ、
かつ該温度補償抵抗34は吸入空気の流れによる影響を
受けず、吸入空気の温度によってのみ抵抗値RK が変化
するものである。
Here, the temperature compensation resistor 34 is provided on the detection holder 26 in the vicinity of the heating resistor 30.
The temperature compensating resistor 34 is not affected by the flow of the intake air, and the resistance value RK changes only depending on the temperature of the intake air.

【0047】このように構成されるブリッジ回路33で
は、該ブリッジ回路33が平衡状態にあるときには、差
動増幅回路36からの出力は零となると共に、接続点c
からは平衡状態にあるときの基準抵抗23の両端電圧が
反転回路43と選択回路44に出力される。一方、ブリ
ッジ回路33の平衡が崩れたとき、即ち吸入空気によっ
て発熱抵抗体30が冷却されたときには、該発熱抵抗体
30の抵抗値RH が小さくなっているから、差動増幅回
路36からは、電流制御用トランジスタ42のベースに
電流制御電圧が出力される。これにより、電流制御用ト
ランジスタ42はブリッジ回路33に印加する電流を制
御して冷やされた発熱抵抗体30を一定温度にして該ブ
リッジ回路33を平衡状態に戻す。このとき、ブリッジ
回路33の接続点cから出力される増幅した電流値は、
基準抵抗23の両端電圧として検出され、この電圧を反
転回路43と選択回路44に出力する。
In the bridge circuit 33 configured as described above, when the bridge circuit 33 is in a balanced state, the output from the differential amplifier circuit 36 becomes zero and the connection point c
Then, the voltage across the reference resistor 23 in the balanced state is output to the inverting circuit 43 and the selecting circuit 44. On the other hand, when the balance of the bridge circuit 33 is lost, that is, when the heating resistor 30 is cooled by the intake air, the resistance value RH of the heating resistor 30 is small. The current control voltage is output to the base of the current control transistor 42. As a result, the current control transistor 42 controls the current applied to the bridge circuit 33 to bring the cooled heating resistor 30 to a constant temperature and return the bridge circuit 33 to an equilibrium state. At this time, the amplified current value output from the connection point c of the bridge circuit 33 is
The voltage is detected as a voltage across the reference resistor 23, and this voltage is output to the inverting circuit 43 and the selecting circuit 44.

【0048】37は後述する比較回路41と共に吸入空
気の流れ方向検出手段を構成する他方のブリッジ回路を
示し、該ブリッジ回路37は、感温抵抗体31,固定抵
抗38と調整抵抗39,40から構成され、感温抵抗体
31と固定抵抗38との接続点eはサブ電源VS (例え
ば、3V)に接続され、調整抵抗39,40の接続点f
はアースに接続されている。
Reference numeral 37 denotes another bridge circuit which constitutes the means for detecting the flow direction of the intake air together with a comparison circuit 41 which will be described later. The bridge circuit 37 comprises the temperature-sensitive resistor 31, the fixed resistor 38 and the adjustment resistors 39 and 40. A connection point e between the temperature-sensitive resistor 31 and the fixed resistance 38 is connected to the sub power supply VS (for example, 3 V), and a connection point f between the adjustment resistances 39 and 40.
Is connected to earth.

【0049】ここで、前記ブリッジ回路37において
は、感温抵抗体31と調整抵抗39、固定抵抗38と調
整抵抗40はそれぞれ直列接続され、それぞれの接続点
g,hは比較回路41の入力端子に接続されているか
ら、感温抵抗体31と固定抵抗38とは並列接続になっ
ている。そして、前記比較回路41では、感温抵抗体3
1の抵抗値RT と固定抵抗38の抵抗値RB とを比較し
て、RT ≧RB の場合には図5に示す所定電圧値V0 と
なる流れ方向を示す信号(以下、「流れ方向検出信号」
という)を選択回路44に出力し、RT <RB の場合に
は電圧値が実質的に零となる流れ方向検出信号を選択回
路44に出力する。
Here, in the bridge circuit 37, the temperature-sensitive resistor 31 and the adjustment resistor 39, and the fixed resistor 38 and the adjustment resistor 40 are connected in series, respectively, and the connection points g and h are input terminals of the comparison circuit 41. , The temperature-sensitive resistor 31 and the fixed resistor 38 are connected in parallel. In the comparison circuit 41, the temperature-sensitive resistor 3
1 is compared with the resistance value RB of the fixed resistor 38, and when RT ≥ RB, a signal indicating a flow direction at which a predetermined voltage value V0 shown in FIG. 5 is obtained (hereinafter referred to as a "flow direction detection signal").
Is output to the selection circuit 44, and in the case of RT <RB, a flow direction detection signal whose voltage value becomes substantially zero is output to the selection circuit 44.

【0050】ここで、図5に示す吸入空気の流速と流れ
方向検出信号の関係から前記ブリッジ回路37の検出動
作を説明すると、吸入空気の流れの方向がA方向(順方
向)のときには、感温抵抗体31は発熱抵抗体30の熱
を受けて間接的に冷やされるから、前述した如く、流速
の大きさに拘らず抵抗値はRT ≧RB となり、比較回路
41から出力される流れ方向検出信号は所定電圧値V0
となる。一方、空気の流れ方向がA方向からB方向(逆
方向)に変わったときには、感温抵抗体31は発熱抵抗
体30の熱を受けずに直接的に空気によって冷やされる
から、抵抗値は急激に減少してRT <RB となり、流れ
方向検出信号は電圧値が実質的に零となる。
Here, the detection operation of the bridge circuit 37 will be described based on the relationship between the flow rate of the intake air and the flow direction detection signal shown in FIG. 5. When the flow direction of the intake air is the A direction (forward direction), Since the thermal resistor 31 is indirectly cooled by receiving the heat of the heating resistor 30, the resistance value becomes RT ≧ RB irrespective of the magnitude of the flow velocity as described above, and the flow direction detection output from the comparison circuit 41 is detected. The signal has a predetermined voltage value V0
Becomes On the other hand, when the flow direction of the air changes from the A direction to the B direction (reverse direction), the temperature-sensitive resistor 31 is directly cooled by the air without receiving the heat of the heat-generating resistor 30, so that the resistance value sharply increases. , And the flow direction detection signal has a voltage value of substantially zero.

