JPH07239258A - Thermal air flow rate detector - Google Patents

Thermal air flow rate detector

Info

Publication number
JPH07239258A
JPH07239258A JP6054625A JP5462594A JPH07239258A JP H07239258 A JPH07239258 A JP H07239258A JP 6054625 A JP6054625 A JP 6054625A JP 5462594 A JP5462594 A JP 5462594A JP H07239258 A JPH07239258 A JP H07239258A
Authority
JP
Japan
Prior art keywords
resistor
temperature
flow rate
heating resistor
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6054625A
Other languages
Japanese (ja)
Inventor
Koichi Fujiwara
浩一 藤原
Hiroshi Aoi
寛 青井
Masao Tsukada
正夫 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corp filed Critical Unisia Jecs Corp
Priority to JP6054625A priority Critical patent/JPH07239258A/en
Priority to KR1019950004109A priority patent/KR0163636B1/en
Publication of JPH07239258A publication Critical patent/JPH07239258A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To enhance accuracy in the detection of flow rate of suction air by making it possible to decide whether the air is flowing forward or reversely. CONSTITUTION:An insulating board 28 is fixed detachably, on the base end side thereof, to the detection holder of a flowmeter body projecting into a suction pipe. The insulating board 28 is separated, by means of a slit 29, into a main board part 28A and a subboard part 28B in the direction of air flow. A crank-shaped heating resistor 30 extending in the longitudinal direction of the insulating board 28 and temperature-sensitive resistors 31, 32 extending in parallel with the extended resistor parts 30B, 30C of the heating resistor 30 while spaced apart therefrom in front and rear thereof are formed on the main substrate part 28A whereas a temperature compensation resistor 33 is formed on the subsubstrate part 28B. The contact area with the air flow is increased for the heating resistor 30 and the temperature-sensitive resistors 31, 32 so that the resistances thereof can be varied sensitively with high response to the air flow.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば自動車用エンジ
ン等の吸入空気流量を検出するのに好適に用いられる熱
式空気流量検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal type air flow rate detecting device which is preferably used for detecting an intake air flow rate of an automobile engine or the like.

【0002】[0002]

【従来の技術】一般に、自動車用エンジン等では、エン
ジン本体の燃焼室内で燃料と吸入空気との混合気を燃焼
させ、その燃焼圧からエンジンの回転出力を取出すよう
にしており、燃料の噴射量を演算する上で吸入空気流量
を検出することが重要なファクターとなっている。
2. Description of the Related Art Generally, in an engine for an automobile or the like, a mixture of fuel and intake air is burned in a combustion chamber of an engine body, and a rotational output of the engine is taken out from the combustion pressure. Detecting the intake air flow rate is an important factor in calculating

【0003】そこで、図7および図8に従来技術の熱式
空気流量検出装置を示す。
Therefore, FIGS. 7 and 8 show a conventional thermal air flow rate detecting device.

【0004】図において、1は吸気管2の途中に設けら
れた熱式空気流量検出装置を示し、該熱式空気流量検出
装置1は、エンジン本体の燃焼室(図示せず)に向けて
矢示A方向に流通する吸入空気の流量を検出すべく、吸
気管2の途中に取付穴2Aを介して配設されている。
In the figure, reference numeral 1 denotes a thermal type air flow rate detecting device provided in the middle of an intake pipe 2. The thermal type air flow rate detecting device 1 is directed toward a combustion chamber (not shown) of an engine body. In order to detect the flow rate of the intake air flowing in the direction A shown, the intake pipe 2 is provided with a mounting hole 2A in the middle thereof.

【0005】3は熱式空気流量検出装置1の本体部を構
成する流量計本体を示し、該流量計本体3はインサート
モールド等の手段により図8に示すように成形され、巻
線状をなす後述の基準抵抗14を巻回すべく段付き円柱
状に形成された巻線部4と、該巻線部4の基端側に位置
して略円板状に形成され、後述の端子ピン8A〜8Dが
一体的に設けられた端子部5と、巻線部4の先端側から
吸気管2の径方向に延設され、吸気管2の中心部で後述
の発熱抵抗9および温度補償抵抗11を位置決めする検
出ホルダ6と、吸気管2の外側に位置して端子部5が接
続された後述の回路ケーシング7とから大略構成されて
いる。
Reference numeral 3 denotes a flow meter main body which constitutes the main body of the thermal type air flow rate detecting device 1. The flow meter main body 3 is formed by means such as insert molding as shown in FIG. A winding portion 4 formed in a stepped columnar shape for winding a reference resistor 14 described below, and a substantially disk-shaped portion located on the base end side of the winding portion 4 and having terminal pins 8A to 8D is integrally provided, and is extended in the radial direction of the intake pipe 2 from the tip end side of the winding part 4, and a heating resistor 9 and a temperature compensating resistor 11 to be described later are provided at the center of the intake pipe 2. A detection holder 6 for positioning and a circuit casing 7 to be described later, which is located outside the intake pipe 2 and to which a terminal portion 5 is connected, are roughly configured.

【0006】7は吸気管2の取付穴2Aを閉塞するよう
に該吸気管2の外周側に設けられた回路ケーシングを示
し、該回路ケーシング7は絶縁性の樹脂材料等によって
形成され、その底部側には吸気管2の取付穴2Aに嵌合
する嵌合部7Aが一体的に設けられている。そして、該
回路ケーシング7は、例えばセラミック材料等からなる
絶縁基板上に流量調整抵抗および差動増幅器(いずれも
図示せず)等を実装した状態で、これらを内蔵するよう
になっている。
Reference numeral 7 denotes a circuit casing provided on the outer peripheral side of the intake pipe 2 so as to close the mounting hole 2A of the intake pipe 2, and the circuit casing 7 is made of an insulating resin material or the like and has a bottom portion. A fitting portion 7A that fits into the mounting hole 2A of the intake pipe 2 is integrally provided on the side. The circuit casing 7 incorporates a flow rate adjusting resistor, a differential amplifier (both not shown), and the like mounted on an insulating substrate made of, for example, a ceramic material.

【0007】8A,8B,8C,8Dは流量計本体3の
端子部5から軸方向に突出した4本の端子ピン(全体と
して各端子ピン8という)を示し、該各端子ピン8は流
量計本体3の巻線部4および検出ホルダ6内に埋設され
た例えば4本の端子板(図示せず)に一体化して設けら
れ、回路ケーシング7のコネクタ部(図示せず)に着脱
可能に接続されるものである。
Reference numerals 8A, 8B, 8C, and 8D denote four terminal pins (collectively referred to as terminal pins 8) axially protruding from the terminal portion 5 of the flowmeter body 3, and each of the terminal pins 8 is a flowmeter. It is provided integrally with, for example, four terminal plates (not shown) embedded in the winding portion 4 of the main body 3 and the detection holder 6, and is detachably connected to the connector portion (not shown) of the circuit casing 7. It is what is done.

【0008】9は流量計本体3の検出ホルダ6にターミ
ナル10A,10Bを介して設けられたホットフィルム
型の発熱抵抗を示し、該発熱抵抗9は温度変化に敏感に
反応して抵抗値が変化する白金等の感温性材料からな
り、例えばアルミナ等のセラミック材料からなる絶縁性
の筒体に白金線を巻回したり、白金膜を蒸着したりして
形成される小径の発熱抵抗素子によって構成されてい
る。そして、該発熱抵抗9はバッテリ(図示せず)から
の通電により、例えば240℃前,後の温度をもって発
熱した状態となり、吸気管2内を矢示A方向に流れる吸
入空気によって冷却されるときには、この吸入空気の流
量に応じて抵抗値が変化し流量の検出信号を出力させる
ものである。
Reference numeral 9 denotes a hot film type heating resistor provided on the detection holder 6 of the flowmeter main body 3 via terminals 10A and 10B. The heating resistor 9 is sensitive to temperature changes and its resistance value changes. It is composed of a small-diameter heating resistor element formed by winding a platinum wire or depositing a platinum film on an insulating cylinder made of a temperature-sensitive material such as platinum and made of a ceramic material such as alumina. Has been done. When the heating resistor 9 is energized by a battery (not shown), the heating resistor 9 is heated at a temperature of, for example, 240 ° C. before and after it is cooled by the intake air flowing in the intake pipe 2 in the direction of arrow A. The resistance value changes according to the flow rate of the intake air, and a detection signal of the flow rate is output.

【0009】11は発熱抵抗9の上流側に位置して流量
計本体3の検出ホルダ6に設けられた温度補償抵抗を示
し、該温度補償抵抗11は例えばアルミナ等のセラミッ
ク材料からなる絶縁基板上にスパッタリング等の手段を
用いて白金膜を着膜させることにより形成され、白金膜
の両端は前記検出ホルダ6に立設されたターミナル12
A,12B間に接続されている。
Reference numeral 11 denotes a temperature compensating resistor provided on the upstream side of the heat generating resistor 9 and provided in the detection holder 6 of the flowmeter main body 3. The temperature compensating resistor 11 is on an insulating substrate made of a ceramic material such as alumina. It is formed by depositing a platinum film on the substrate by means of sputtering or the like, and both ends of the platinum film are terminals 12 provided upright on the detection holder 6.
It is connected between A and 12B.

【0010】13は流量計本体3の検出ホルダ6上に装
着される保護カバーを示し、該保護カバー13は検出ホ
ルダ6上に発熱抵抗9および温度補償抵抗11を実装し
た後に、図8中に矢印で示す如く検出ホルダ6に被着さ
れ、発熱抵抗9および温度補償抵抗11を保護すると共
に、吸入空気の流通を許すようになっている。なお、図
7中では発熱抵抗9および温度補償抵抗11を明示すべ
く、保護カバー13を検出ホルダ6から取外した状態で
示している。
Reference numeral 13 denotes a protective cover which is mounted on the detection holder 6 of the flowmeter main body 3. The protective cover 13 has a heating resistor 9 and a temperature compensating resistor 11 mounted on the detection holder 6, and is shown in FIG. As shown by the arrow, it is attached to the detection holder 6 to protect the heat generating resistance 9 and the temperature compensating resistance 11 and allow the intake air to flow. Note that in FIG. 7, in order to clearly show the heating resistor 9 and the temperature compensating resistor 11, the protective cover 13 is shown in a state of being removed from the detection holder 6.

【0011】さらに、14は流量計本体3の巻線部4に
巻回された巻線抵抗からなる基準抵抗を示し、該基準抵
抗14はその両端が、巻線部4に立設されたターミナル
15A,15Bに接続され、前記発熱抵抗9に直列接続
されている。ここで、前記各端子ピン8のうち、端子ピ
ン8Aはターミナル15Aに前記端子板を介して接続さ
れ、端子ピン8Bは他の端子板を介してターミナル15
B,10Aに接続されている。また、端子ピン8Cは別
の端子板を介してターミナル10B,12Bに接続さ
れ、端子ピン8Dはターミナル12Aにさらに別の端子
板を介して接続されている。
Reference numeral 14 denotes a reference resistance consisting of a winding resistance wound around the winding portion 4 of the flowmeter main body 3, and the reference resistance 14 has terminals at both ends thereof standing on the winding portion 4. 15A and 15B, which are connected in series with the heating resistor 9. Here, among the terminal pins 8, the terminal pin 8A is connected to the terminal 15A via the terminal plate, and the terminal pin 8B is connected to the terminal 15A via another terminal plate.
B, 10A. The terminal pin 8C is connected to the terminals 10B and 12B via another terminal plate, and the terminal pin 8D is connected to the terminal 12A via another terminal plate.

【0012】このように構成される従来技術の熱式空気
流量検出装置1は、自動車用エンジン等の吸入空気流量
を検出するときに、流量計本体3の端子部5を各端子ピ
ン8を介して回路ケーシング7のコネクタ部に接続した
状態で、流量計本体3の検出ホルダ6等を吸気管2内に
取付穴2Aを介して挿入し、該取付穴2Aに吸気管2の
外周側から回路ケーシング7を取付けることによって、
検出ホルダ6に設けた発熱抵抗9および温度補償抵抗1
1を吸気管2の中心部に配設する。
In the conventional thermal air flow rate detecting device 1 thus constructed, when detecting the intake air flow rate of an automobile engine or the like, the terminal portion 5 of the flow meter main body 3 is inserted through the terminal pins 8. The detection holder 6 of the flowmeter main body 3 is inserted into the intake pipe 2 through the mounting hole 2A in a state where it is connected to the connector portion of the circuit casing 7 and the circuit is inserted into the mounting hole 2A from the outer peripheral side of the intake pipe 2. By installing the casing 7,
Heating resistor 9 and temperature compensation resistor 1 provided on the detection holder 6
1 is arranged at the center of the intake pipe 2.

【0013】この場合、発熱抵抗9を基準抵抗14に直
列接続すると共に、温度補償抵抗11を回路ケーシング
7内の流量調整抵抗に直列接続することによって、これ
らの発熱抵抗9、基準抵抗14、温度補償抵抗11およ
び流量調整抵抗からブリッジ回路を構成する。そして、
該ブリッジ回路にはエンジンの始動と共に外部から電流
を印加し続けることにより発熱抵抗9を、例えば240
℃前,後の所定温度をもって発熱させるようにする。
In this case, the heating resistor 9 and the reference resistor 14 are connected in series, and the temperature compensating resistor 11 is connected in series to the flow rate adjusting resistor in the circuit casing 7. The compensating resistor 11 and the flow rate adjusting resistor form a bridge circuit. And
By continuously applying an electric current from the outside to the bridge circuit when the engine is started, the heating resistor 9 is connected to, for example, 240
Make sure to generate heat at the specified temperature before and after ℃.