【0051】42は電流制御用トランジスタを示し、該
電流制御用トランジスタ42は、コレクタ側がバッテリ
電圧VB に接続され、ベース側が前記差動増幅回路36
からの出力側に接続され、エミッタ側が前記ブリッジ回
路37の接続点aに接続されている。そして、該電流制
御用トランジスタ42は、前記差動増幅回路36からの
出力(電流制御電圧)でベース電流が変化するに応じて
エミッタ電流を制御する。これにより、電流制御用トラ
ンジスタ42はブリッジ回路37に印加される電流値を
制御して発熱抵抗体30の温度を一定温度に保つフィー
ドバック制御を行っている。
Reference numeral 42 denotes a current control transistor. The current control transistor 42 has a collector connected to the battery voltage VB and a base connected to the differential amplifier 36.
, And the emitter side is connected to a connection point a of the bridge circuit 37. The current control transistor 42 controls the emitter current according to the output (current control voltage) from the differential amplifier circuit 36 and the base current changes. As a result, the current control transistor 42 controls the value of the current applied to the bridge circuit 37 to perform feedback control for maintaining the temperature of the heating resistor 30 at a constant temperature.

【0052】43はブリッジ回路33の接続点cと選択
回路44との間に接続された反転回路を示し、該反転回
路43はブリッジ回路33からの流量検出信号を反転さ
せて選択回路44に出力するようになっている。
Reference numeral 43 denotes an inversion circuit connected between the connection point c of the bridge circuit 33 and the selection circuit 44. The inversion circuit 43 inverts the flow rate detection signal from the bridge circuit 33 and outputs it to the selection circuit 44. It is supposed to.

【0053】44は反転回路43と共に流量信号出力手
段を構成する選択回路を示し、該選択回路44は比較回
路41を介して出力されるブリッジ回路37からの流れ
方向検出信号(図5、参照)に基づいて、例えば順方向
の場合にはブリッジ回路33からの流量検出信号を出力
信号Vout として出力端子45から図示しないコントロ
ールユニットに出力し、逆方向の場合には反転回路43
からの負(マイナス)の信号を出力信号Vout として出
力端子45からコントロールユニットに出力するように
なっている。
Reference numeral 44 denotes a selection circuit that constitutes a flow signal output means together with the inversion circuit 43. The selection circuit 44 outputs a flow direction detection signal from the bridge circuit 37 output via the comparison circuit 41 (see FIG. 5). For example, in the case of the forward direction, the flow rate detection signal from the bridge circuit 33 is output as an output signal Vout from the output terminal 45 to a control unit (not shown), and in the case of the reverse direction, the inversion circuit 43
Is output from the output terminal 45 to the control unit as an output signal Vout.

【0054】本実施例による熱式空気流量検出装置21
は上述の如き構成を有するもので、次に吸入空気の流量
検出動作について説明する。
The thermal air flow detecting device 21 according to this embodiment
Has the configuration as described above. Next, the operation of detecting the flow rate of the intake air will be described.

【0055】ここで、吸入空気の流れが、矢示A方向
(順方向)の場合には、絶縁基板29上の発熱抵抗体3
0の下流側に位置した感温抵抗体31が、該発熱抵抗体
30を介して冷やされる。この結果、比較回路41から
は電圧値V0 となる順方向の流れ方向検出信号が出力さ
れる。
Here, when the flow of the intake air is in the direction of arrow A (forward direction), the heating resistor 3 on the insulating substrate 29
The temperature-sensitive resistor 31 located on the downstream side of 0 is cooled via the heating resistor 30. As a result, a forward flow direction detection signal having the voltage value V0 is output from the comparison circuit 41.

【0056】また、吸入空気の流れによって発熱抵抗体
30が冷却され、この冷却によって発熱抵抗体30の抵
抗値RH が減少するが、差動増幅回路36と電流制御用
トランジスタ42により該発熱抵抗体30を一定温度に
するために、当該ブリッジ回路33に印加される電流値
を増加させ、この増加した電流値を基準抵抗23でその
両端電圧として検出する。この結果、該ブリッジ回路3
3からは反転回路43と選択回路44に正の流量検出信
号が出力される。なお、前記反転回路43に入力された
正の流量検出信号は反転した負の流量検出信号として選
択回路44に出力される。
The heating resistor 30 is cooled by the flow of the intake air, and the cooling reduces the resistance value RH of the heating resistor 30. However, the heating resistor 30 is reduced by the differential amplifier circuit 36 and the current controlling transistor 42. The current value applied to the bridge circuit 33 is increased in order to make the temperature of the bridge circuit 30 constant, and the increased current value is detected by the reference resistor 23 as a voltage between both ends. As a result, the bridge circuit 3
3 outputs a positive flow rate detection signal to the inversion circuit 43 and the selection circuit 44. The positive flow detection signal input to the inversion circuit 43 is output to the selection circuit 44 as an inverted negative flow detection signal.

【0057】そして、選択回路44では、比較回路41
からの流れ方向検出信号に基づいてブリッジ回路33か
ら入力された正の流量検出信号と反転回路43から入力
された負の流量検出信号との選択を行い、この場合に
は、流れ方向検出信号が順方向であるから、正の流量検
出信号を選択して出力端子45からコントロールユニッ
トに向けて正の流量検出信号を出力信号Vout として出
力する。
Then, in the selection circuit 44, the comparison circuit 41
Is selected between the positive flow detection signal input from the bridge circuit 33 and the negative flow detection signal input from the inversion circuit 43 on the basis of the flow direction detection signal from Since the flow is in the forward direction, a positive flow detection signal is selected, and a positive flow detection signal is output from the output terminal 45 to the control unit as an output signal Vout.