【0014】そして、この状態で吸気管2内をエンジン
本体の燃焼室に向けて矢示A方向に吸入空気が流通する
ときには、この吸入空気の流れにより発熱抵抗9が冷却
されて該発熱抵抗9の抵抗値が変化するから、該発熱抵
抗9に直列接続された基準抵抗14の両端電圧に基づい
て吸入空気の流量に対応した検出信号を出力電圧の変化
として検出する。
In this state, when intake air flows through the intake pipe 2 toward the combustion chamber of the engine body in the direction of arrow A, the flow of the intake air cools the heat generating resistor 9 and the heat generating resistor 9 is cooled. Of the reference resistor 14 connected in series with the heating resistor 9, a detection signal corresponding to the flow rate of the intake air is detected as a change in the output voltage.

【0015】[0015]

【発明が解決しようとする課題】ところで、上述した従
来技術では、吸気管2内を流れる吸入空気の流れで発熱
抵抗9が冷却されるのを利用して、該発熱抵抗9の抵抗
値変化に基づき吸入空気流量を検出する構成であるか
ら、該発熱抵抗9は図7中の矢示A方向(順方向)に流
れる吸入空気流によって冷却されると共に、矢示B方向
(逆方向)に流れる空気流によっても冷却されてしま
い、この逆方向の空気流により吸入空気流量を誤検出す
るという問題がある。
By the way, in the above-mentioned prior art, the fact that the heating resistor 9 is cooled by the flow of the intake air flowing through the intake pipe 2 is utilized to change the resistance value of the heating resistor 9. Since the intake air flow rate is detected based on this, the heat generating resistor 9 is cooled by the intake air flow flowing in the direction A (forward direction) shown in FIG. 7 and flows in the direction B (reverse direction) shown in FIG. There is a problem in that the air flow is also cooled and the intake air flow rate is erroneously detected by the air flow in the opposite direction.

【0016】即ち、多気筒のシリンダを備えたエンジン
本体では、各シリンダ内でそれぞれピストンが往復動す
るに応じて各吸気弁(図示せず)が開弁する毎に、吸入
空気が各シリンダ内に向けて矢示A方向(順方向)に吸
込まれるから、吸気管2内を流れる空気の流速は各吸気
弁の開,閉弁に応じて図4に例示する如く増,減を繰返
し脈動するようになる。
That is, in an engine body having a multi-cylinder cylinder, intake air is introduced into each cylinder each time an intake valve (not shown) is opened as the piston reciprocates in each cylinder. As it is sucked in the direction A (forward direction) indicated by arrow, the flow velocity of the air flowing in the intake pipe 2 repeatedly increases and decreases as illustrated in FIG. 4 according to the opening and closing of each intake valve. Come to do.

【0017】特に、エンジンの回転数が低速域から中速
域等に達して吸,排気量が増大してくると、吸気弁と排
気弁(図示せず)とがオーバラップし、排気の一部が吸
気弁の開弁に伴って吸気管2内に吹返すことがあるた
め、このときに吸気管2内では図4に示す時間t1 ,t
2 間のように流速が負(マイナス)となって、矢示B方
向(逆方向)に流れる空気流が発生し、この空気流で吸
入空気流量が実流量よりも過大に検出され、A/F制御
を正確に行えなくなるという問題が生じる。
In particular, when the engine speed reaches from a low speed region to a medium speed region and the like, and the intake and exhaust amounts increase, the intake valve and the exhaust valve (not shown) overlap each other and the exhaust gas Since the part may blow back into the intake pipe 2 when the intake valve is opened, the time t1, t shown in FIG.
The flow velocity becomes negative (negative) like between 2 and an air flow that flows in the direction of the arrow B (reverse direction) is generated, and the intake air flow rate is detected to be excessive than the actual flow rate by this air flow, and A / There is a problem that the F control cannot be performed accurately.

【0018】本発明は上述した従来技術の問題に鑑みな
されたもので、本発明は逆方向の空気流により吸入空気
流量を誤検出するのを防止でき、流量の検出精度を大幅
に向上できるようにした熱式空気流量検出装置を提供す
ることを目的としている。
The present invention has been made in view of the above-mentioned problems of the prior art, and the present invention can prevent erroneous detection of the intake air flow rate due to the air flow in the opposite direction, and can greatly improve the flow rate detection accuracy. It is an object of the present invention to provide a thermal type air flow rate detecting device.

【0019】[0019]

【課題を解決するための手段】上述した課題を解決する
ために本発明は、吸気管の途中に取付けられ、流量調整
抵抗および基準抵抗が設けられた流量計本体と、前記吸
気管内に位置して該流量計本体に設けられ、前記吸気管
内を流れる吸入空気によって冷却される発熱抵抗と、前
記吸入空気の温度変化を補償するための温度補償抵抗と
からなる熱式空気流量検出装置に適用される。
In order to solve the above-mentioned problems, the present invention provides a flowmeter main body provided in the middle of an intake pipe and provided with a flow rate adjusting resistance and a reference resistance, and a flowmeter main body which is located in the intake pipe. The present invention is applied to a thermal air flow rate detection device that is provided in the flowmeter main body and includes a heat generation resistance cooled by intake air flowing in the intake pipe and a temperature compensation resistance for compensating for a temperature change of the intake air. It

【0020】そして、請求項1に記載の発明が採用する
構成の特徴は、前記発熱抵抗を、前記流量計本体に取付
けられた絶縁基板上に形成され、該絶縁基板の少なくと
も長さ方向に膜状に延びた発熱抵抗体によって構成し、
かつ前記絶縁基板上には、前記吸入空気の流れ方向に対
し該発熱抵抗体の前,後に離間して形成され、前記吸入
空気の流れ方向に応じてそれぞれ抵抗値が変化する第
1,第2の感温抵抗体を設けたことにある。
The feature of the configuration adopted by the invention of claim 1 is that the heat generating resistance is formed on an insulating substrate attached to the flowmeter body, and a film is formed at least in the length direction of the insulating substrate. It consists of a heating resistor that extends in a
Further, the first and the second are formed on the insulating substrate so as to be spaced apart in front of and behind the heating resistor with respect to the flow direction of the intake air, and have resistance values that change depending on the flow direction of the intake air. There is a temperature sensitive resistor.

【0021】また、請求項2に記載の発明は、前記発熱
抵抗体を、前記絶縁基板の長さ方向中間部に位置して幅
方向に延びた中間抵抗部と、該中間抵抗部の両端側から
前記絶縁基板の長さ方向に互いに逆向きに延びた第1,
第2の延長抵抗部とから形成し、前記第1の感温抵抗体
は該第1の延長抵抗部と中間抵抗部との間に位置して該
第1の延長抵抗部と平行に形成し、かつ前記第2の感温
抵抗体は前記第2の延長抵抗部と中間抵抗部との間に位
置して該第2の延長抵抗部と平行に形成してなる構成を
採用している。
According to a second aspect of the present invention, the heating resistor is provided with an intermediate resistance portion which is located at an intermediate portion in the length direction of the insulating substrate and extends in the width direction, and both end sides of the intermediate resistance portion. Extending in opposite directions from each other in the length direction of the insulating substrate,
A second extension resistance portion, and the first temperature-sensitive resistor is located between the first extension resistance portion and the intermediate resistance portion and formed in parallel with the first extension resistance portion. The second temperature-sensitive resistor is located between the second extension resistance portion and the intermediate resistance portion and is formed in parallel with the second extension resistance portion.

【0022】さらに、請求項3に記載の発明は、前記絶
縁基板を、基端側が前記流量計本体に取付けられる固定
端となり先端側が自由端となった主基板部と副基板部と
から構成し、該副基板部と主基板部との間には先端側か
ら基端側に向けて延びるスリットを形成すると共に、該
副基板部は基端側で主基板部に一体的に連結し、かつ該
主基板部には前記発熱抵抗体および第1,第2の感温抵
抗体を着膜形成し、前記副基板部には前記温度補償抵抗
を着膜形成してなる構成を採用している。
Further, in the invention as set forth in claim 3, the insulating substrate is composed of a main substrate portion and a sub-substrate portion whose base end side is a fixed end attached to the flowmeter body and whose tip end side is a free end. A slit extending from the front end side toward the base end side is formed between the sub board part and the main board part, and the sub board part is integrally connected to the main board part at the base end side, and The heat generating resistor and the first and second temperature sensitive resistors are formed on the main substrate portion, and the temperature compensating resistor is formed on the sub substrate portion. .

【0023】さらにまた、請求項4に記載の発明では、
前記第1,第2の感温抵抗体を発熱抵抗体よりも大なる
抵抗値をもった抵抗体材料により形成し、該発熱抵抗体
からの熱により絶縁基板を介して前記第1,第2の感温
抵抗体を加熱する構成としている。
Furthermore, in the invention described in claim 4,
The first and second temperature sensitive resistors are formed of a resistor material having a resistance value larger than that of the heat generating resistor, and heat from the heat generating resistor causes the first and second temperature sensitive resistors to pass through the insulating substrate. The temperature sensitive resistor is heated.

【0024】一方、請求項5に記載の発明では、前記第
1,第2の感温抵抗体を発熱抵抗体に対応する抵抗率を
もった抵抗体材料により形成し、該発熱抵抗体と共に第
1,第2の感温抵抗体を外部からの電圧印加によって発
熱させる構成としている。
On the other hand, in the invention of claim 5, the first and second temperature sensitive resistors are formed of a resistor material having a resistivity corresponding to that of the heating resistor, and the first and second temperature sensing resistors are formed together with the heating resistor. The first and second temperature sensitive resistors are configured to generate heat by applying a voltage from the outside.

【0025】また、請求項6に記載の発明は、前記発熱
抵抗体を基準抵抗を介してアースに接続し、該基準抵抗
の両端電圧を流量検出信号として取出すと共に、前記第
1,第2の感温抵抗体の抵抗値に基づき吸入空気の流れ
方向を検出し、該吸入空気の流れ方向が順方向のときに
は前記流量検出信号をそのまま出力し、逆方向のときに
は反転させて出力する流量信号出力手段を備えてなる構
成を採用している。
Further, in the invention according to claim 6, the heating resistor is connected to the ground through a reference resistor, the voltage across the reference resistor is taken out as a flow rate detection signal, and the first and second electrodes are connected. Flow rate signal output that detects the flow direction of the intake air based on the resistance value of the temperature sensitive resistor, and outputs the flow rate detection signal as it is when the flow direction of the intake air is the forward direction, and inverts when the flow direction of the intake air is the reverse direction. A structure including means is adopted.

【0026】[0026]

【作用】上記構成により、請求項1の発明では、吸入空
気の流れ方向に対し発熱抵抗体の前,後に離間して絶縁
基板上に形成した第1,第2の感温抵抗体が、前記吸入
空気の流れ方向に応じてそれぞれ抵抗値が変化するか
ら、第1の感温抵抗体が第2の感温抵抗体よりも抵抗値
が小さくなったときには、例えば空気の流れ方向を順方
向として検出でき、第2の感温抵抗体が第1の感温抵抗
体よりも抵抗値が小さくなったときには、空気の流れ方
向を逆方向として検出できる。
With the above structure, in the invention of claim 1, the first and second temperature sensitive resistors formed on the insulating substrate are separated from each other before and after the heat generating resistor in the flow direction of the intake air. Since the resistance value changes in accordance with the flow direction of the intake air, when the resistance value of the first temperature-sensitive resistor becomes smaller than that of the second temperature-sensitive resistor, for example, the air flow direction is set to the forward direction. When the resistance value of the second temperature-sensitive resistor becomes smaller than that of the first temperature-sensitive resistor, the air flow direction can be detected as the reverse direction.

【0027】また、請求項2の発明では、絶縁基板の限
られた表面スペースを有効に活用して発熱抵抗体および
第1,第2の感温抵抗体をコンパクトに形成でき、発熱
抵抗体の表面積(実装面積)を可能な限り大きくするこ
とができる。
According to the second aspect of the invention, the heating resistor and the first and second temperature sensitive resistors can be compactly formed by effectively utilizing the limited surface space of the insulating substrate. The surface area (mounting area) can be increased as much as possible.

【0028】さらに、請求項3の発明では、単一の絶縁
基板上に発熱抵抗体および第1,第2の感温抵抗体と共
に温度補償抵抗を着膜形成でき、部品点数を削減するこ
とができる。そして、温度補償抵抗が形成される副基板
部と前記発熱抵抗体および第1,第2の感温抵抗体が形
成される主基板部との間にスリットを形成することによ
り、例えば発熱抵抗体で加熱される主基板部から副基板
部に熱が逃げるのを防止でき、主基板部を早期に温度上
昇させることができる。
Further, according to the third aspect of the invention, the temperature compensating resistor can be formed on the single insulating substrate together with the heating resistor and the first and second temperature sensitive resistors, and the number of parts can be reduced. it can. Then, by forming a slit between the sub-board portion on which the temperature compensation resistor is formed and the main substrate portion on which the heating resistor and the first and second temperature-sensitive resistors are formed, for example, the heating resistor It is possible to prevent heat from escaping from the main substrate portion heated to the sub-substrate portion to raise the temperature of the main substrate portion early.

【0029】さらにまた、請求項4の発明では、第1,
第2の感温抵抗体を発熱抵抗体からの熱で絶縁基板を介
して加熱でき、空気の流れ方向に応じて第1,第2の感
温抵抗体のいずれか一方を冷却することにより、空気の
流れ方向をより確実に検出することができる。
Furthermore, in the invention of claim 4,
The second temperature-sensitive resistor can be heated by the heat from the heat-generating resistor via the insulating substrate, and by cooling either one of the first and second temperature-sensitive resistors according to the flow direction of air, The direction of air flow can be detected more reliably.

【0030】一方、請求項5の発明では、外部からの電
圧印加によって第1,第2の感温抵抗体を発熱抵抗体と
共に発熱させることができ、第1,第2の感温抵抗体を
早期に温度上昇させ、流れ方向を検出するときの応答性
を確実に向上させることができる。
On the other hand, in the invention of claim 5, the first and second temperature-sensitive resistors can be made to generate heat together with the heat-generating resistor by applying a voltage from the outside. It is possible to raise the temperature early and surely improve the responsiveness when detecting the flow direction.

【0031】また、請求項6の発明では、発熱抵抗体と
アースとの間に接続される基準抵抗の両端電圧から流量
検出信号を取出すと共に、前記第1,第2の感温抵抗体
の抵抗値に基づき吸入空気の流れ方向を検出できるか
ら、該吸入空気の流れ方向が順方向のときには前記流量
検出信号をそのまま正の電圧信号として出力でき、逆方
向のときには反転させて負の電圧信号として出力するこ
とができる。
Further, in the invention of claim 6, the flow rate detection signal is taken out from the voltage across the reference resistor connected between the heating resistor and the ground, and the resistances of the first and second temperature sensitive resistors are obtained. Since the flow direction of the intake air can be detected based on the value, the flow rate detection signal can be directly output as a positive voltage signal when the flow direction of the intake air is a forward direction, and can be inverted as a negative voltage signal when the flow direction is the reverse direction. Can be output.

【0032】[0032]

【実施例】以下、本発明の実施例を図1ないし図6に基
づいて説明する。なお、実施例では前述した図7に示す
従来技術と同一の構成要素に同一の符号を付し、その説
明を省略するものとする。
Embodiments of the present invention will be described below with reference to FIGS. In the embodiment, the same components as those of the conventional technique shown in FIG. 7 described above are designated by the same reference numerals, and the description thereof will be omitted.

【0033】而して、図1ないし図4は本発明の第1の
実施例を示している。
1 to 4 show the first embodiment of the present invention.

【0034】図中、21は本実施例による熱式空気流量
検出装置、22は該熱式空気流量検出装置21の本体部
を構成する流量計本体を示し、該流量計本体22は従来
技術で述べた流量計本体3とほぼ同様に、基準抵抗23
が巻回される巻線部24と、該巻線部24の基端側に位
置し、複数の端子ピン(図示せず)が一体的に設けられ
た端子部25と、巻線部24の先端側から吸気管2の径
方向に延設された検出ホルダ26と、後述の回路ケーシ
ング27とから大略構成されている。
In the figure, reference numeral 21 is a thermal air flow rate detecting device according to this embodiment, 22 is a flow meter main body constituting the main body of the thermal air flow rate detecting device 21, and the flow meter main body 22 is a conventional technique. Almost the same as the flowmeter body 3 described above, the reference resistance 23
Of the winding part 24, a terminal part 25 located on the base end side of the winding part 24 and integrally provided with a plurality of terminal pins (not shown), The detection holder 26, which extends from the tip side in the radial direction of the intake pipe 2, and a circuit casing 27, which will be described later, are roughly configured.

【0035】しかし、該流量計本体22には検出ホルダ
26の基端側に後述の絶縁基板28を着脱可能に取付け
るためのスロット(図示せず)が形成され、該検出ホル
ダ26は図1中に示す如く吸気管2の中心部に、絶縁基
板28を介して後述の発熱抵抗体30等を位置決めする
構成となっている。なお、該流量計本体22の検出ホル
ダ26にも従来技術で述べた保護カバー13とほぼ同様
の保護カバー(図示せず)が取付けられる。
However, a slot (not shown) for detachably mounting an insulating substrate 28, which will be described later, is formed in the flowmeter main body 22 on the base end side of the detection holder 26, and the detection holder 26 is shown in FIG. As shown in FIG. 3, a heating resistor 30 and the like, which will be described later, are positioned in the center of the intake pipe 2 via an insulating substrate 28. A protective cover (not shown) similar to the protective cover 13 described in the prior art is attached to the detection holder 26 of the flowmeter main body 22.

【0036】27は吸気管2の取付穴2Aを閉塞するよ
うに該吸気管2の外周側に設けられた回路ケーシングを
示し、該回路ケーシング27は従来技術で述べた回路ケ
ーシング7とほぼ同様に形成され、吸気管2の取付穴2
Aに嵌合する嵌合部27Aを有しているものの、該回路
ケーシング27は、例えばセラミック材料等からなる絶
縁基板(図示せず)上に後述の流量調整抵抗34および
差動増幅器41等を実装した状態で、これらを内蔵する
ようになっている。
Reference numeral 27 denotes a circuit casing provided on the outer peripheral side of the intake pipe 2 so as to close the mounting hole 2A of the intake pipe 2, and the circuit casing 27 is substantially the same as the circuit casing 7 described in the prior art. Formed, mounting hole 2 for intake pipe 2
Although having a fitting portion 27A that fits into A, the circuit casing 27 has a flow rate adjusting resistor 34, a differential amplifier 41, etc., which will be described later, on an insulating substrate (not shown) made of, for example, a ceramic material. These are built in when mounted.

【0037】28は検出ホルダ26に取付けられる絶縁
基板を示し、該絶縁基板28は、例えばガラス,酸化ア
ルミニウム(アルミナ)または窒化アルミニウム等の絶
縁性材料により、長さ寸法が15〜20mm前,後、幅寸
法が4〜7mm前,後となって長方形の平板状に形成され
ている。また、該絶縁基板28は基端側が検出ホルダ2
6のスロットに着脱可能に取付けられる固定端となり、
先端側が自由端となっている。
Reference numeral 28 denotes an insulating substrate attached to the detection holder 26. The insulating substrate 28 is made of an insulating material such as glass, aluminum oxide (alumina) or aluminum nitride and has a length of 15 to 20 mm before and after. The width dimension is 4 to 7 mm before and after, and is formed in a rectangular flat plate shape. Further, the insulating substrate 28 has the detection holder 2 on the base end side.
It becomes a fixed end that is detachably attached to the slot of 6,
The tip side is the free end.

【0038】ここで、該絶縁基板28は図2に示す如
く、基端側から先端側に向けて短冊状に延び比較的大き
な表面積をもった主基板部28Aと、該主基板部28A
と平行に基端側から先端側に向けて短冊状に延び該主基
板部28Aよりも小さな表面積をもった副基板部28B
とから構成され、該副基板部28Bは矢示A方向の吸入
空気流に対して主基板部28Aよりも上流側に位置して
いる。
Here, as shown in FIG. 2, the insulating substrate 28 extends in a strip shape from the base end side to the tip end side and has a relatively large surface area, and the main substrate part 28A.
A sub-board portion 28B having a surface area smaller than that of the main board portion 28A and extending in a strip shape from the base end side toward the tip end side in parallel with
The sub-board portion 28B is located upstream of the main board portion 28A with respect to the intake air flow in the direction of arrow A.

【0039】また、副基板部28Bと主基板部28Aと
の間には、絶縁基板28の先端側から基端側に向けて延
びる細長いスリット29が形成されている。そして、該
スリット29は絶縁基板28の幅方向で主基板部28A
と副基板部28Bとを微少間隙を介して離間させ、両者
を熱的に絶縁すると共に、副基板部28Bを基端側で主
基板部28Aに一体的に連結させるようになっている。
An elongated slit 29 extending from the front end side to the base end side of the insulating substrate 28 is formed between the sub substrate portion 28B and the main substrate portion 28A. The slit 29 is formed in the main substrate portion 28A in the width direction of the insulating substrate 28.
The sub-board portion 28B and the sub-board portion 28B are separated from each other with a minute gap therebetween so as to be thermally insulated from each other, and the sub-board portion 28B is integrally connected to the main board portion 28A at the base end side.

【0040】30は絶縁基板28の主基板部28A上に
形成された発熱抵抗を構成する発熱抵抗体を示し、該発
熱抵抗体30はプリント印刷またはスパッタリング等の
手段を用いて主基板部28A上に白金膜を着膜させるこ
とにより形成され、主基板部28Aの長さ方向中間部に
位置して幅方向に延びた中間抵抗部30Aと、該中間抵
抗部30Aの両端側から主基板部28Aの長さ方向に互
いに逆向きに延びた第1,第2の延長抵抗部30B,3
0Cとから構成されている。
Reference numeral 30 denotes a heating resistor formed on the main substrate portion 28A of the insulating substrate 28, which constitutes a heating resistor. The heating resistor 30 is provided on the main substrate portion 28A by means such as print printing or sputtering. An intermediate resistance portion 30A formed by depositing a platinum film on the main substrate portion 28A and extending in the width direction at the middle portion of the main substrate portion 28A, and the main substrate portion 28A from both end sides of the intermediate resistance portion 30A. First and second extension resistance portions 30B, 3 extending in opposite directions in the length direction of the
It is composed of 0C.

【0041】ここで、該発熱抵抗体30の中間抵抗部3
0Aおよび延長抵抗部30B,30Cは全体としてクラ
ンク形状をなすことによって、主基板部28A上に発熱
抵抗体30および後述の感温抵抗体31,32をコンパ
クトに形成すると共に、発熱抵抗体30の表面積(実装
面積)を可及的に増大させ、例えば吸気管2内を矢示A
方向に流れる吸入空気との接触面積を大きくできるよう
になっている。
Here, the intermediate resistance portion 3 of the heating resistor 30.
0A and the extension resistors 30B and 30C have a crank shape as a whole, so that the heating resistor 30 and the temperature-sensitive resistors 31 and 32 described later are compactly formed on the main board portion 28A, and the heating resistor 30 Increase the surface area (mounting area) as much as possible.
The contact area with the intake air flowing in the direction can be increased.

【0042】また、該発熱抵抗体30は図3に示す如く
抵抗値R1 の前記基準抵抗23を介してアースに接続さ
れ、該発熱抵抗体30は従来技術で述べた発熱抵抗9と
ほぼ同様に外部からの通電により、例えば240℃前,
後の温度もって発熱する。そして、吸気管2内の空気流
で該発熱抵抗体30が冷却されるときには、空気の流量
に対応して発熱抵抗体30の抵抗値RH が変化するの
で、図3に示す基準抵抗23と発熱抵抗体30との接続
点aから基準抵抗23の両端電圧を流量検出信号として
取出すことができる。
Further, the heating resistor 30 is connected to the ground via the reference resistor 23 having a resistance value R1 as shown in FIG. 3, and the heating resistor 30 is almost the same as the heating resistor 9 described in the prior art. By external energization, for example, 240 ° C before,
The subsequent temperature causes heat. When the heating resistor 30 is cooled by the air flow in the intake pipe 2, the resistance value RH of the heating resistor 30 changes in accordance with the flow rate of air, so that the reference resistor 23 and the heat generation shown in FIG. The voltage across the reference resistor 23 can be taken out as a flow rate detection signal from the connection point a with the resistor 30.

【0043】31,32は発熱抵抗体30と共に主基板
部28A上に形成された第1,第2の感温抵抗体を示
し、該感温抵抗体31,32は抵抗温度係数(ppm /
℃)の高い、例えばニッケルまたはタングステン等の金
属膜をプリント印刷またはスパッタリング等の手段で着
膜させることによって形成され、例えば吸気管2内を矢
示A方向に流れる吸入空気の流れ方向(主基板部28A
の幅方向)に対し発熱抵抗体30の前,後に離間して主
基板部28A上に配設されている。
Reference numerals 31 and 32 denote first and second temperature-sensitive resistors formed on the main substrate portion 28A together with the heating resistor 30, and the temperature-sensitive resistors 31 and 32 have a temperature coefficient of resistance (ppm / ppm).
Formed by depositing a metal film such as nickel or tungsten having a high temperature (.degree. C.) by means such as print printing or sputtering, and for example, the flow direction of the intake air flowing in the intake pipe 2 in the direction of arrow A (main substrate). Part 28A
Are arranged on the main board portion 28A in front of and behind the heating resistor 30 with respect to the width direction).

【0044】ここで、第1の感温抵抗体31は発熱抵抗
体30の中間抵抗部30Aと延長抵抗部30Bとの間に
位置し、該延長抵抗部30Bと平行に延びるように長方
形状に形成されている。また、第2の感温抵抗体32は
中間抵抗部30Aと延長抵抗部30Cとの間に位置し、
該延長抵抗部30Cと平行に延びるように長方形状に形
成されている。そして、感温抵抗体31,32は主基板
部28A上で実質的に均等な面積をもって形成され、通
常時には発熱抵抗体30からの熱により主基板部28A
を介して互いに等しい温度に加熱される。
Here, the first temperature-sensitive resistor 31 is located between the intermediate resistance portion 30A and the extension resistance portion 30B of the heating resistor 30, and has a rectangular shape so as to extend in parallel with the extension resistance portion 30B. Has been formed. Further, the second temperature sensitive resistor 32 is located between the intermediate resistance portion 30A and the extension resistance portion 30C,
It is formed in a rectangular shape so as to extend parallel to the extension resistance portion 30C. The temperature sensitive resistors 31 and 32 are formed on the main board portion 28A with a substantially equal area, and the heat from the heating resistor 30 normally causes the main board portion 28A to heat.
Are heated to the same temperature as each other.