【0058】なお、差動増幅回路36から出力された信
号に基づいて電流制御用トランジスタ42のベース電流
は制御されているから、発熱抵抗体30を一定温度にす
るためのフィードバック制御を行っている。
Since the base current of the current control transistor 42 is controlled based on the signal output from the differential amplifier circuit 36, feedback control for keeping the heating resistor 30 at a constant temperature is performed. .

【0059】一方、空気の流れが、矢示B方向(逆方
向)の場合には、絶縁基板29上の発熱抵抗体30の上
流側に位置した感温抵抗体31が、この空気の流れによ
って直接冷やされ、感温抵抗体31の抵抗値RT を急激
に減少させる。この結果、比較回路41からは電圧値零
となる逆方向の流れ方向検出信号が出力される。
On the other hand, when the flow of air is in the direction of arrow B (reverse direction), the temperature-sensitive resistor 31 located on the insulating substrate 29 on the upstream side of the heating resistor 30 is caused by the flow of air. It is directly cooled, and the resistance value RT of the temperature-sensitive resistor 31 rapidly decreases. As a result, the comparison circuit 41 outputs a reverse flow direction detection signal having a voltage value of zero.

【0060】そして、前述したように、吸入空気の流れ
によって発熱抵抗体30は冷却されているから、発熱抵
抗体30の抵抗値RH は小さくなり、ブリッジ回路33
の平衡が崩れる。この結果、該ブリッジ回路33からは
正の流量検出信号が選択回路44に出力されると共に、
反転回路43を介して負の流量検出信号も選択回路44
に出力され、該選択回路44では、比較回路41からの
逆方向の流れ方向検出信号に基づいて負の流量検出信号
を選択し、この負の流量検出信号を出力信号Vout とし
て出力端子45からコントロールユニットに出力する。
As described above, since the heating resistor 30 is cooled by the flow of the intake air, the resistance value RH of the heating resistor 30 decreases, and the bridge circuit 33
The equilibrium is broken. As a result, a positive flow rate detection signal is output from the bridge circuit 33 to the selection circuit 44, and
The negative flow rate detection signal is also supplied to the selection circuit 44 via the inversion circuit 43.
The selection circuit 44 selects a negative flow rate detection signal based on the reverse flow direction detection signal from the comparison circuit 41, and controls this negative flow rate detection signal as an output signal Vout from an output terminal 45. Output to the unit.

【0061】かくして、コントロールユニットでは、こ
の出力信号Vout に基づいて正確な吸入空気の流量を検
出することができ、正確な空燃比制御を行い、エンジン
性能を向上できる。
Thus, the control unit can accurately detect the flow rate of the intake air based on the output signal Vout, perform accurate air-fuel ratio control, and improve the engine performance.

【0062】ここで、本実施例による熱式流量検出装置
21においては、絶縁基板29上に、発熱抵抗体30を
形成すると共に、該発熱抵抗体30の下流側に感温抵抗
体31を形成するようにしたから、該感温抵抗体31に
よって空気の流れ方向を検出することができ、発熱抵抗
体30の抵抗値の変化から吸入空気の流量を検出するこ
とができる。これにより、吸入空気の流量を検出すると
共に、その方向も正確に検出することができる。
Here, in the thermal type flow detecting device 21 according to the present embodiment, the heating resistor 30 is formed on the insulating substrate 29 and the temperature-sensitive resistor 31 is formed downstream of the heating resistor 30. Therefore, the flow direction of the air can be detected by the temperature-sensitive resistor 31, and the flow rate of the intake air can be detected from the change in the resistance value of the heating resistor 30. Accordingly, the flow rate of the intake air can be detected, and the direction thereof can be accurately detected.

【0063】また、絶縁基板29上に発熱抵抗体30と
感温抵抗体31とを基端側から先端側に向けて延びるよ
うに着膜形成したから、限られた表面スペースを有効に
利用して発熱抵抗体30および感温抵抗体31をコンパ
クトに形成でき、発熱抵抗体30の表面積(実装面積)
を可能な限り大きくすることができる。そして、吸気管
2内の空気流に対する発熱抵抗体30および感温抵抗体
31の接触面積を大きくすることができ、これらの抵抗
値RH ,RT を空気流に敏感に反応して変化させること
ができると共に、単一の絶縁基板29に複数の抵抗体3
0,31を形成したから、部品点数の削減を図ることが
できる。
Further, since the heating resistor 30 and the temperature-sensitive resistor 31 are formed on the insulating substrate 29 so as to extend from the base end to the tip end, a limited surface space can be effectively used. The heating resistor 30 and the temperature-sensitive resistor 31 can be formed compactly, and the surface area (mounting area) of the heating resistor 30 can be reduced.
Can be as large as possible. The contact area between the heating resistor 30 and the temperature-sensitive resistor 31 with respect to the air flow in the intake pipe 2 can be increased, and the resistance values RH and RT can be changed in response to the air flow. And a plurality of resistors 3 on a single insulating substrate 29.
Since 0 and 31 are formed, the number of parts can be reduced.

【0064】さらに、本実施例においては、発熱抵抗体
30と感温抵抗体31との位置関係によって、発熱抵抗
体30の熱影響を受けるか否かで、空気の流れ方向を検
出することができ、正確な流量を検出することができ
る。
Further, in this embodiment, it is possible to detect the direction of air flow by determining whether or not the heating resistor 30 is affected by the heat, based on the positional relationship between the heating resistor 30 and the temperature-sensitive resistor 31. It is possible to detect an accurate flow rate.

【0065】さらにまた、流れ方向検出手段を、感温抵
抗体31の抵抗値RT と固定抵抗38の抵抗値RB とを
比較するブリッジ回路37および比較回路41によって
構成したから、空気の流れ方向をより正確に検出するこ
とができる。
Further, since the flow direction detecting means is constituted by the bridge circuit 37 and the comparison circuit 41 for comparing the resistance value RT of the temperature-sensitive resistor 31 with the resistance value RB of the fixed resistor 38, the flow direction of the air is determined. More accurate detection is possible.

【0066】従って、本実施例によれば、吸気管2内を
流れる吸入空気の流量を発熱抵抗体30の抵抗値RH に
基づいて確実に検出できると共に、感温抵抗体31の抵
抗値RT の変化に基づいて空気の流れ方向を確実に検出
でき、エンジンの中速域等で吸気管2内に排気が吹返し
て逆流が生じるようなときでも、吸入空気の流量を高精
度に検出することができる。
Therefore, according to the present embodiment, the flow rate of the intake air flowing through the intake pipe 2 can be reliably detected based on the resistance value RH of the heating resistor 30, and the resistance value RT of the temperature-sensitive resistor 31 can be determined. It is possible to reliably detect the flow direction of the air based on the change, and to detect the flow rate of the intake air with high accuracy even when the exhaust gas flows back into the intake pipe 2 in the middle speed range of the engine and a backflow occurs. Can be.

【0067】次に、図6および図7に本発明による第2
の実施例を示すに、本実施例の特徴は、単一の絶縁基板
上に発熱抵抗体、感温抵抗体および温度補償抵抗を着膜
形成したことにある。なお、前述した第1の実施例と同
一の構成要素に同一の符号を付し、その説明を省略する
ものとする。
Next, FIGS. 6 and 7 show the second embodiment according to the present invention.
This embodiment is characterized in that a heating resistor, a temperature-sensitive resistor, and a temperature compensation resistor are formed on a single insulating substrate. The same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.

【0068】図中、51は本実施例による絶縁基板を示
し、該絶縁基板51は、ガラス,アルミナ,窒化アルミ
ニウム等の絶縁材料によって長方形の平板状に形成さ
れ、基端側が検出ホルダ26に取付けられる固定端とな
り、先端側が自由端となった主基板部51Aと副基板部
51Bとからなり、該基板部51A,51Bの間には先
端側から基端側に向けて延びるスリット52が形成され
ている。なお、前記副基板部51Bは吸入空気の順方向
(矢示A方向)の流れに対して主基板部51Aよりも上
流側に位置し、副基板部51B上には後述の温度補償抵
抗体55が形成されている。
In the figure, reference numeral 51 denotes an insulating substrate according to the present embodiment. The insulating substrate 51 is formed in a rectangular flat plate shape using an insulating material such as glass, alumina, or aluminum nitride. The main substrate portion 51A and the sub-substrate portion 51B have a free end on the distal end side, and a slit 52 extending from the distal end side to the proximal end side is formed between the substrate portions 51A and 51B. ing. The sub-substrate portion 51B is located upstream of the main substrate portion 51A with respect to the flow of the intake air in the forward direction (the direction indicated by the arrow A). Are formed.

【0069】53は発熱抵抗体を示し、該発熱抵抗体5
3は抵抗値RH を有するように、前記絶縁基板51の主
基板部51A上に白金等の感温性材料をプリント印刷ま
たはスパッタリング等の手段によって、該主基板部51
Aの長さ方向に着膜形成され、前述した発熱抵抗体30
と同様に、第1の実施例で述べた電流制御用トランジス
タ42によって電流値を制御することにより、一定温度
(例えば約240℃)をもって発熱するようになってい
る。
Reference numeral 53 denotes a heating resistor, and the heating resistor 5
Reference numeral 3 denotes a main substrate portion 51 formed by printing or sputtering a temperature-sensitive material such as platinum on the main substrate portion 51A of the insulating substrate 51 so as to have a resistance value RH.
A film is formed in the length direction of A, and the heating resistor 30 described above is formed.
Similarly to the above, the current value is controlled by the current control transistor 42 described in the first embodiment, so that heat is generated at a constant temperature (for example, about 240 ° C.).

【0070】54は発熱抵抗体53の上流側に位置した
感温抵抗体を示し、該感温抵抗体54は抵抗値RT を有
するように、前記主基板部51A上に白金等の感温性材
料をプリント印刷またはスパッタリング等の手段によっ
て着膜形成されている。
Reference numeral 54 denotes a temperature-sensitive resistor positioned upstream of the heating resistor 53. The temperature-sensitive resistor 54 has a resistance value RT on the main substrate portion 51A. The material is formed into a film by means of print printing or sputtering.

【0071】55は温度補償抵抗としての温度補償抵抗
体を示し、該温度補償抵抗体55は前記副基板部51B
上に形成され、プリント印刷またはスパッタリング等の
手段を用いて白金膜を着膜させることにより形成されて
いる。そして、該温度補償抵抗体55は発熱抵抗体53
よりも大きい抵抗値RK を有し、吸入空気の流れによる
影響は受けず、温度変化のみを検出するようになってい
る。
Reference numeral 55 denotes a temperature compensating resistor as a temperature compensating resistor.
It is formed by depositing a platinum film using means such as print printing or sputtering. The temperature compensating resistor 55 is connected to the heating resistor 53.
It has a larger resistance value RK than that of the first embodiment, and is not affected by the flow of intake air, and detects only a temperature change.

【0072】56,56,…は絶縁基板51の基端側に
位置して形成された例えば5個の電極を示し、該各電極
56は絶縁基板51の幅方向に所定間隔をもって列設さ
れ、絶縁基板51の基端側を前記検出ホルダ26のスロ
ット内に差込むことにより、該検出ホルダ26側の各タ
ーミナル(図示せず)に接続される。
.. Denote, for example, five electrodes formed on the base end side of the insulating substrate 51. The electrodes 56 are arranged in a row at a predetermined interval in the width direction of the insulating substrate 51. By inserting the base end side of the insulating substrate 51 into the slot of the detection holder 26, it is connected to each terminal (not shown) on the detection holder 26 side.

【0073】このように、第2の実施例における絶縁基
板51を前述した第1の実施例による流量計本体22に
取付けることにより、前述した第1の実施例とほぼ同様
の流量検出処理回路(図7、参照)となって、流量を検
出するブリッジ回路33′および空気の流れ方向を検出
するブリッジ回路37′を有する流量検出用の処理回路
を構成している。
As described above, by attaching the insulating substrate 51 of the second embodiment to the flowmeter main body 22 of the above-described first embodiment, a flow detection processing circuit (about the same as that of the above-described first embodiment) is provided. FIG. 7), and constitutes a processing circuit for flow rate detection having a bridge circuit 33 'for detecting the flow rate and a bridge circuit 37' for detecting the flow direction of the air.