【0045】さらに、該感温抵抗体31,32は発熱抵
抗体30からの熱により加熱された状態で、吸気管2内
を流れる矢示A,B方向の空気に接触したときに、この
空気流で冷却されることによってそれぞれの抵抗値RT
1,RT2が変化する。そして、吸気管2内を矢示A方向
(順方向)に吸入空気が流れるときには、発熱抵抗体3
0よりも上流側に位置する感温抵抗体31がこの空気流
によって大きく冷却されるから、該感温抵抗体31の抵
抗値RT1は大幅に減少する。これに対して、下流側の感
温抵抗体32は発熱抵抗体30からの熱で暖められた後
の空気流に接触するから、感温抵抗体32はそれ程冷却
されることはなく、該感温抵抗体32の抵抗値RT2はほ
とんど変化しない。
Further, when the temperature-sensitive resistors 31 and 32 are heated by the heat from the heat-generating resistor 30, when they come into contact with the air flowing in the intake pipe 2 in the directions of arrows A and B, the air Each resistance value RT by being cooled by the flow
1, RT2 changes. When the intake air flows in the intake pipe 2 in the direction of arrow A (forward direction), the heating resistor 3
Since the temperature sensitive resistor 31 located on the upstream side of 0 is largely cooled by this air flow, the resistance value RT1 of the temperature sensitive resistor 31 is greatly reduced. On the other hand, since the temperature-sensitive resistor 32 on the downstream side comes into contact with the airflow after being heated by the heat from the heat-generating resistor 30, the temperature-sensitive resistor 32 is not cooled so much and the temperature-sensitive resistor 32 is not cooled. The resistance value RT2 of the temperature resistor 32 hardly changes.

【0046】一方、吸気管2内を矢示B方向(逆方向)
に空気が流れるときには、発熱抵抗体30よりも上流側
に位置する感温抵抗体32がこの逆方向の空気流によっ
て大きく冷却され、該感温抵抗体32の抵抗値RT2が大
幅に減少するのに対し、下流側となる感温抵抗体31の
抵抗値RT1はほとんど変化することはない。従って、感
温抵抗体31,32間の抵抗値RT1,RT2の差に基づい
て空気流が順方向であるか、逆方向であるかを判別する
ことが可能となる。
On the other hand, the inside of the intake pipe 2 is in the direction of arrow B (reverse direction).
When the air flows to the temperature sensing resistor 32, the temperature sensing resistor 32 located upstream of the heat generating resistor 30 is greatly cooled by the air flow in the opposite direction, and the resistance value RT2 of the temperature sensing resistor 32 is greatly reduced. On the other hand, the resistance value RT1 of the temperature-sensitive resistor 31 on the downstream side hardly changes. Therefore, it is possible to determine whether the air flow is in the forward direction or the reverse direction based on the difference between the resistance values RT1 and RT2 between the temperature sensitive resistors 31 and 32.

【0047】33は絶縁基板28の副基板部28B上に
形成された温度補償抵抗を示し、該温度補償抵抗33は
従来技術で述べた温度補償抵抗11とほぼ同様に構成さ
れ、プリント印刷またはスパッタリング等の手段を用い
て副基板部28B上に白金膜を着膜させることにより形
成されている。そして、該温度補償抵抗33は発熱抵抗
体30よりも大きい抵抗値RK を有し、図3に示す如く
抵抗値R2 の流量調整抵抗34を介してアースに接続さ
れている。また、温度補償抵抗33と流量調整抵抗34
との接続点bは後述する差動増幅器41の反転入力端子
に接続されている。
Reference numeral 33 denotes a temperature compensating resistor formed on the sub-substrate portion 28B of the insulating substrate 28. The temperature compensating resistor 33 has substantially the same structure as the temperature compensating resistor 11 described in the prior art, and is printed or sputtered. It is formed by depositing a platinum film on the sub-substrate portion 28B by using such means. The temperature compensating resistor 33 has a resistance value RK larger than that of the heating resistor 30, and is connected to the ground via a flow rate adjusting resistor 34 having a resistance value R2 as shown in FIG. Further, the temperature compensating resistor 33 and the flow rate adjusting resistor 34
A connection point b between and is connected to an inverting input terminal of a differential amplifier 41 described later.

【0048】35,35,…は絶縁基板28の基端側に
形成された例えば6個の電極を示し、該各電極35は絶
縁基板28の幅方向に所定間隔をもって列設され、絶縁
基板28の基端側を前記検出ホルダ26のスロット内に
差込むことにより、該検出ホルダ26側の各ターミナル
(図示せず)に接続される。そして、各電極35はこの
ときに前記発熱抵抗体30、第1,第2の感温抵抗体3
1,32および温度補償抵抗33等を後述する電流制御
用トランジスタ37のエミッタ側とアースとの間に接続
し、これらの発熱抵抗体30、感温抵抗体31,32お
よび温度補償抵抗33等は回路ケーシング27内に設け
た各電子部品と共に図3に示す流量検出用の処理回路を
構成するようになる。
Reference numerals 35, 35, ... Depict, for example, six electrodes formed on the base end side of the insulating substrate 28. The electrodes 35 are arranged in a row in the width direction of the insulating substrate 28 at a predetermined interval. By inserting the base end side of the above into the slot of the detection holder 26, it is connected to each terminal (not shown) on the side of the detection holder 26. At this time, the electrodes 35 have the heating resistor 30, the first and second temperature sensitive resistors 3 respectively.
1, 32 and the temperature compensating resistor 33, etc. are connected between the emitter side of the current control transistor 37 described later and the ground, and the heat generating resistor 30, the temperature sensitive resistors 31, 32, the temperature compensating resistor 33, etc. The processing circuit for flow rate detection shown in FIG. 3 is configured together with each electronic component provided in the circuit casing 27.

【0049】次に、図3を参照して流量検出用の処理回
路について説明する。
Next, the processing circuit for flow rate detection will be described with reference to FIG.

【0050】図中、36はバッテリ電圧VB をもった直
流電源、37はコレクタ側が該直流電源36に接続され
た電流制御用トランジスタを示し、該電流制御用トラン
ジスタ37はエミッタ側が発熱抵抗体30、感温抵抗体
31,32および温度補償抵抗33に接続され、ベース
側が差動増幅器41の出力端子に接続されている。そし
て、該電流制御用トランジスタ37は直流電源36から
発熱抵抗体30、感温抵抗体31,32および温度補償
抵抗33に印加(給電)する電流を、差動増幅器41か
らの出力信号に基づき制御している。
In the figure, 36 is a DC power source having a battery voltage VB, 37 is a current control transistor whose collector side is connected to the DC power source 36, and the current control transistor 37 has an emitter side with a heating resistor 30, It is connected to the temperature sensitive resistors 31 and 32 and the temperature compensation resistor 33, and the base side is connected to the output terminal of the differential amplifier 41. The current control transistor 37 controls the current applied (powered) from the DC power supply 36 to the heating resistor 30, the temperature sensitive resistors 31, 32 and the temperature compensation resistor 33 based on the output signal from the differential amplifier 41. is doing.

【0051】38,39は感温抵抗体31,32とアー
スとの間に接続点c,dを介して接続された調整抵抗を
示し、該調整抵抗38,39は同一の抵抗値R3 を有
し、感温抵抗体31,32との接続点c,dが後述する
比較器40の各入力端子に接続されている。そして、感
温抵抗体31,32と調整抵抗38,39との直列接続
部のうち、いずれか一方の直列接続部は温度補償抵抗3
3と流量調整抵抗34の直列接続部と共にブリッジ回路
を構成するようになっている。
Reference numerals 38 and 39 denote adjusting resistors connected between the temperature sensitive resistors 31 and 32 and the ground via connection points c and d, and the adjusting resistors 38 and 39 have the same resistance value R3. However, the connection points c and d with the temperature sensitive resistors 31 and 32 are connected to the respective input terminals of the comparator 40 described later. Then, of the series connection parts of the temperature sensitive resistors 31 and 32 and the adjustment resistances 38 and 39, one of the series connection parts is the temperature compensation resistor 3.
A bridge circuit is configured together with the serial connection portion of 3 and the flow rate adjusting resistor 34.

【0052】40は前記接続点c,dの電圧レベルを比
較し、大きい方の電圧を出力する比較器を示し、該比較
器40の出力端子は後述する差動増幅器41の非反転入
力端子に接続されている。ここで、感温抵抗体31,3
2の抵抗値RT1,RT2は前述した如く、吸気管2内を流
れる空気流が順方向(矢示A方向)であるときに感温抵
抗体31の抵抗値RT1が大幅に減少し、逆方向(矢示B
方向)であるときには感温抵抗体32の抵抗値RT2が大
幅に減少する。
Reference numeral 40 denotes a comparator which compares the voltage levels at the connection points c and d and outputs the larger voltage. The output terminal of the comparator 40 is the non-inverting input terminal of the differential amplifier 41 described later. It is connected. Here, the temperature sensitive resistors 31, 3
As described above, the resistance values RT1 and RT2 of 2 greatly decrease the resistance value RT1 of the temperature sensitive resistor 31 when the air flow flowing in the intake pipe 2 is in the forward direction (direction indicated by the arrow A), and (Arrow B
Direction), the resistance value RT2 of the temperature sensitive resistor 32 is greatly reduced.

【0053】この結果、空気流が順方向のときには接続
点cの電圧レベルが接続点dよりも大きくなり、接続点
cの電圧レベルに対応した出力電圧が比較器40から差
動増幅器41の非反転入力端子に出力される。また、空
気流が逆方向のときには接続点dの電圧レベルが接続点
cよりも大きくなって、接続点dの電圧レベルに対応し
た出力電圧が比較器40から差動増幅器41に出力され
る。なお、接続点c,dが同一の電圧レベルのときに
は、このときの電圧レベルに対応した出力電圧が比較器
40から差動増幅器41に出力される。
As a result, when the air flow is in the forward direction, the voltage level at the connection point c becomes higher than that at the connection point d, and the output voltage corresponding to the voltage level at the connection point c is output from the comparator 40 to the differential amplifier 41. It is output to the inverting input terminal. When the air flow is in the opposite direction, the voltage level at the connection point d becomes higher than that at the connection point c, and the output voltage corresponding to the voltage level at the connection point d is output from the comparator 40 to the differential amplifier 41. When the connection points c and d have the same voltage level, the output voltage corresponding to the voltage level at this time is output from the comparator 40 to the differential amplifier 41.

【0054】41は電流制御用トランジスタ37および
比較器40等と共に回路ケーシング27に内蔵された差
動増幅器を示し、該差動増幅器41の反転入力端子は温
度補償抵抗33と流量調整抵抗34との間の接続点bに
接続され、非反転入力端子は比較器40の出力端子に接
続されている。そして、該差動増幅器41は出力端子が
電流制御用トランジスタ37のベースに接続され、比較
器40の出力端子と接続点bとの電位差に基づいて、直
流電源36から発熱抵抗体30、感温抵抗体31,32
および温度補償抵抗33に印加(給電)する電流を電流
制御用トランジスタ37で制御させる。
Reference numeral 41 denotes a differential amplifier built in the circuit casing 27 together with the current controlling transistor 37, the comparator 40, etc., and the inverting input terminal of the differential amplifier 41 is composed of the temperature compensating resistor 33 and the flow rate adjusting resistor 34. The non-inverting input terminal is connected to the output terminal of the comparator 40. The output terminal of the differential amplifier 41 is connected to the base of the current controlling transistor 37, and based on the potential difference between the output terminal of the comparator 40 and the connection point b, the DC power supply 36 causes the heating resistor 30, the temperature sensing element. Resistors 31, 32
The current applied to the temperature compensation resistor 33 (power supply) is controlled by the current control transistor 37.

【0055】42は入力側が前記接続点c,dに接続さ
れた他の比較器を示し、該比較器42は出力側が後述の
選択回路44に接続され、接続点c,d間の電圧レベル
に基づいた図4に示す如き出力信号を選択回路44に出
力する。これにより、この選択回路44から出力される
出力電圧Vout は実際の空気流の方向に応じて正または
負の電圧に選択(反転)される。
Reference numeral 42 indicates another comparator whose input side is connected to the connection points c and d. The output side of the comparator 42 is connected to a selection circuit 44 which will be described later, and the comparator 42 has a voltage level between the connection points c and d. Based on the output signal as shown in FIG. 4, it is output to the selection circuit 44. As a result, the output voltage Vout output from the selection circuit 44 is selected (inverted) into a positive or negative voltage depending on the actual direction of the air flow.

【0056】即ち、吸気管2内を流れる空気の流速は図
4に示す如く、吸気弁(図示せず)の開,閉弁に応じて
増,減速を繰返し脈動する。そして、例えばエンジンの
中速域では吸気弁と排気弁(図示せず)とがオーバラッ
プし、排気の一部が吸気弁の開弁に伴って吸気管2内に
吹返すことがあるため、このときに吸気管2内では図4
中の時間t1 ,t2 間のように流速が負(マイナス)と
なって、逆方向(矢示B方向)に流れる空気流が発生す
る。
That is, as shown in FIG. 4, the flow velocity of the air flowing through the intake pipe 2 repeatedly pulsates by increasing and decreasing in response to opening and closing of the intake valve (not shown). Then, for example, in the middle speed range of the engine, the intake valve and the exhaust valve (not shown) overlap each other, and a part of the exhaust gas may blow back into the intake pipe 2 as the intake valve opens. At this time, as shown in FIG.
The flow velocity becomes negative (minus) such as between the times t1 and t2 in the middle, and an air flow flowing in the opposite direction (the direction of arrow B) is generated.

【0057】この場合、吸気管2内の空気流が順方向
(矢示A方向)のときには前記接続点cの電圧レベルが
接続点dよりも大きくなるから、比較器42の出力信号
は図4に示すように電圧V0 (ON状態)となって選択
回路44に出力される。一方、空気流が逆方向(矢示B
方向)のときには接続点dの電圧レベルが接続点cより
も大きくなるから、比較器42の出力信号は電圧が実質
的に零レベル(OFF状態)となって選択回路44に出
力される。
In this case, when the air flow in the intake pipe 2 is in the forward direction (direction indicated by the arrow A), the voltage level at the connection point c becomes higher than the connection point d, so that the output signal of the comparator 42 is as shown in FIG. The voltage V0 (ON state) is output to the selection circuit 44 as shown in FIG. On the other hand, the air flow is in the opposite direction (arrow B
Direction), the voltage level at the connection point d becomes higher than that at the connection point c, so that the output signal of the comparator 42 is output to the selection circuit 44 when the voltage becomes substantially zero level (OFF state).