【0074】このように構成される本実施例の熱式流量
検出装置においても、前記第1の実施例と同様に、吸入
空気の流量および流れ方向を検出することができる。
In the thermal type flow rate detecting device of this embodiment having the above-described configuration, the flow rate and the flow direction of the intake air can be detected as in the first embodiment.

【0075】即ち、絶縁基板51上の発熱抵抗体53が
吸入空気によって冷やされ、該発熱抵抗体53の抵抗値
が減少してブリッジ回路33′からは流量検出信号を出
力すると共に、反転回路43からは負の流量検出信号を
選択回路44に出力する。
That is, the heating resistor 53 on the insulating substrate 51 is cooled by the intake air, and the resistance value of the heating resistor 53 decreases, so that a flow rate detection signal is output from the bridge circuit 33 'and the inverting circuit 43 is output. Outputs a negative flow rate detection signal to the selection circuit 44.

【0076】一方、ブリッジ回路37′では、感温抵抗
体54と固定抵抗38の抵抗値を比較することによって
吸入空気の流れる方向が順方向であるか逆方向であるか
を判別し、比較回路41を介してこの信号を選択回路4
4に出力する。これにより、選択回路44では、ブリッ
ジ回路37′(比較回路41)からの流れ方向検出信号
に基づいて、正または負の流量検出信号を選択し、出力
信号Vout としてコントロールユニットに出力する。こ
の結果、該コントロールユニットでは、このように流れ
方向も検出された吸入空気量に基づいて正確な空燃比制
御を行う。
On the other hand, the bridge circuit 37 'compares the resistance values of the temperature-sensitive resistor 54 and the fixed resistor 38 to determine whether the direction of the flow of the intake air is the forward direction or the reverse direction. This signal is supplied to the selection circuit 4
4 is output. As a result, the selection circuit 44 selects a positive or negative flow rate detection signal based on the flow direction detection signal from the bridge circuit 37 '(comparing circuit 41) and outputs it as an output signal Vout to the control unit. As a result, the control unit performs accurate air-fuel ratio control based on the amount of intake air in which the flow direction is also detected.

【0077】また、本実施例においては、単一な絶縁基
板51上に発熱抵抗体53、感温抵抗体54および温度
補償抵抗体55を着膜形成しているから、第1の実施例
よりも部品点数を削減することができる。
In this embodiment, the heating resistor 53, the temperature-sensitive resistor 54, and the temperature compensation resistor 55 are formed on a single insulating substrate 51. Also, the number of parts can be reduced.

【0078】さらに、温度補償抵抗体55を着膜形成す
る副基板部51Bと、発熱抵抗体53と感温抵抗体54
を着膜形成する主基板部51Aとの間にスリット52を
形成することにより、例えば発熱抵抗体53の熱が温度
補償抵抗体55に影響するのを防止でき、該温度補償抵
抗体55を正常に作動させることができる。
Further, the sub-substrate portion 51B on which the temperature compensation resistor 55 is formed, a heating resistor 53, and a temperature-sensitive resistor 54 are formed.
By forming the slit 52 between the main substrate 51A and the main substrate 51A, it is possible to prevent, for example, the heat of the heating resistor 53 from affecting the temperature compensating resistor 55. Can be activated.

【0079】[0079]

【0080】[0080]

【0081】なお、前記各実施例では、流量計本体22
の巻線部24に巻回した基準抵抗23を吸気管2内に突
出させて設けるものとして述べたが、本発明はこれに限
らず、例えば吸気管2の外側に設ける回路ケーシング2
7内に基準抵抗23を流量調整抵抗35等と共に配設す
る構成としてもよい。
[0081] Incidentally, in each of the foregoing embodiments, flowmeter body 22
Although the reference resistor 23 wound around the winding portion 24 is provided so as to protrude into the intake pipe 2, the present invention is not limited to this. For example, the circuit casing 2 provided outside the intake pipe 2
A configuration may be adopted in which the reference resistor 23 is provided in the unit 7 together with the flow rate adjusting resistor 35 and the like.

【0082】また、前記各実施例では、流量検出信号を
出力するブリッジ回路33(33′)を、発熱抵抗体3
0(53)、温度補償抵抗34(温度補償抵抗体5
5)、基準抵抗23および流量調整抵抗35から形成し
たが、本発明はこれに限らず、温度補償抵抗34(温度
補償抵抗体55)、流量調整抵抗35として固定抵抗を
用いてブリッジ回路33(33′)を形成してもよい。
[0082] Further, in each of the foregoing embodiments, the bridge circuit 33 that outputs a flow rate detection signal (33 '), the heating resistor 3
0 (53), temperature compensation resistor 34 (temperature compensation resistor 5
5) Although it is formed from the reference resistor 23 and the flow adjustment resistor 35, the present invention is not limited to this, and the bridge circuit 33 (using a fixed resistor as the temperature compensation resistor 34 (temperature compensation resistor 55) and the flow adjustment resistor 35) is used. 33 ').

【0083】[0083]

【発明の効果】以上詳述した如く、請求項1の発明で
は、絶縁基板上に発熱抵抗体から空気の流れ方向下流
に離間して単一の感温抵抗体を形成し、該感温抵抗体
は、流量計本体に設けられた固定抵抗と並列に接続さ
れ、空気の流れ方向を検出する流れ方向検出手段を構成
、かつ前記感温抵抗体は、電圧を印加することによっ
て前記発熱抵抗体よりも低い温度で発熱させる構成とし
ているので、吸気管内を流れる空気によって発熱抵抗体
が冷やされるときの抵抗値変化により空気の流量を検出
できると共に、単一の感温抵抗体の抵抗値変化により空
気の流れ方向が順方向であるか、逆方向であるかを検出
することができる。従って、絶縁基板上に発熱抵抗体と
その下流側に単一の感温抵抗体とを形成することによっ
て、空気の流れ方向と流量とを検出でき、逆方向の空気
流により吸入空気流量を誤検出するのを防止できると共
に、流量の検出精度を大幅に向上できる。また、絶縁基
板上には発熱抵抗体とその下流側に単一の感温抵抗体
形成するだけでよく、絶縁基板の限られた表面スペー
スを有効に利用でき、絶縁基板をコンパクトに形成でき
ると共に、発熱抵抗体の表面積を可能な限り大きくする
ことができる。
As described in detail above, according to the first aspect of the present invention, a single temperature-sensitive resistor is formed on an insulating substrate so as to be separated from the heat-generating resistor on the downstream side in the air flow direction. The resistor is connected in parallel with a fixed resistor provided in the flowmeter main body, constitutes a flow direction detecting means for detecting a flow direction of air , and the temperature-sensitive resistor is configured to apply a voltage.
The heating resistor is configured to generate heat at a lower temperature than the heating resistor, so that the flow rate of air can be detected by a change in resistance value when the heating resistor is cooled by air flowing through the intake pipe, and It is possible to detect whether the flow direction of the air is the forward direction or the reverse direction by the change in the resistance value of the temperature sensitive resistor. Therefore, the heating resistor on the insulating substrate
By forming a single temperature-sensitive resistor on the downstream side, it is possible to detect the flow direction and flow rate of the air, prevent erroneous detection of the intake air flow rate due to the air flow in the opposite direction, and reduce the flow rate. Detection accuracy can be greatly improved. Further, the heating resistor on an insulating substrate and a single temperature sensitive resistor on the downstream side
It is only necessary to form a surface limited space insulation substrate can be effectively used, it is possible with the insulating substrate can be formed compactly, as large as possible a surface area of the heating resistor.

【0084】この場合、感温抵抗体は電圧を印加するこ
とによって発熱抵抗体よりも低い温度で発熱させる構成
としているので、該感温抵抗体では空気流による直接冷
却と、発熱抵抗体を介した空気流による冷却とを区別し
て、空気の流れ方向をより正確に検出することができ
る。
In this case, the voltage is applied to the temperature- sensitive resistor .
Configuration to generate heat at a lower temperature than the heating resistor
Therefore , in the temperature-sensitive resistor, it is possible to distinguish between the direct cooling by the airflow and the cooling by the airflow through the heating resistor, and to detect the flow direction of the air more accurately.

【0085】請求項の発明では、絶縁基板に形成され
た発熱抵抗体と感温抵抗体とは基端側から先端側に向け
て伸びるようにしたから、空気流に対する接触面積を大
きくでき、抵抗値の変化を大きくすることができ、検出
感度を向上できる。また、絶縁基板の表面スペースを有
効に利用して発熱抵抗体および感温抵抗体をコンパクト
に形成できる。
According to the second aspect of the present invention, since the heating resistor and the temperature-sensitive resistor formed on the insulating substrate extend from the base end to the tip end, the contact area with the air flow can be increased. The change in the resistance value can be increased, and the detection sensitivity can be improved. Further, the heating resistor and the temperature-sensitive resistor can be formed compactly by effectively utilizing the surface space of the insulating substrate.

【0086】請求項の発明では、単一の絶縁基板上に
発熱抵抗体、感温抵抗体および温度補償抵抗を形成で
き、部品点数を削減することができる。また、温度補償
抵抗を形成する副基板部と、前記発熱抵抗体と感温抵抗
体を形成する主基板部との間にスリットを形成すること
により、例えば発熱抵抗体の熱が温度補償抵抗に影響す
るのを防止でき、検出感度を向上できる。
According to the third aspect of the present invention, a heating resistor, a temperature-sensitive resistor, and a temperature compensation resistor can be formed on a single insulating substrate, and the number of components can be reduced. Further, by forming a slit between the sub-substrate portion forming the temperature compensation resistor and the main substrate portion forming the heating resistor and the temperature-sensitive resistor, for example, the heat of the heating resistor becomes the temperature compensation resistor. The influence can be prevented, and the detection sensitivity can be improved.

【0087】請求項の発明では、流れ方向検出手段を
感温抵抗体に固定抵抗を並列に接続して構成し、該流れ
方向検出手段は、前記感温抵抗体の抵抗値が固定抵抗よ
りも減少するか否かで、空気の流れ方向に対応した流れ
方向検出信号を出力する構成としたから、感温抵抗体と
固定抵抗の抵抗値を比較することで流れ方向を判別する
ことができ、感温抵抗体が固定抵抗の抵抗値よりも大き
いときには、例えば順方向の空気流と判定でき、小さく
なったときには逆方向の空気流であると判定できる。
[0087] In the present invention of claim 4, the fixed resistor flow direction detecting means the temperature sensitive resistor constructed by connecting in parallel, Re flow
The direction detecting means determines that the resistance value of the temperature-sensitive resistor is a fixed resistance.
Flow depending on the direction of air flow
Since the direction detection signal is output , the flow direction is determined by comparing the resistance values of the temperature-sensitive resistor and the fixed resistor.
When the temperature-sensitive resistor is larger than the resistance value of the fixed resistance, it can be determined that the airflow is in the forward direction, for example, and when it becomes smaller, it can be determined that the airflow is in the reverse direction.

【0088】さらに、請求項の発明では、発熱抵抗体
を含んでブリッジ回路を形成し、該ブリッジ回路中の発
熱抵抗体の抵抗値変化を流量検出信号として取出すと共
に、前記感温抵抗体と固定抵抗の抵抗値を比較すること
により空気の流れ方向を検出し、該吸入空気の流れ方向
が順方向のときには前記流量検出信号をそのまま正の電
圧信号として出力でき、逆方向のときには反転させて負
の電圧信号として出力することができる。そして、吸入
空気の方向と流量を検出して空燃比等の制御を正確に行
わせることができる。
Further, according to the fifth aspect of the present invention, a bridge circuit including a heating resistor is formed, and a change in the resistance of the heating resistor in the bridge circuit is extracted as a flow rate detection signal. The flow direction of the air is detected by comparing the resistance values of the fixed resistors, and when the flow direction of the intake air is the forward direction, the flow rate detection signal can be directly output as a positive voltage signal, and when the flow direction of the intake air is the reverse direction, the flow direction detection signal is inverted. It can be output as a negative voltage signal. Then, the direction and the flow rate of the intake air can be detected to accurately control the air-fuel ratio and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施例による熱式空気流量検出装置を吸
気管に取付けた状態を示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing a state in which a thermal air flow detecting device according to a first embodiment is attached to an intake pipe.