【0058】43は発熱抵抗体30、基準抵抗23間の
接続点aと選択回路44との間に設けられた反転回路を
示し、該反転回路43は発熱抵抗体30と基準抵抗23
との接続点aから取出される流量検出信号(基準抵抗2
3の両端電圧)を正の電圧信号から負の電圧信号に反転
させて選択回路44に出力するものである。
Reference numeral 43 represents an inverting circuit provided between the selection circuit 44 and the connection point a between the heating resistor 30 and the reference resistor 23. The inverting circuit 43 is provided in the inverting circuit 43.
Flow rate detection signal (reference resistance 2
3) is inverted from a positive voltage signal to a negative voltage signal and output to the selection circuit 44.

【0059】さらに、44は反転回路43等と共に流量
信号出力手段を構成した選択回路を示し、該選択回路4
4はその入力側が前記接続点a、反転回路43および比
較器42に接続され、その出力端子45は外部のコント
ロールユニット(図示せず)等に接続される。そして、
比較器42からの出力信号がON状態のときには、吸気
管2内の空気流が順方向であるので、選択回路44は接
続点aからの流量検出信号(基準抵抗23の両端電圧)
を正の電圧信号としてそのまま出力端子45に出力させ
る。一方、比較器42からの出力信号がOFF状態のと
きには、吸気管2内の空気流が逆方向であるので、選択
回路44は接続点aからの流量検出信号を反転回路43
で負の電圧信号に反転させた状態で出力端子45に出力
させるものである。
Further, reference numeral 44 denotes a selection circuit which constitutes flow rate signal output means together with the inverting circuit 43 and the like.
The input side of 4 is connected to the connection point a, the inverting circuit 43 and the comparator 42, and its output terminal 45 is connected to an external control unit (not shown) or the like. And
When the output signal from the comparator 42 is in the ON state, since the air flow in the intake pipe 2 is in the forward direction, the selection circuit 44 causes the selection circuit 44 to detect the flow rate from the connection point a (voltage across the reference resistor 23).
Is output to the output terminal 45 as it is as a positive voltage signal. On the other hand, when the output signal from the comparator 42 is in the OFF state, the air flow in the intake pipe 2 is in the opposite direction, and therefore the selection circuit 44 inverts the flow rate detection signal from the connection point a.
Then, the signal is output to the output terminal 45 in the state of being inverted to the negative voltage signal.

【0060】本実施例による熱式空気流量検出装置21
は上述の如き構成を有するもので、次に吸気管2内を流
れる吸入空気の流量検出動作について説明する。
Thermal air flow rate detection device 21 according to the present embodiment
Has a configuration as described above. Next, a flow rate detecting operation of the intake air flowing through the intake pipe 2 will be described.

【0061】まず、エンジン本体の始動と同時に直流電
源36から電流制御用トランジスタ37を介して発熱抵
抗体30、感温抵抗体31,32および温度補償抵抗3
3に電圧を印加し、発熱抵抗体30を240℃前,後の
温度で発熱させると共に、該発熱抵抗体30からの熱で
絶縁基板28の主基板部28Aを介して感温抵抗体3
1,32を加温(加熱)する。
First, at the same time when the engine body is started, the heat generating resistor 30, the temperature sensitive resistors 31, 32 and the temperature compensating resistor 3 are supplied from the DC power source 36 via the current controlling transistor 37.
3 is applied to heat the heat generating resistor 30 at temperatures before and after 240 ° C., and the heat from the heat generating resistor 30 is applied to the temperature sensitive resistor 3 via the main substrate portion 28A of the insulating substrate 28.
1, 32 are heated (heated).

【0062】そして、この状態で吸気管2内を吸入空気
が図1に示す矢示A方向(順方向)に流れるときには、
流量計本体22の検出ホルダ26に絶縁基板28を介し
て取付けた発熱抵抗体30と上流側の感温抵抗体31と
が、このとき空気流によって冷却されるため、発熱抵抗
体30の抵抗値RH と感温抵抗体31の抵抗値RT1とが
吸入空気の流速に対応して減少し、図3に示す接続点a
の電圧レベルが上昇すると共に、接続点cの電圧レベル
が接続点dよりも大きくなり、接続点cの電圧レベルに
対応した出力電圧が比較器40から差動増幅器41に出
力される。
In this state, when the intake air flows in the intake pipe 2 in the direction of arrow A (forward direction) shown in FIG.
Since the heating resistor 30 attached to the detection holder 26 of the flowmeter main body 22 via the insulating substrate 28 and the temperature-sensitive resistor 31 on the upstream side are cooled by the airflow at this time, the resistance value of the heating resistor 30 is reduced. RH and the resistance value RT1 of the temperature sensitive resistor 31 decrease corresponding to the flow velocity of the intake air, and the connection point a shown in FIG.
As the voltage level of the connection point c increases, the voltage level of the connection point c becomes larger than the connection point d, and the output voltage corresponding to the voltage level of the connection point c is output from the comparator 40 to the differential amplifier 41.

【0063】この結果、比較器40の出力電圧は接続点
bの電圧レベルよりも大きくなり、差動増幅器41は比
較器40の出力端子と接続点bとの電位差に基づいて、
直流電源36から発熱抵抗体30、感温抵抗体31,3
2および温度補償抵抗33に印加(給電)する電流を電
流制御用トランジスタ37を介して制御させる。これに
より、発熱抵抗体30および感温抵抗体31には感温抵
抗体32および温度補償抵抗33に比較して大きな電流
が供給されるから、発熱抵抗体30がこれによって再び
240℃に近い温度で発熱するようになり、該発熱抵抗
体30からの熱で感温抵抗体31が絶縁基板28を介し
て加熱される。この場合、感温抵抗体32は感温抵抗体
31に比較して高い温度状態にあるから、発熱抵抗体3
0からの熱は実質的に感温抵抗体31側に伝わることに
なる。
As a result, the output voltage of the comparator 40 becomes higher than the voltage level of the connection point b, and the differential amplifier 41 determines, based on the potential difference between the output terminal of the comparator 40 and the connection point b.
From the DC power supply 36 to the heating resistor 30, the temperature sensitive resistors 31 and 3
2 and the current applied to the temperature compensation resistor 33 (power supply) are controlled via the current control transistor 37. As a result, a larger current is supplied to the heating resistor 30 and the temperature sensitive resistor 31 as compared with the temperature sensitive resistor 32 and the temperature compensation resistor 33, so that the temperature of the heating resistor 30 again approaches 240 ° C. The heat-sensitive resistor 31 is heated by the heat from the heat-generating resistor 30 via the insulating substrate 28. In this case, since the temperature sensitive resistor 32 is in a higher temperature state than the temperature sensitive resistor 31, the heating resistor 3
The heat from 0 is substantially transmitted to the temperature sensitive resistor 31 side.

【0064】そして、このときには発熱抵抗体30およ
び基準抵抗23に供給される電流に応じて接続点aの電
圧レベルが上昇し、これは吸気管2内を流れる吸入空気
の流量に対応して増減するので、接続点aからの流量検
出信号(基準抵抗23の両端電圧)を選択回路44で正
の電圧信号としてそのまま出力端子45に出力させ、こ
のときの出力電圧Vout によって吸入空気の流量を検出
する。
At this time, the voltage level at the connection point a rises according to the current supplied to the heating resistor 30 and the reference resistor 23, which increases or decreases in accordance with the flow rate of the intake air flowing through the intake pipe 2. Therefore, the flow rate detection signal (voltage across the reference resistor 23) from the connection point a is output as it is to the output terminal 45 as a positive voltage signal by the selection circuit 44, and the flow rate of the intake air is detected by the output voltage Vout at this time. To do.

【0065】一方、吸気管2内に矢示B方向の逆流が発
生したときには、この逆方向の空気流に対して発熱抵抗
体30よりも上流側となる感温抵抗体32がこの逆方向
の空気流によって発熱抵抗体30と共に冷却される。そ
して、該感温抵抗体32の抵抗値RT2が大幅に減少する
のに対し、下流側となる感温抵抗体31の抵抗値RT1は
ほとんど変化することはないから、接続点dの電圧レベ
ルが接続点cよりも大きくなって、接続点dの電圧レベ
ルに対応した出力電圧が比較器40から差動増幅器41
に出力される。
On the other hand, when a backflow in the direction of the arrow B occurs in the intake pipe 2, the temperature sensitive resistor 32, which is on the upstream side of the heat generating resistor 30 with respect to the airflow in the opposite direction, is in the opposite direction. It is cooled together with the heating resistor 30 by the air flow. The resistance value RT2 of the temperature-sensitive resistor 32 is greatly reduced, whereas the resistance value RT1 of the temperature-sensitive resistor 31 on the downstream side hardly changes. Therefore, the voltage level at the connection point d is The output voltage corresponding to the voltage level at the connection point d becomes larger than that at the connection point c, and the output voltage corresponding to the voltage level at the connection point d changes from the comparator 40 to the differential amplifier 41.
Is output to.

【0066】この結果、差動増幅器41が比較器40の
出力端子と接続点bとの電位差に基づいて、直流電源3
6から発熱抵抗体30、感温抵抗体31,32および温
度補償抵抗33に印加(給電)する電流を電流制御用ト
ランジスタ37を介して制御させるから、発熱抵抗体3
0がこれによって再び240℃前,後の温度まで発熱
し、該発熱抵抗体30からの熱で感温抵抗体32を絶縁
基板28を介して加熱させる。
As a result, the differential amplifier 41 determines that the DC power supply 3 is based on the potential difference between the output terminal of the comparator 40 and the connection point b.
6 controls the current applied to (power-supplied to) the heating resistor 30, the temperature sensitive resistors 31 and 32, and the temperature compensation resistor 33 via the current control transistor 37.
As a result, 0 again generates heat up to a temperature of 240 ° C. before and after 240 ° C., and heat from the heat generating resistor 30 heats the temperature sensitive resistor 32 via the insulating substrate 28.

【0067】そして、この場合には、逆方向(矢示B方
向)の空気流によって接続点dの電圧レベルが接続点c
よりも大きくなり、比較器42の出力信号は図4に示す
時間t1 ,t2 間の如く電圧が実質的に零レベル(OF
F状態)となって選択回路44に出力されるから、該選
択回路44は接続点aからの流量検出信号を反転回路4
3で負の電圧信号に反転させた状態で出力端子45に出
力させ、このときの出力電圧Vout を負(マイナス)の
値とすることによって逆方向の空気流量を検出すること
ができる。
Then, in this case, the voltage level at the connection point d is changed to the connection point c by the air flow in the opposite direction (the direction of arrow B).
The output signal of the comparator 42 has a voltage of substantially zero level (OF) between the times t1 and t2 shown in FIG.
Since the F state) is output to the selection circuit 44, the selection circuit 44 outputs the flow rate detection signal from the connection point a to the inversion circuit 4.
The reverse air flow rate can be detected by causing the output voltage to be output to the output terminal 45 in the state of being inverted to a negative voltage signal at 3 and setting the output voltage Vout at this time to a negative value.

【0068】而して、本実施例によれば、吸気管2内に
突出させて設けた流量計本体22の検出ホルダ26に絶
縁基板28の基端側を着脱可能に取付け、該絶縁基板2
8を先端側から基端側に向けて延びるスリット29によ
って主基板部28Aと副基板部28Bとに空気の流れ方
向で分離させると共に、絶縁基板28上には、クランク
形状をなして絶縁基板28の長さ方向に延びる発熱抵抗
体30と、該発熱抵抗体30の前,後に離間して該発熱
抵抗体30の延長抵抗部30B,30Cと平行に延びる
第1,第2の感温抵抗体31,32とを着膜形成する構
成としたから、下記のような作用効果を得ることができ
る。
Thus, according to the present embodiment, the base end side of the insulating substrate 28 is detachably attached to the detection holder 26 of the flowmeter body 22 which is provided so as to project into the intake pipe 2, and the insulating substrate 2 is attached.
8 is divided into a main board portion 28A and a sub-board portion 28B in the air flow direction by a slit 29 extending from the front end side to the base end side, and a crank shape is formed on the insulating board 28 to form the insulating board 28. Of the heating resistor 30 extending in the length direction of the heating resistor, and first and second temperature-sensitive resistors spaced apart in front of and behind the heating resistor 30 and extending in parallel with the extension resistance portions 30B and 30C of the heating resistor 30. Since 31 and 32 are configured to form a film, the following operational effects can be obtained.

【0069】即ち、外部の直流電源36から電流制御用
トランジスタ37を介して発熱抵抗体30に電流を印加
することにより、該発熱抵抗体30を240℃前,後の
温度をもって発熱させたときには、該発熱抵抗体30か
らの熱が絶縁基板28を介して第1,第2の感温抵抗体
31,32に伝わり、該感温抵抗体31,32を所要温
度まで加熱することができる。
That is, when a current is applied to the heat generating resistor 30 from the external DC power source 36 through the current controlling transistor 37 to heat the heat generating resistor 30 at a temperature of 240 ° C. before and after, The heat from the heating resistor 30 is transmitted to the first and second temperature sensitive resistors 31 and 32 through the insulating substrate 28, and the temperature sensitive resistors 31 and 32 can be heated to a required temperature.