【図2】絶縁基板上に形成された発熱抵抗体および感温
抵抗体を示す平面図である。
FIG. 2 is a plan view showing a heating resistor and a temperature-sensitive resistor formed on an insulating substrate.

【図3】第1の実施例による熱式空気流量検出装置の回
路構成を示す回路図である。
FIG. 3 is a circuit diagram showing a circuit configuration of the thermal air flow detecting device according to the first embodiment.

【図4】流速に対する感温抵抗体の抵抗値変化を示す特
性線図である。
FIG. 4 is a characteristic diagram showing a change in resistance value of a temperature-sensitive resistor with respect to a flow velocity.

【図5】吸入空気の流速と流れ方向検出信号との関係を
示す特性線図である。
FIG. 5 is a characteristic diagram showing a relationship between a flow rate of intake air and a flow direction detection signal.

【図6】第2の実施例による絶縁基板上に形成された発
熱抵抗体、感温抵抗体、補助ヒータおよび温度補償抵抗
を示す平面図である。
FIG. 6 is a plan view showing a heating resistor, a temperature-sensitive resistor, an auxiliary heater, and a temperature compensation resistor formed on an insulating substrate according to a second embodiment.

【図7】第2の実施例による熱式空気流量検出装置の回
路構成を示す回路図である。
FIG. 7 is a circuit diagram showing a circuit configuration of a thermal air flow detecting device according to a second embodiment.

【図8】従来技術による熱式空気流量検出装置を吸気管
に取付けた状態を示す縦断面図である。
FIG. 8 is a longitudinal sectional view showing a state in which a thermal air flow detecting device according to a conventional technique is attached to an intake pipe.

【図9】従来技術による流量計本体および発熱抵抗等を
示す斜視図である。
FIG. 9 is a perspective view showing a flow meter main body, a heating resistor, and the like according to a conventional technique.

【符号の説明】 21 熱式空気流量検出装置 22 流量計本体 23 基準抵抗 29,51 絶縁基板 30,53 発熱抵抗体 31,54 感温抵抗体 33,33′ ブリッジ回路 34 温度補償抵抗 35 流量調整抵抗 36 差動増幅回路 37,37′ ブリッジ回路(流れ方向検出手段) 41 比較回路 43 反転回路 44 選択回路(流量信号出力手段) 51A 主基板部 51B 副基板部 55 温度補償抵抗体(温度補償抵抗)[Description of Signs] 21 Thermal air flow detector 22 Flow meter main body 23 Reference resistor 29, 51 Insulating substrate 30, 53 Heating resistor 31, 54 Temperature sensing resistor 33, 33 'Bridge circuit 34 Temperature compensation resistor 35 Flow rate adjustment Resistance 36 Differential amplification circuit 37, 37 'Bridge circuit (flow direction detecting means) 41 Comparison circuit 43 Inverting circuit 44 Selection circuit (flow rate signal output means) 51A Main board 51B Sub-board 55 Temperature compensation resistor (temperature compensation resistor) )

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01F 1/68 - 1/699 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G01F 1/68-1/699