【0070】そして、この状態で吸気管2内に吸入空気
等の空気流が発生すると、感温抵抗体31,32のう
ち、このときの空気流に対して上流側に位置する感温抵
抗体31(32)が、下流側の感温抵抗体32(31)
よりも空気流によって大きく冷却されるから、該感温抵
抗体31,32の抵抗値RT1,RT2に差が生じ、該感温
抵抗体31,32間の抵抗値RT1,RT2の差に基づいて
このときの空気流が順方向であるか、逆方向であるかを
確実に検出することができる。
When an air flow such as intake air is generated in the intake pipe 2 in this state, one of the temperature sensitive resistors 31 and 32 located upstream of the air flow at this time. 31 (32) is the temperature-sensitive resistor 32 (31) on the downstream side.
Since it is cooled by the air flow more than that, a difference occurs in the resistance values RT1 and RT2 of the temperature sensitive resistors 31 and 32, and based on the difference in the resistance values RT1 and RT2 between the temperature sensitive resistors 31 and 32. It is possible to reliably detect whether the air flow at this time is the forward direction or the reverse direction.

【0071】また、このときの空気流によって発熱抵抗
体30が冷却され、該発熱抵抗体30の抵抗値RH は空
気の流量に対応して変化するので、図3に示す基準抵抗
23と発熱抵抗体30との接続点aから基準抵抗23の
両端電圧を流量検出信号として取出すことができ、これ
を選択回路44で正または負の電圧信号として出力端子
45から出力させることにより、このときの出力電圧V
out に基づき空気の流量を正確に検出できる。
Further, since the heating resistor 30 is cooled by the air flow at this time and the resistance value RH of the heating resistor 30 changes in accordance with the flow rate of air, the reference resistor 23 and the heating resistor shown in FIG. The voltage across the reference resistor 23 can be taken out as a flow rate detection signal from the connection point a with the body 30 and is output from the output terminal 45 as a positive or negative voltage signal by the selection circuit 44, whereby the output at this time is output. Voltage V
The flow rate of air can be accurately detected based on out.

【0072】一方、絶縁基板28の主基板部28A上に
形成する発熱抵抗体30を、主基板部28Aの長さ方向
中間部に位置して幅方向に延びる中間抵抗部30Aと、
該中間抵抗部30Aから主基板部28Aの長さ方向に互
いに逆向きに延びる第1,第2の延長抵抗部30B,3
0Cとから構成し、さらに主基板部28A上には該延長
抵抗部30B,30Cに沿って平行に延びるように第
1,第2の感温抵抗体31,32を着膜形成したから、
主基板部28Aの限られた表面スペースを有効に利用し
て発熱抵抗体30および第1,第2の感温抵抗体31,
32をコンパクトに形成でき、発熱抵抗体30の表面積
(実装面積)を可能な限り大きくすることができる。
On the other hand, the heating resistor 30 formed on the main substrate portion 28A of the insulating substrate 28 is provided with an intermediate resistance portion 30A which is located at an intermediate portion in the length direction of the main substrate portion 28A and extends in the width direction.
First and second extension resistance portions 30B and 3 extending from the intermediate resistance portion 30A in opposite directions in the length direction of the main substrate portion 28A.
0C, and the first and second temperature sensitive resistors 31 and 32 are formed on the main substrate portion 28A so as to extend in parallel along the extension resistance portions 30B and 30C.
By effectively utilizing the limited surface space of the main board portion 28A, the heating resistor 30 and the first and second temperature sensitive resistors 31,
32 can be formed compactly, and the surface area (mounting area) of the heating resistor 30 can be increased as much as possible.

【0073】この結果、吸気管2内を流れる空気流に対
して発熱抵抗体30および感温抵抗体31,32の接触
面積を大きく取ることができ、これらの抵抗値RH ,R
T1,RT2を空気流に対して敏感に高い応答性をもって変
化させることができる。
As a result, the contact area of the heat generating resistor 30 and the temperature sensitive resistors 31, 32 can be made large with respect to the air flow flowing in the intake pipe 2, and the resistance values RH, R of these can be obtained.
T1 and RT2 can be changed sensitively and highly responsive to the air flow.

【0074】さらに、絶縁基板28の主基板部28Aと
副基板部28Bとの間には先端側から基端側に向けて延
びるスリット29を形成することによって、主基板部2
8Aと副基板部28Bとを空気の流れ方向で離間させる
と共に、副基板部28B上には温度補償抵抗33を形成
しているから、単一の絶縁基板28上に発熱抵抗体30
および感温抵抗体31,32と共に温度補償抵抗33を
着膜形成でき、部品点数を削減することができる。そし
て、発熱抵抗体30で加熱される主基板部28Aから副
基板部28Bに熱が逃げるのをスリット29によって防
止でき、主基板部28Aを早期に温度上昇させることが
できる。
Further, by forming a slit 29 extending from the front end side toward the base end side between the main board portion 28A and the sub-board portion 28B of the insulating board 28, the main board portion 2 is formed.
8A and the sub-board portion 28B are separated from each other in the air flow direction, and the temperature compensating resistor 33 is formed on the sub-board portion 28B. Therefore, the heating resistor 30 is formed on the single insulating substrate 28.
Further, the temperature compensating resistor 33 can be formed as a film together with the temperature sensitive resistors 31 and 32, and the number of parts can be reduced. The slit 29 can prevent heat from escaping from the main board portion 28A heated by the heating resistor 30 to the sub-board portion 28B, and the temperature of the main board portion 28A can be raised early.

【0075】従って、本実施例によれば、吸気管2内を
流れる吸入空気の流量を発熱抵抗体30の抵抗値RH に
基づき確実に検出できると共に、感温抵抗体31,32
間の抵抗値RT1,RT2の差に基づいて空気の流れ方向を
確実に検出でき、エンジンの中速域等で吸気管2内に排
気が吹返して逆流が生じるようなときでも、吸入空気の
流量を高精度に検出することができる。
Therefore, according to this embodiment, the flow rate of the intake air flowing through the intake pipe 2 can be reliably detected based on the resistance value RH of the heating resistor 30, and the temperature sensitive resistors 31, 32 can be detected.
The flow direction of the air can be reliably detected based on the difference between the resistance values RT1 and RT2 between the intake air and the intake air even when the exhaust gas is blown back into the intake pipe 2 in the middle speed range of the engine or the like to cause backflow. The flow rate can be detected with high accuracy.

【0076】次に、図5および図6は本発明の第2の実
施例を示し、本実施例の特徴は、絶縁基板上に形成する
第1,第2の感温抵抗体を、発熱抵抗体に対応する抵抗
率をもった抵抗体材料により形成し、該発熱抵抗体と共
に第1,第2の感温抵抗体を外部からの電圧印加によっ
て発熱させる構成としたことにある。なお、本実施例で
は前記第1の実施例と同一の構成要素に同一の符号を付
し、その説明を省略するものとする。
Next, FIGS. 5 and 6 show a second embodiment of the present invention. The feature of this embodiment is that the first and second temperature sensitive resistors formed on the insulating substrate are connected to the heating resistors. The structure is made of a resistor material having a resistivity corresponding to the body, and the first and second temperature sensitive resistors together with the heat generating resistor are made to generate heat by applying a voltage from the outside. In this embodiment, the same components as those of the first embodiment are designated by the same reference numerals and the description thereof will be omitted.

【0077】図中、51は本実施例による絶縁基板を示
し、該絶縁基板51は前記第1の実施例で述べた絶縁基
板28とほぼ同様に、基端側が検出ホルダ26のスロッ
トに着脱可能に取付けられる固定端となり、先端側が自
由端となっている。しかし、該絶縁基板51は、例えば
ガラス、酸化アルミニウム(アルミナ)または窒化アル
ミニウム等の絶縁性材料により長方形の平板状に形成さ
れ、長さ寸法が15〜20mm前,後となり、幅寸法が3
〜5mm前,後となっている。
In the figure, reference numeral 51 denotes an insulating substrate according to the present embodiment, and the insulating substrate 51 can be attached / detached to / from the slot of the detection holder 26 on the base end side thereof in substantially the same manner as the insulating substrate 28 described in the first embodiment. It is a fixed end that is attached to, and the free end is on the tip side. However, the insulating substrate 51 is formed of an insulating material such as glass, aluminum oxide (alumina), or aluminum nitride into a rectangular flat plate shape, and has a length dimension of 15 to 20 mm before and after and a width dimension of 3 mm.
~ 5mm before and after.

【0078】52は絶縁基板51上に形成された発熱抵
抗を構成する発熱抵抗体を示し、該発熱抵抗体52は前
記第1の実施例で述べた発熱抵抗体30とほぼ同様に、
プリント印刷またはスパッタリング等の手段を用いて絶
縁基板51上に白金膜を着膜させることにより形成さ
れ、絶縁基板51の長さ方向中間部に位置して幅方向に
延びた中間抵抗部52Aと、該中間抵抗部52Aの両端
側から絶縁基板51の長さ方向に互いに逆向きに延びた
第1,第2の延長抵抗部52B,52Cとから構成され
ている。
Reference numeral 52 denotes a heating resistor forming a heating resistor formed on the insulating substrate 51. The heating resistor 52 is substantially the same as the heating resistor 30 described in the first embodiment.
An intermediate resistance portion 52A which is formed by depositing a platinum film on the insulating substrate 51 using a means such as print printing or sputtering, and which is located at an intermediate portion in the length direction of the insulating substrate 51 and extends in the width direction; The intermediate resistance portion 52A is composed of first and second extension resistance portions 52B and 52C extending in opposite directions in the length direction of the insulating substrate 51 from both ends thereof.

【0079】ここで、該発熱抵抗体52の中間抵抗部5
2Aおよび延長抵抗部52B,52Cは全体としてクラ
ンク形状をなすことによって、絶縁基板51上に発熱抵
抗体52および後述の感温抵抗体53,54をコンパク
トに形成すると共に、発熱抵抗体52の表面積(実装面
積)を可及的に増大させ、例えば吸気管2内を矢示A方
向に流れる吸入空気との接触面積を大きくできるように
なっている。
Here, the intermediate resistance portion 5 of the heating resistor 52.
2A and the extension resistance portions 52B and 52C are formed into a crank shape as a whole to compactly form the heat generating resistor 52 and the temperature sensitive resistors 53 and 54, which will be described later, on the insulating substrate 51, and the surface area of the heat generating resistor 52. (Mounting area) can be increased as much as possible, and for example, the contact area with the intake air flowing in the intake pipe 2 in the direction of arrow A can be increased.

【0080】また、該発熱抵抗体52は図6に示す如く
抵抗値R1 の基準抵抗23を介してアースに接続され、
該発熱抵抗体52は従来技術で述べた発熱抵抗9とほぼ
同様に外部からの通電により、例えば240℃前,後の
温度もって発熱する。そして、吸気管2内の空気流で該
発熱抵抗体52が冷却されるときには、空気の流量に対
応して発熱抵抗体52の抵抗値RH が変化するので、図
6に示す基準抵抗23と発熱抵抗体52との接続点aか
ら基準抵抗23の両端電圧を流量検出信号として取出す
ことができる。
The heating resistor 52 is connected to the ground via the reference resistor 23 having a resistance value R1 as shown in FIG.
The heating resistor 52 generates heat at a temperature of, for example, 240 ° C. before and after being energized from the outside, in substantially the same manner as the heating resistor 9 described in the prior art. When the heating resistor 52 is cooled by the airflow in the intake pipe 2, the resistance value RH of the heating resistor 52 changes in accordance with the flow rate of air, so that the reference resistor 23 and the heat generation shown in FIG. The voltage across the reference resistor 23 can be taken out as a flow rate detection signal from the connection point a with the resistor 52.

【0081】53,54は発熱抵抗体52と共に絶縁基
板51上に形成された第1,第2の感温抵抗体を示し、
該感温抵抗体53,54は発熱抵抗体52と同様に白金
膜をプリント印刷またはスパッタリング等の手段で着膜
させることによって形成され、例えば吸気管2内を矢示
A方向に流れる吸入空気の流れ方向(絶縁基板51の幅
方向)に対し発熱抵抗体52の前,後に離間して絶縁基
板51上に配設されている。
Reference numerals 53 and 54 denote first and second temperature sensitive resistors formed on the insulating substrate 51 together with the heating resistor 52.
The temperature-sensitive resistors 53 and 54 are formed by depositing a platinum film by means such as print printing or sputtering like the heat-generating resistor 52. For example, the intake air flowing in the intake pipe 2 in the direction of arrow A They are arranged on the insulating substrate 51 in front of and behind the heating resistor 52 with respect to the flow direction (width direction of the insulating substrate 51).

【0082】ここで、第1の感温抵抗体53は発熱抵抗
体52の中間抵抗部52Aと延長抵抗部52Bとの間に
位置し、該延長抵抗部52Bと平行に延びるように長方
形状に形成されている。また、第2の感温抵抗体54は
中間抵抗部52Aと延長抵抗部52Cとの間に位置し、
該延長抵抗部52Cと平行に延びるように長方形状に形
成されている。そして、感温抵抗体53,54は絶縁基
板51上で実質的に均等な面積をもって形成され、発熱
抵抗体52と共に外部から通電されることにより、互い
に等しい所定温度(発熱抵抗体52よりも低い)をもっ
て発熱し、実質的に等しい抵抗値RT1,RT2を有してい
る。
Here, the first temperature sensitive resistor 53 is located between the intermediate resistance portion 52A and the extension resistance portion 52B of the heating resistor 52, and has a rectangular shape so as to extend in parallel with the extension resistance portion 52B. Has been formed. The second temperature sensitive resistor 54 is located between the intermediate resistance portion 52A and the extension resistance portion 52C,
It is formed in a rectangular shape so as to extend parallel to the extension resistance portion 52C. The temperature sensitive resistors 53 and 54 are formed on the insulating substrate 51 with substantially equal areas, and are energized from the outside together with the heat generating resistor 52 so that they have a predetermined temperature (lower than the heat generating resistor 52). ) And generate substantially the same resistance values RT1 and RT2.

【0083】そして、該感温抵抗体53,54はこの状
態で、吸気管2内を流れる矢示A,B方向の空気に接触
したときに、この空気流で冷却されることによってそれ
ぞれの抵抗値RT1,RT2が変化する。即ち、吸気管2内
を矢示A方向(順方向)に吸入空気が流れるときには、
発熱抵抗体52よりも上流側に位置する感温抵抗体53
がこの空気流によって大きく冷却され、該感温抵抗体5
3の抵抗値RT1は大幅に減少する。これに対して、下流
側の感温抵抗体54は発熱抵抗体52からの熱で暖めら
れた後の空気流に接触するから、感温抵抗体54はそれ
程冷却されることはなく、該感温抵抗体54の抵抗値R
T2はほとんど変化しない。
When the temperature-sensitive resistors 53 and 54 come into contact with the air flowing in the intake pipe 2 in the directions A and B in this state, the temperature-sensitive resistors 53 and 54 are cooled by the air flow to generate their respective resistances. The values RT1 and RT2 change. That is, when the intake air flows in the intake pipe 2 in the direction of arrow A (forward direction),
Temperature-sensitive resistor 53 located upstream of the heating resistor 52
Are greatly cooled by this air flow, and the temperature sensitive resistor 5
The resistance value RT1 of 3 is greatly reduced. On the other hand, since the temperature-sensitive resistor 54 on the downstream side comes into contact with the air flow after being heated by the heat from the heat-generating resistor 52, the temperature-sensitive resistor 54 is not cooled so much and the temperature-sensitive resistor 54 is not cooled. Resistance value R of the temperature resistor 54
T2 hardly changes.

【0084】一方、吸気管2内を矢示B方向(逆方向)
に空気が流れるときには、発熱抵抗体52よりも上流側
に位置する感温抵抗体54がこの逆方向の空気流によっ
て大きく冷却され、該感温抵抗体54の抵抗値RT2が大
幅に減少するのに対し、下流側となる感温抵抗体53の
抵抗値RT1はほとんど変化することはない。従って、感
温抵抗体53,54間の抵抗値RT1,RT2の差に基づい
て空気流が順方向であるか、逆方向であるかを判別する
ことができる。
On the other hand, the inside of the intake pipe 2 is in the direction of arrow B (reverse direction).
When the air flows into the temperature sensitive resistor 54, the temperature sensitive resistor 54 located upstream of the heat generating resistor 52 is greatly cooled by the air flow in the opposite direction, and the resistance value RT2 of the temperature sensitive resistor 54 is significantly reduced. On the other hand, the resistance value RT1 of the temperature-sensitive resistor 53 on the downstream side hardly changes. Therefore, it is possible to determine whether the air flow is in the forward direction or the reverse direction based on the difference between the resistance values RT1 and RT2 between the temperature sensitive resistors 53 and 54.

【0085】55,55,…は絶縁基板51の基端側に
形成された例えば5個の電極を示し、該各電極55は絶
縁基板51の幅方向に所定間隔をもって列設され、絶縁
基板51の基端側を前記検出ホルダ26のスロット内に
差込むことにより、該検出ホルダ26側の各ターミナル
(図示せず)に接続される。そして、各電極55はこの
ときに前記発熱抵抗体52および第1,第2の感温抵抗
体53,54を図6に示す電流制御用トランジスタ37
のエミッタ側とアースとの間に接続し、これらの発熱抵
抗体52および感温抵抗体53,54等は回路ケーシン
グ27内に設けた各電子部品と共に図6に示す流量検出
用の処理回路を構成する。
Reference numerals 55, 55, ... Depict, for example, five electrodes formed on the base end side of the insulating substrate 51. The electrodes 55 are arranged in a row in the width direction of the insulating substrate 51 at predetermined intervals. By inserting the base end side of the above into the slot of the detection holder 26, it is connected to each terminal (not shown) on the side of the detection holder 26. At this time, each electrode 55 has the heating resistor 52 and the first and second temperature sensitive resistors 53 and 54 shown in FIG.
Of the heat generating resistor 52 and the temperature sensitive resistors 53, 54, etc. are connected with the electronic parts provided in the circuit casing 27 together with the processing circuit for flow rate detection shown in FIG. Constitute.

【0086】56は温度補償抵抗を示し、該温度補償抵
抗56は従来技術で述べた温度補償抵抗11とほぼ同様
に構成され、絶縁基板51とは別の絶縁基板(図示せ
ず)上にプリント印刷またはスパッタリング等の手段を
用いて白金膜を着膜させることにより形成されている。
そして、該温度補償抵抗56は発熱抵抗体52よりも大
きい抵抗値RK を有し、前記第1の実施例で述べた温度
補償抵抗33と同様に抵抗値R2 の流量調整抵抗34を
介してアースに接続されている(図6参照)。また、温
度補償抵抗56と流量調整抵抗34との接続点bは差動
増幅器41の反転入力端子に接続されている。
Reference numeral 56 denotes a temperature compensating resistor. The temperature compensating resistor 56 has substantially the same structure as the temperature compensating resistor 11 described in the prior art, and is printed on an insulating substrate (not shown) different from the insulating substrate 51. It is formed by depositing a platinum film using a means such as printing or sputtering.
The temperature compensating resistor 56 has a resistance value RK larger than that of the heat generating resistor 52, and is grounded via the flow rate adjusting resistor 34 having a resistance value R2 like the temperature compensating resistor 33 described in the first embodiment. (See FIG. 6). The connection point b between the temperature compensation resistor 56 and the flow rate adjustment resistor 34 is connected to the inverting input terminal of the differential amplifier 41.

【0087】かくして、このように構成される本実施例
でも、前記第1の実施例とほぼ同様の作用効果を得るこ
とができるが、特に本実施例では、第1,第2の感温抵
抗体53,54を発熱抵抗体52に対応する抵抗率をも
った抵抗体材料によって形成し、感温抵抗体53,54
を発熱抵抗体52と共に外部からの電圧印加により発熱
させる構成としたから、エンジンの始動時に感温抵抗体
53,54を発熱させて所定温度まで早期に加熱するこ
とができ、発熱抵抗体52の温度上昇を促進できると共
に、空気の流量や流れ方向を検出するときの応答性を効
果的に向上させることができる。
Thus, in this embodiment having such a structure, it is possible to obtain substantially the same operational effects as in the first embodiment, but particularly in this embodiment, the first and second temperature-sensitive resistors are provided. The bodies 53 and 54 are made of a resistor material having a resistivity corresponding to that of the heating resistor 52, and the temperature sensitive resistors 53 and 54 are formed.
Since the heat generating resistor 52 and the heat generating resistor 52 are configured to generate heat by applying a voltage from the outside, the temperature sensitive resistors 53 and 54 can be caused to generate heat at the start of the engine and can be quickly heated to a predetermined temperature. The temperature rise can be promoted, and the responsiveness when detecting the flow rate and flow direction of air can be effectively improved.

【0088】なお、前記第2の実施例では、絶縁基板5
1上に発熱抵抗体52と感温抵抗体53,54とを形成
し、温度補償抵抗56を他の絶縁基板上に形成するもの
として述べたが、これに替えて、例えば第1の実施例で
述べた絶縁基板28の如く、絶縁基板51を主基板部と
副基板部とから構成し、主基板部上に発熱抵抗体52と
感温抵抗体53,54とを形成し、副基板部上に温度補
償抵抗56を形成するようにしてもよい。
In the second embodiment, the insulating substrate 5
Although the heating resistor 52 and the temperature sensitive resistors 53 and 54 are formed on the first substrate, and the temperature compensating resistor 56 is formed on another insulating substrate, the second embodiment is replaced with, for example, the first embodiment. Like the insulating substrate 28 described in 1., the insulating substrate 51 is composed of a main substrate portion and a sub substrate portion, and a heating resistor 52 and temperature sensitive resistors 53 and 54 are formed on the main substrate portion. You may make it form the temperature compensation resistance 56 on it.

【0089】また、前記第1の実施例で述べた絶縁基板
28についても必ずしも主基板部28Aと副基板部28
Bとから構成する必要はなく、第2の実施例で述べた絶
縁基板51のように、単一の絶縁基板上に発熱抵抗体3
0と感温抵抗体31,32とを形成し、温度補償抵抗3
3を他の絶縁基板上に形成するようにしてもよい。
Also, with respect to the insulating substrate 28 described in the first embodiment, the main substrate portion 28A and the sub substrate portion 28 are not always required.
B does not need to be configured, and the heating resistor 3 is formed on a single insulating substrate like the insulating substrate 51 described in the second embodiment.
0 and the temperature sensitive resistors 31 and 32 are formed, and the temperature compensation resistor 3
3 may be formed on another insulating substrate.

【0090】さらに、前記各実施例では、流量計本体2
2の巻線部24に巻回した基準抵抗23を吸気管2内に
突出させて設けるものとして述べたが、本発明はこれに
限らず、例えば吸気管2の外側に設ける回路ケーシング
27内に基準抵抗23を流量調整抵抗34等と共に配設
する構成としてもよい。
Further, in each of the above embodiments, the flowmeter main body 2
Although it has been described that the reference resistance 23 wound around the second winding portion 24 is provided so as to project into the intake pipe 2, the present invention is not limited to this. For example, the reference resistance 23 is provided inside the circuit casing 27 provided outside the intake pipe 2. The reference resistor 23 may be arranged together with the flow rate adjusting resistor 34 and the like.

【0091】[0091]

【発明の効果】以上詳述した通り本発明によれば、請求
項1に記載の如く、流量計本体に取付けられた絶縁基板
上に少なくとも長さ方向に膜状に延びた発熱抵抗体によ
って発熱抵抗を構成すると共に、この絶縁基板上には、
吸入空気の流れ方向に対し該発熱抵抗体の前,後に離間
して吸入空気の流れ方向に応じてそれぞれ抵抗値が変化
する第1,第2の感温抵抗体を設ける構成としたから、
第1の感温抵抗体が第2の感温抵抗体よりも抵抗値が小
さくなったときには、例えば空気の流れ方向を順方向と
して検出でき、第2の感温抵抗体が第1の感温抵抗体よ
りも抵抗値が小さくなるときには、空気の流れ方向を逆
方向として検出できる。従って、逆方向の空気流により
吸入空気流量を誤検出するのを防止でき、流量の検出精
度を向上できると共に、A/F制御の信頼性を確実に向
上させることができる。
As described in detail above, according to the present invention, as described in claim 1, heat is generated by the heating resistor extending in the form of a film at least in the length direction on the insulating substrate attached to the flowmeter main body. A resistor is formed, and on this insulating substrate,
Since the first and second temperature sensitive resistors which are separated from each other in front of and behind the heat generating resistor with respect to the flow direction of the intake air and whose resistance values change according to the flow direction of the intake air are provided,
When the resistance value of the first temperature-sensitive resistor becomes smaller than that of the second temperature-sensitive resistor, the flow direction of air can be detected as the forward direction, and the second temperature-sensitive resistor can detect the first temperature-sensitive resistor. When the resistance value is smaller than that of the resistor, the air flow direction can be detected as the reverse direction. Therefore, it is possible to prevent erroneous detection of the intake air flow rate due to the air flow in the opposite direction, improve the flow rate detection accuracy, and reliably improve the reliability of the A / F control.

【0092】また、請求項2の発明では、絶縁基板の限
られた表面スペースを有効に活用して発熱抵抗体および
第1,第2の感温抵抗体をコンパクトに形成でき、発熱
抵抗体の表面積(実装面積)を可能な限り大きくするこ
とができるから、吸気管内を流れる空気流に対して発熱
抵抗体および各感温抵抗体の接触面積を大きく取ること
ができ、これらの抵抗値を空気流に対して敏感に高い応
答性をもって変化させることができる。
Further, in the invention of claim 2, the heating resistor and the first and second temperature sensitive resistors can be compactly formed by effectively utilizing the limited surface space of the insulating substrate. Since the surface area (mounting area) can be made as large as possible, the contact area between the heating resistor and each temperature sensitive resistor can be set large for the air flow flowing in the intake pipe, and these resistance values can It can be sensitively and highly responsive to flow.

【0093】さらに、請求項3の発明では、発熱抵抗体
および各感温抵抗体と共に温度補償抵抗を単一の絶縁基
板上に着膜形成でき、部品点数を削減することができ
る。そして、温度補償抵抗が形成される副基板部と前記
発熱抵抗体および各感温抵抗体が形成される主基板部と
の間にスリットを形成することにより、例えば発熱抵抗
体で加熱される主基板部から副基板部に熱が逃げるのを
防止でき、主基板部を早期に温度上昇させ、エンジン始
動時等の応答性を向上させることができる。
Further, according to the third aspect of the present invention, the temperature compensating resistor can be formed on the single insulating substrate together with the heating resistor and each temperature sensitive resistor, and the number of parts can be reduced. Then, by forming a slit between the sub-board portion on which the temperature compensation resistor is formed and the main substrate portion on which the heating resistor and each of the temperature-sensitive resistors are formed, for example, the main heating element is heated. It is possible to prevent heat from escaping from the substrate portion to the sub-substrate portion, raise the temperature of the main substrate portion early, and improve the responsiveness at the time of engine start.

【0094】さらにまた、請求項4の発明では、第1,
第2の感温抵抗体を発熱抵抗体からの熱で絶縁基板を介
して加熱しておくことにより、空気の流れ方向に応じて
第1,第2の感温抵抗体のいずれか一方を確実に冷却で
き、空気の流れ方向を効果的に検出できると共に、コス
トダウンを図ることが可能となる。
Furthermore, in the invention of claim 4,
By heating the second temperature-sensitive resistor with the heat from the heat-generating resistor via the insulating substrate, one of the first and second temperature-sensitive resistors can be surely set according to the flow direction of air. Therefore, the air flow direction can be effectively detected, and the cost can be reduced.

【0095】一方、請求項5の発明では、外部からの電
圧印加によって第1,第2の感温抵抗体を発熱抵抗体と
共に発熱させる構成としているから、エンジンの始動時
に各感温抵抗体を発熱させて所定温度まで早期に加熱す
ることができ、発熱抵抗体の温度上昇を促進できると共
に、空気の流量や流れ方向を検出するときの応答性を効
果的に向上させることができる。
On the other hand, in the fifth aspect of the invention, since the first and second temperature sensitive resistors are made to generate heat together with the heat generating resistors by voltage application from the outside, each of the temperature sensitive resistors is started when the engine is started. It is possible to generate heat and quickly heat to a predetermined temperature, accelerate the temperature rise of the heating resistor, and effectively improve the responsiveness when detecting the flow rate and flow direction of air.

【0096】また、請求項6の発明では、発熱抵抗体と
アースとの間に接続される基準抵抗の両端電圧から流量
検出信号を取出すと共に、前記第1,第2の感温抵抗体
の抵抗値に基づき空気の流れ方向を検出できるから、該
空気の流れ方向が順方向のときには前記流量検出信号を
そのまま正の電圧信号として出力でき、逆方向のときに
は反転させて負の電圧信号として出力することができ、
エンジンの中速域等で吸気管内に排気が吹返して逆流が
生じるようなときでも、吸入空気の流量を高精度に検出
することができる。
Further, in the invention of claim 6, the flow rate detection signal is taken out from the voltage across the reference resistor connected between the heating resistor and the ground, and the resistance of the first and second temperature sensitive resistors is obtained. Since the air flow direction can be detected based on the value, the flow rate detection signal can be directly output as a positive voltage signal when the air flow direction is a forward direction, and can be inverted and output as a negative voltage signal when the air flow direction is the reverse direction. It is possible,
The flow rate of the intake air can be detected with high accuracy even when the exhaust gas is blown back into the intake pipe and a reverse flow occurs in the middle speed range of the engine.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例による熱式空気流量検出
装置を吸気管に取付けた状態で示す縦断面図である。
FIG. 1 is a vertical sectional view showing a thermal air flow rate detecting device according to a first embodiment of the present invention in a state where it is attached to an intake pipe.

【図2】絶縁基板上に形成された発熱抵抗体、各感温抵
抗体および温度補償抵抗等を示す平面図である。
FIG. 2 is a plan view showing a heating resistor, each temperature-sensitive resistor, a temperature compensation resistor, etc. formed on an insulating substrate.

【図3】第1の実施例による熱式空気流量検出装置の回
路構成を示す回路図である。
FIG. 3 is a circuit diagram showing a circuit configuration of a thermal type air flow rate detecting device according to a first embodiment.

【図4】吸入空気の流速と比較器の出力信号との関係を
示す特性線図である。
FIG. 4 is a characteristic diagram showing a relationship between a flow velocity of intake air and an output signal of a comparator.

【図5】第2の実施例による絶縁基板上に形成された発
熱抵抗体および各感温抵抗体を示す平面図である。
FIG. 5 is a plan view showing a heating resistor and each temperature sensitive resistor formed on an insulating substrate according to a second embodiment.

【図6】第2の実施例による熱式空気流量検出装置の回
路構成を示す回路図である。
FIG. 6 is a circuit diagram showing a circuit configuration of a thermal type air flow rate detecting device according to a second embodiment.

【図7】従来技術による熱式空気流量検出装置を吸気管
に取付けた状態で示す縦断面図である。
FIG. 7 is a vertical cross-sectional view showing a conventional thermal air flow rate detection device attached to an intake pipe.

【図8】従来技術による流量計本体および発熱抵抗等を
示す斜視図である。
FIG. 8 is a perspective view showing a flowmeter main body, a heat generation resistance and the like according to a conventional technique.

【符号の説明】[Explanation of symbols]

2 吸気管 21 熱式空気流量検出装置 22 流量計本体 23 基準抵抗 24 巻線部 26 検出ホルダ 27 回路ケーシング 28,51 絶縁基板 28A 主基板部 28B 副基板部 29 スリット 30,52 発熱抵抗体 30A,52A 中間抵抗部 30B,30C,52B,52C 延長抵抗部 31,53 第1の感温抵抗体 32,54 第2の感温抵抗体 33,56 温度補償抵抗 34 流量調整抵抗 35,55 電極 36 直流電源 37 電流制御用トランジスタ 40,42 比較器 41 差動増幅器 43 反転回路 44 選択回路(流量信号出力手段) 2 Intake pipe 21 Thermal air flow detector 22 Flowmeter body 23 Reference resistance 24 Winding part 26 Detection holder 27 Circuit casing 28,51 Insulation board 28A Main board part 28B Sub-board part 29 Slit 30,52 Heating resistor 30A, 52A Intermediate resistance part 30B, 30C, 52B, 52C Extension resistance part 31, 53 First temperature-sensitive resistor 32, 54 Second temperature-sensitive resistor 33, 56 Temperature compensation resistance 34 Flow rate adjustment resistance 35, 55 Electrode 36 DC Power supply 37 Current control transistors 40, 42 Comparator 41 Differential amplifier 43 Inversion circuit 44 Selection circuit (flow rate signal output means)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 吸気管の途中に取付けられ、流量調整抵
抗および基準抵抗が設けられた流量計本体と、前記吸気
管内に位置して該流量計本体に設けられ、前記吸気管内
を流れる吸入空気によって冷却される発熱抵抗と、前記
吸入空気の温度変化を補償するための温度補償抵抗とか
らなる熱式空気流量検出装置において、前記発熱抵抗
は、前記流量計本体に取付けられた絶縁基板上に形成さ
れ、該絶縁基板の少なくとも長さ方向に膜状に延びた発
熱抵抗体によって構成し、かつ前記絶縁基板上には、前
記吸入空気の流れ方向に対し該発熱抵抗体の前,後に離
間して形成され、前記吸入空気の流れ方向に応じてそれ
ぞれ抵抗値が変化する第1,第2の感温抵抗体を設けた
ことを特徴とする熱式空気流量検出装置。
1. A flowmeter main body provided in the middle of an intake pipe, provided with a flow rate adjusting resistance and a reference resistance, and intake air which is provided in the flowmeter main body inside the intake pipe and flows in the intake pipe. In a thermal type air flow rate detecting device comprising a heat generating resistance cooled by a heat absorbing resistor and a temperature compensating resistor for compensating the temperature change of the intake air, the heat generating resistor is provided on an insulating substrate attached to the flow meter main body. The heating resistor is formed and extends in a film shape at least in the length direction of the insulating substrate, and is separated from the heating resistor on the insulating substrate with respect to the flow direction of the intake air. A thermal air flow rate detection device, comprising: first and second temperature-sensitive resistors that are formed according to the flow direction of the intake air.
【請求項2】 前記発熱抵抗体は、前記絶縁基板の長さ
方向中間部に位置して幅方向に延びた中間抵抗部と、該
中間抵抗部の両端側から前記絶縁基板の長さ方向に互い
に逆向きに延びた第1,第2の延長抵抗部とから形成
し、前記第1の感温抵抗体は該第1の延長抵抗部と中間
抵抗部との間に位置して該第1の延長抵抗部と平行に形
成し、かつ前記第2の感温抵抗体は前記第2の延長抵抗
部と中間抵抗部との間に位置して該第2の延長抵抗部と
平行に形成してなる請求項1に記載の熱式空気流量検出
装置。
2. The heating resistor has an intermediate resistance portion extending in the width direction at an intermediate portion in the length direction of the insulating substrate, and both ends of the intermediate resistance portion in the length direction of the insulating substrate. The first temperature sensitive resistor is formed between first and second extension resistance portions extending in directions opposite to each other, and the first temperature-sensitive resistor is located between the first extension resistance portion and the intermediate resistance portion. Is formed in parallel with the second extension resistance part, and the second temperature-sensitive resistor is formed between the second extension resistance part and the intermediate resistance part and is formed in parallel with the second extension resistance part. The thermal type air flow rate detection device according to claim 1.
【請求項3】 前記絶縁基板は、基端側が前記流量計本
体に取付けられる固定端となり先端側が自由端となった
主基板部と副基板部とから構成し、該副基板部と主基板
部との間には先端側から基端側に向けて延びるスリット
を形成すると共に、該副基板部は基端側で主基板部に一
体的に連結し、かつ該主基板部には前記発熱抵抗体およ
び第1,第2の感温抵抗体を着膜形成し、前記副基板部
には前記温度補償抵抗を着膜形成してなる請求項1また
は2に記載の熱式空気流量検出装置。
3. The insulating substrate is composed of a main substrate portion and a sub-substrate portion whose base end side is a fixed end attached to the flowmeter body and whose front end side is a free end. A slit extending from the front end side toward the base end side, and the sub-board portion is integrally connected to the main board portion at the base end side, and the main substrate portion has the heating resistor. 3. The thermal air flow rate detection device according to claim 1, wherein the body and the first and second temperature-sensitive resistors are formed into a film, and the temperature compensation resistance is formed into a film on the sub-board portion.
【請求項4】 前記第1,第2の感温抵抗体は発熱抵抗
体よりも大なる抵抗値をもった抵抗体材料により形成
し、該発熱抵抗体からの熱により絶縁基板を介して前記
第1,第2の感温抵抗体を加熱する構成としてなる請求
項1,2または3に記載の熱式空気流量検出装置。
4. The first and second temperature sensitive resistors are made of a resistor material having a resistance value larger than that of the heating resistor, and the heat from the heating resistor causes the heat to pass through the insulating substrate. The thermal air flow rate detecting device according to claim 1, wherein the first and second temperature sensitive resistors are heated.
【請求項5】 前記第1,第2の感温抵抗体は発熱抵抗
体に対応する抵抗率をもった抵抗体材料により形成し、
該発熱抵抗体と共に第1,第2の感温抵抗体を外部から
の電圧印加によって発熱させる構成としてなる請求項
1,2または3に記載の熱式空気流量検出装置。
5. The first and second temperature sensitive resistors are formed of a resistor material having a resistivity corresponding to that of the heat generating resistor,
4. The thermal air flow rate detection device according to claim 1, wherein the first and second temperature sensitive resistors together with the heating resistor are configured to generate heat by applying a voltage from the outside.
【請求項6】 前記発熱抵抗体は基準抵抗を介してアー
スに接続し、該基準抵抗の両端電圧を流量検出信号とし
て取出すと共に、前記第1,第2の感温抵抗体の抵抗値
に基づき吸入空気の流れ方向を検出し、該吸入空気の流
れ方向が順方向のときには前記流量検出信号をそのまま
出力し、逆方向のときには反転させて出力する流量信号
出力手段を備えてなる請求項1,2,3,4または5に
記載の熱式空気流量検出装置。
6. The heating resistor is connected to ground via a reference resistor, the voltage across the reference resistor is taken out as a flow rate detection signal, and based on the resistance values of the first and second temperature sensitive resistors. A flow rate signal output means for detecting a flow direction of intake air, outputting the flow rate detection signal as it is when the flow direction of the intake air is forward, and inverting and outputting the flow rate detection signal when the flow direction is reverse. The thermal air flow rate detection device according to 2, 3, 4 or 5.
JP6054625A 1994-02-28 1994-02-28 Thermal air flow rate detector Pending JPH07239258A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6054625A JPH07239258A (en) 1994-02-28 1994-02-28 Thermal air flow rate detector
KR1019950004109A KR0163636B1 (en) 1994-02-28 1995-02-28 Thermal air flow rate detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6054625A JPH07239258A (en) 1994-02-28 1994-02-28 Thermal air flow rate detector

Publications (1)

Publication Number Publication Date
JPH07239258A true JPH07239258A (en) 1995-09-12

Family

ID=12975935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6054625A Pending JPH07239258A (en) 1994-02-28 1994-02-28 Thermal air flow rate detector

Country Status (2)

Country Link
JP (1) JPH07239258A (en)
KR (1) KR0163636B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006023304A (en) * 2004-07-08 2006-01-26 Robert Bosch Gmbh Measuring device of flow sensor and measuring technique of air flowrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006023304A (en) * 2004-07-08 2006-01-26 Robert Bosch Gmbh Measuring device of flow sensor and measuring technique of air flowrate

Also Published As

Publication number Publication date
KR950025418A (en) 1995-09-15
KR0163636B1 (en) 1999-05-01

Similar Documents

Publication Publication Date Title
US7650784B2 (en) Thermal type flow rate measuring apparatus
US4912975A (en) Direct-heated flow measuring apparatus having improved response characteristics
US4785662A (en) Direct-heated gas-flow measuring apparatus
JP3133608B2 (en) Thermal air flow detector
JP4157034B2 (en) Thermal flow meter
JP2682348B2 (en) Air flow meter and air flow detection method
JPS61194317A (en) Direct-heating type flow-rate sensor
JPH07239258A (en) Thermal air flow rate detector
JP3184401B2 (en) Thermal air flow detector
JPH0829228A (en) Thermal air flow rate detection device
JP3174234B2 (en) Thermal air flow detector
JP2944890B2 (en) Thermal air flow detector
JP3184402B2 (en) Thermal air flow detector
JP3095322B2 (en) Thermal air flow detector
JP3174222B2 (en) Thermal air flow detector
JP2002139360A (en) Thermal flow sensor
JP3133609B2 (en) Thermal air flow detector
JPH0843162A (en) Thermal air flow rate detector
JP3133617B2 (en) Thermal air flow detector
JPH0843160A (en) Thermal air flow rate detector
JPH04147016A (en) Thermal-type flow sensor
JPH08105779A (en) Thermal-type air flow-rate detector
JPH04291115A (en) Hot-wire air flowmeter
JP3663267B2 (en) Thermal air flow meter
JPH11351930A (en) Heating resistor type air flowmeter