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基端側が吸気管に取付けられた流量計本
体と、前記吸気管内に位置して該流量計本体に設けら
れ、前記吸気管内を流れる空気によって冷却されるとき
の抵抗値の変化を空気の流量として検出する流量検出用
の発熱抵抗とを備えてなる熱式空気流量検出装置におい
て、 前記流量検出用の発熱抵抗は、前記流量計本体に取付け
られた絶縁基板上に形成され、該絶縁基板の少なくとも
長さ方向に膜状に延びた発熱抵抗体によって構成し、 前記絶縁基板上には、該発熱抵抗体から前記空気の流れ
方向下流側に離間して形成され、前記空気によって冷却
されるときの抵抗値が空気の流れ方向に応じて変化する
単一の感温抵抗体を設け、 該感温抵抗体は、前記流量計本体に設けられた固定抵抗
と並列に接続することにより該固定抵抗と共に空気の流
れ方向を検出する流れ方向検出手段を構成し かつ前記感温抵抗体は、電圧を印加することによって前
記発熱抵抗体よりも低い温度で発熱させる構成とし たこ
とを特徴とする熱式空気流量検出装置。
1. A flowmeter main body having a base end attached to an intake pipe, and a change in a resistance value provided in the flowmeter main body located in the intake pipe and cooled by air flowing through the intake pipe. And a heat generating resistor for detecting the flow rate of the air as a flow rate of air.The heat generating resistor for detecting the flow rate is formed on an insulating substrate attached to the main body of the flow meter, It is constituted by a heating resistor extending in a film shape at least in a length direction of the insulating substrate, and is formed on the insulating substrate so as to be separated from the heating resistor on the downstream side in the flow direction of the air. A single temperature-sensitive resistor whose resistance value when cooled changes according to the flow direction of air is provided, and the temperature-sensitive resistor is connected in parallel with a fixed resistor provided on the flowmeter main body. Together with the fixed resistance A flow direction detecting means for detecting a flow direction of air is constituted , and the temperature-sensitive resistor is operated by applying a voltage.
A thermal air flow detecting device, wherein heat is generated at a lower temperature than the heating resistor .
【請求項2】 前記発熱抵抗体は前記絶縁基板の基端側
から先端側に延びるように形成し、前記感温抵抗体は、
前記空気の流れ方向に対し前記発熱抵抗体よりも下流
位置して前記絶縁基板の基端側から先端側に延びる単
一の抵抗膜により形成してなる請求項1記載の熱式空気
流量検出装置。
2. The heating resistor is formed so as to extend from a base end side to a tip end side of the insulating substrate.
Downstream of the heating resistor to the flow direction of the air
Position to the composed formed by a single resistive film extending distally from the proximal side of the insulating substrate according to claim 1 Symbol placement of the thermal air flow rate detecting device.
【請求項3】 前記絶縁基板は、基端側が前記流量計本
体に取付けられる固定端となり先端側が自由端となった
主基板部と副基板部とから構成し、該副基板部と主基板
部との間には先端側から基端側に向けて延びるスリット
を形成すると共に、前記副基板部には空気の温度変化を
補償するための温度補償抵抗を形成し、前記主基板部に
は、基端側から先端側に延びる前記発熱抵抗体と、該発
熱抵抗体から空気の流れ方向に対し下流側に離間して基
端側から先端側に延びる前記感温抵抗体とを形成してな
る請求項1記載の熱式空気流量検出装置。
3. The insulating substrate comprises a main substrate portion having a fixed end attached to the flowmeter main body on a base end side and a free end on a distal end side, and the sub-substrate portion and the main substrate portion. And a slit extending from the distal end toward the proximal end, and a temperature compensation resistor for compensating for a temperature change of air is formed on the sub-substrate, and the main substrate is The heating resistor extending from the base end to the tip end; and the temperature-sensitive resistor extending from the base end to the tip end while being spaced downstream from the heating resistor in the direction of air flow. thermal air flow detecting device according to claim 1 Symbol placement.
【請求項4】 前記流れ方向検出手段は、前記感温抵抗
体の抵抗値が固定抵抗よりも減少するか否かで、空気の
流れ方向に対応した流れ方向検出信号を出力する構成と
してなる請求項1,2または3記載の熱式空気流量検出
装置。
4. The flow direction detection means outputs a flow direction detection signal corresponding to the flow direction of air based on whether or not the resistance value of the temperature-sensitive resistor is smaller than a fixed resistance. Item 4. A thermal air flow detecting device according to item 1, 2 or 3 .
【請求項5】 前記発熱抵抗体は流量検出信号を出力す
るブリッジ回路を構成し、さらに該ブリッジ回路から出
力される流量検出信号と前記流れ方向検出手段によって
検出される流れ方向検出信号とに基づいて、前記空気の
流れ方向が順方向のときには前記流量検出信号をそのま
ま出力し、逆方向のときには前記流量検出信号を反転さ
せて出力する流量信号出力手段を備える構成としてなる
請求項記載の熱式空気流量検出装置。
5. The heating resistor constitutes a bridge circuit for outputting a flow rate detection signal, and further based on a flow rate detection signal output from the bridge circuit and a flow direction detection signal detected by the flow direction detection means. 5. The heat generating apparatus according to claim 4, further comprising a flow rate signal output unit that outputs the flow rate detection signal as it is when the flow direction of the air is forward, and inverts and outputs the flow rate detection signal when the flow direction is reverse. Type air flow detector.
JP15042894A 1994-02-28 1994-06-08 Thermal air flow detector Expired - Fee Related JP3184401B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP15042894A JP3184401B2 (en) 1994-02-28 1994-06-08 Thermal air flow detector
KR1019950004110A KR0163637B1 (en) 1994-02-28 1995-02-28 Thermal type air flow rate detector

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-54623 1994-02-28
JP5462394 1994-02-28
JP15042894A JP3184401B2 (en) 1994-02-28 1994-06-08 Thermal air flow detector

Publications (2)

Publication Number Publication Date
JPH07286876A JPH07286876A (en) 1995-10-31
JP3184401B2 true JP3184401B2 (en) 2001-07-09

Family

ID=26395407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15042894A Expired - Fee Related JP3184401B2 (en) 1994-02-28 1994-06-08 Thermal air flow detector

Country Status (2)

Country Link
JP (1) JP3184401B2 (en)
KR (1) KR0163637B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3981907B2 (en) 1998-10-21 2007-09-26 株式会社デンソー Flow measuring device
JP4474771B2 (en) 2000-12-20 2010-06-09 株式会社デンソー Flow measuring device
DE102004033049B4 (en) * 2004-07-08 2016-05-04 Robert Bosch Gmbh Measuring device for a flow sensor, in particular an air mass sensor for internal combustion engines and method for measuring air flows

Also Published As

Publication number Publication date
JPH07286876A (en) 1995-10-31
KR950025419A (en) 1995-09-15
KR0163637B1 (en) 1999-05-01

Similar Documents

Publication Publication Date Title
US4870860A (en) Direct-heated flow measuring apparatus having improved response characteristics
JP3133608B2 (en) Thermal air flow detector
JP3468727B2 (en) Thermal air flow meter
JP2682348B2 (en) Air flow meter and air flow detection method
US5423210A (en) Air flow rate meter and air flow rate detection
JP2006201077A (en) Thermal air flowmeter
JP3184401B2 (en) Thermal air flow detector
JP3095322B2 (en) Thermal air flow detector
JP2944890B2 (en) Thermal air flow detector
JP3174222B2 (en) Thermal air flow detector
JP3133609B2 (en) Thermal air flow detector
JP3184402B2 (en) Thermal air flow detector
JP3174234B2 (en) Thermal air flow detector
US20050000281A1 (en) Flow sensor having improved operational performance
JPH0829228A (en) Thermal air flow rate detection device
JP3133617B2 (en) Thermal air flow detector
JPH0843162A (en) Thermal air flow rate detector
JPH08105779A (en) Thermal-type air flow-rate detector
JPH07239258A (en) Thermal air flow rate detector
JPH0552625A (en) Thermal type air flowmeter and engine control device
JPH0843160A (en) Thermal air flow rate detector
JPH04147016A (en) Thermal-type flow sensor
JPH0143883B2 (en)
KR820002255B1 (en) Air flow rate measuring apparatus
JPH0886678A (en) Thermal air flow rate detector

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080427

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090427

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090427

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees