JPH0329298B2 - - Google Patents

Info

Publication number
JPH0329298B2
JPH0329298B2 JP59223351A JP22335184A JPH0329298B2 JP H0329298 B2 JPH0329298 B2 JP H0329298B2 JP 59223351 A JP59223351 A JP 59223351A JP 22335184 A JP22335184 A JP 22335184A JP H0329298 B2 JPH0329298 B2 JP H0329298B2
Authority
JP
Japan
Prior art keywords
heat
insulating film
resistant resin
heat treatment
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59223351A
Other languages
Japanese (ja)
Other versions
JPS61116858A (en
Inventor
Hiroshi Goto
Takahiro Tsuchitani
Chuichi Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59223351A priority Critical patent/JPS61116858A/en
Priority to KR1019850000744A priority patent/KR900004968B1/en
Priority to US06/698,901 priority patent/US4654113A/en
Priority to DE8585300829T priority patent/DE3586109D1/en
Priority to EP85300829A priority patent/EP0154419B1/en
Publication of JPS61116858A publication Critical patent/JPS61116858A/en
Publication of JPH0329298B2 publication Critical patent/JPH0329298B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • H01L23/53295Stacked insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、半導体装置の多層配線における層間
絶縁膜の形成方法に関するものである。 配線間の層間絶縁膜は、多層配線による高集積
化を要する現在、配線不要を防止する為に極めて
重要な役割を担つている。 〔従来の技術〕 多層配線工程においては、上層配線のステツプ
カバレツジを良好に保つため層間絶縁膜の表面を
平坦化する技術が種々提案されている。ここで
は、耐熱性樹脂を使用して層間絶縁膜を平坦に形
成する方法を第7図を参照して説明する。 シリコン等の半導体基板1表面に二酸化シリコ
ン(SiO2)膜2を形成し、アルミニウムシリコ
ン合金を被着し、パターニングして下層配線層3
とする。次いでCVD(Chemical Vapour
Deposition)法で全面にリンシリケートガラス
(以下PSGと略示する)層を形成して下層絶縁膜
4とし、全面に耐熱性樹脂層5を塗布し120℃で
30分間、次いで300℃で30分間熱処理をした後全
面から均一深さでエツチングをするコントロール
エツチングを施し、さらに全面に上層絶縁膜6を
形成する。そして上下の絶縁膜4,6を通るスル
ーホールを開孔し、上層配線層7を形成する。 以上は特願昭59−021835によるものである。 〔発明が解決しようとする問題点〕 前述の工程では、300℃で30分間の熱処理を行
つてからコントロールエツチングを施しているが
300℃では、樹脂に対する処理が十分でないため
にコントロールエツチング後の絶縁膜成長時(〜
450℃程度の成長温度)に樹脂が含んでいるメチ
ル基やOH基等が分解してガスが発生する。この
ガスは上層に絶縁膜があるために逃げ場を失い、
樹脂層中にたまり、ついには絶縁膜の破裂に至
り、バブリング現象という不良をおこす。この現
象を防ぐために樹脂が十分に熱処理される温度、
たとえば400℃程度に上げると、樹脂膜の厚い部
分で体積収縮によるクラツクが発生するという問
題が生じてくる。 上記工程におけるバブリング,クラツクの発生
率は高く、70〜80%の製品不良に至ることがあ
る。 本発明は、このような問題点を解決することを
目的とするものである。 〔問題点を解決するための手段〕 本発明では上記問題点を解決するために、表面
に電極配線パターンを有する基板上に、絶縁膜を
被着する工程と、全面に耐熱性樹脂溶液を塗布す
る工程と、該耐熱性樹脂溶液中の溶媒除去のため
の第一の熱処理を行う工程と、該耐熱性樹脂及び
該絶縁膜のエツチング速度をほぼ等しくしてエツ
チングを施し、少なくとも後に前記第一の熱処理
よりも高い温度で行う第二の熱処理においてクラ
ツクが生じない膜厚になるまで該耐熱性樹脂を薄
膜化する工程と、該耐熱性樹脂中の、熱処理によ
り気化する成分を除去するための第二の熱処理を
行う工程とを含むように製造することで達成す
る。 〔作 用〕 上記層間絶縁膜の形成方法において、第1の熱
処理は耐熱性樹脂に含まれる溶媒を除去できる低
温(200℃以下)で行う。実施例ではポリラダー
オルガノシロキサン(以下PLOSと略す)に含ま
れる溶媒,エチレングリコールモノブチルエーテ
ルアセテートを除去できる。 次いで耐熱性樹脂層と該絶縁膜のエツチング速
度を等しくして反応性イオンエツチングで全面を
均一深さにエツチングし該耐熱性樹脂層を薄くす
る(平坦部ではなくなるようにするのがよい。) この結果、該耐熱性樹脂及び該絶縁膜の表面を
なめらかにすることができる。この後高温(400
℃以上)で第2の熱処理を行うが全面エツチング
により膜厚が薄くなつているため体積収縮の影響
は小さくなりクラツクの発生がおさえられる。し
たがつて、従来例よりも高温の熱処理が可能とな
り樹脂中に含まれるメチル基等はこの高温熱処理
によつて外部へ飛散することができる。 〔実施例〕 第1図〜第6図を参照して説明する。 第1図では、シリコン等の半導体基板11の表
面上に例えばCVD(Chemical Vapor
Deposition)法でSiO2膜12を形成後、下層配
線層13を厚さ1.0μmにアルミニウム(Al)で形
成する。配線材料は金,タングステン等でもよ
い。第2図では、該下層配線層13および該
SiO2膜12上にCVD法で厚さ0.7μmにリンシリ
ケートガラス(以下PSGと略す)を形成し、下
層絶縁膜14とする。絶縁材料はPSGのかわり
にシリコン窒化膜,二酸化シリコン等でもよい。 第3図では、該下層絶縁膜14上全面に耐熱性
樹脂であるPLOS15(Poly−Ladder−Organo−
Siloxane)をスピンナーで回転塗布し、平坦部
の膜厚tが0.5μmになるように積層し、120〜160
℃で30〜60分間第1の熱処理を行い該樹脂に含ま
れるエチレングリコールモノブチルエーテルアセ
テート等の残留溶媒を除去する。この樹脂のかわ
りにポリイミド,耐熱性ホトレジスト等使用して
もよい。 第4図では耐熱性樹脂の全面に四弗化炭素
(CF4)と三弗化メタン(CHF3)の混合ガス中で
反応性イオンエツチング(以下RIEと略す)を施
す。このとき該下層絶縁膜14と該樹脂層15の
エツチング速度は等しくなるようにして0.5〜
0.7μm程度コントロールエツチングをする。エツ
チングは樹脂が段差部にのみ残るまで行う。この
とき段差部の樹脂の厚さは0.3〜0.5μmになる。コ
ントロールエツチングの条件は下層絶縁膜と耐熱
性樹脂の材料に応じて選択する。 第5図では、該樹脂層15がコントロールエツ
チングにより平坦化され凹部のみに残されて埋め
込まれた状態で400〜450℃の第2の熱処理を30〜
60分間施し、組成的に安定にする。次いで上層絶
縁膜16をCVD法で形成する。 第6図では電極部にフオトリソグラフイ法でス
ルーホールを開孔し、上層配線層17を形成し、
以下同様に多層配線を行う。 上記方法によれば従来の熱処理で70〜80%の割
合で生じていたクラツク及びバブリング現象によ
る製品不良をなくすことができる。 〔表1〕は、実施例で示した工程において、5
cm2当りのクラツク発生数のPLOSの平坦部での塗
布膜厚t及び60分間の第2の熱処理温度に対する
依存性を調査した結果である。 この表によれば、第2の熱処理温度が400℃の
場合、平坦部の塗布膜厚tは0.2μm以下にすれば
クラツクは発生しないことがわかる。300℃以下
の条件では、後のCVD法による絶縁膜の成長工
程で、バブリング現象が発生するために採用でき
ない。
[Industrial Field of Application] The present invention relates to a method for forming an interlayer insulating film in multilayer wiring of a semiconductor device. The interlayer insulating film between wires plays an extremely important role in preventing the need for wires in today's world where high integration is required through multilayer wiring. [Prior Art] In a multilayer wiring process, various techniques have been proposed for flattening the surface of an interlayer insulating film in order to maintain good step coverage of upper layer wiring. Here, a method for forming a flat interlayer insulating film using a heat-resistant resin will be described with reference to FIG. A silicon dioxide (SiO 2 ) film 2 is formed on the surface of a semiconductor substrate 1 made of silicon, etc., and an aluminum silicon alloy is deposited on it and patterned to form a lower wiring layer 3.
shall be. Next, CVD (Chemical Vapor
A phosphosilicate glass (hereinafter abbreviated as PSG) layer is formed on the entire surface using a deposition method to form the lower insulating film 4, and a heat-resistant resin layer 5 is applied on the entire surface at 120℃.
After heat treatment for 30 minutes and then at 300° C. for 30 minutes, control etching is performed to uniformly depth the entire surface, and an upper insulating film 6 is further formed on the entire surface. Then, through holes passing through the upper and lower insulating films 4 and 6 are opened to form an upper wiring layer 7. The above is based on patent application No. 59-021835. [Problem to be solved by the invention] In the above process, control etching is performed after heat treatment at 300°C for 30 minutes.
At 300°C, the resin is not treated sufficiently, so the growth of the insulating film after controlled etching (~
At a growth temperature of approximately 450℃, the methyl groups and OH groups contained in the resin decompose and gas is generated. This gas has no escape because there is an insulating film on the upper layer.
It accumulates in the resin layer, eventually leading to the rupture of the insulating film and causing a defect called bubbling. the temperature at which the resin is sufficiently heat treated to prevent this phenomenon;
For example, if the temperature is raised to about 400°C, a problem arises in that cracks occur in thick parts of the resin film due to volumetric shrinkage. The incidence of bubbling and cracking in the above process is high, and can result in 70 to 80% product defects. The present invention aims to solve these problems. [Means for Solving the Problems] In order to solve the above problems, the present invention includes a process of depositing an insulating film on a substrate having an electrode wiring pattern on the surface, and coating the entire surface with a heat-resistant resin solution. a step of performing a first heat treatment to remove the solvent in the heat-resistant resin solution; and a step of performing etching at approximately the same etching rate for the heat-resistant resin and the insulating film; A step of thinning the heat-resistant resin to a film thickness that does not cause cracks in a second heat treatment performed at a higher temperature than the heat treatment of This is achieved by manufacturing to include a step of performing a second heat treatment. [Function] In the above method for forming an interlayer insulating film, the first heat treatment is performed at a low temperature (200° C. or lower) that can remove the solvent contained in the heat-resistant resin. In the example, the solvent contained in polyladder organosiloxane (hereinafter abbreviated as PLOS), ethylene glycol monobutyl ether acetate, can be removed. Next, the heat-resistant resin layer and the insulating film are etched at the same etching speed, and the entire surface is etched to a uniform depth using reactive ion etching to make the heat-resistant resin layer thin (it is preferable to avoid flat areas). As a result, the surfaces of the heat-resistant resin and the insulating film can be made smooth. After this, high temperature (400
The second heat treatment is carried out at a temperature of 10.degree. C. or above), but since the film thickness is reduced by etching the entire surface, the effect of volumetric shrinkage is reduced and the occurrence of cracks is suppressed. Therefore, heat treatment at a higher temperature than in the conventional example is possible, and methyl groups and the like contained in the resin can be scattered to the outside by this high temperature heat treatment. [Example] An explanation will be given with reference to FIGS. 1 to 6. In FIG. 1, for example, CVD (Chemical Vapor
After forming the SiO 2 film 12 using a deposition method, the lower wiring layer 13 is formed with aluminum (Al) to a thickness of 1.0 μm. The wiring material may be gold, tungsten, etc. In FIG. 2, the lower wiring layer 13 and the
Phosphorsilicate glass (hereinafter abbreviated as PSG) is formed on the SiO 2 film 12 to a thickness of 0.7 μm using the CVD method to form the lower insulating film 14 . The insulating material may be a silicon nitride film, silicon dioxide, etc. instead of PSG. In FIG. 3, a heat-resistant resin PLOS15 (Poly-Ladder-Organo-
Siloxane) was applied using a spinner and laminated so that the film thickness t on the flat part was 0.5 μm.
A first heat treatment is performed at ℃ for 30 to 60 minutes to remove residual solvents such as ethylene glycol monobutyl ether acetate contained in the resin. Polyimide, heat-resistant photoresist, etc. may be used instead of this resin. In FIG. 4, the entire surface of the heat-resistant resin is subjected to reactive ion etching (hereinafter abbreviated as RIE) in a mixed gas of carbon tetrafluoride (CF 4 ) and trifluoromethane (CHF 3 ). At this time, the etching rates of the lower insulating film 14 and the resin layer 15 are set to be equal to 0.5 to 0.5.
Perform control etching of about 0.7μm. Etching is performed until the resin remains only on the stepped portions. At this time, the thickness of the resin at the stepped portion is 0.3 to 0.5 μm. Control etching conditions are selected depending on the materials of the lower insulating film and heat-resistant resin. In FIG. 5, the resin layer 15 is flattened by controlled etching and left only in the recesses, and is then subjected to a second heat treatment at 400 to 450°C for 30 to 30 minutes.
Apply for 60 minutes to ensure compositional stability. Next, an upper insulating film 16 is formed by CVD. In FIG. 6, a through hole is formed in the electrode part using a photolithography method, and an upper wiring layer 17 is formed.
Multilayer wiring is performed in the same manner thereafter. According to the above method, it is possible to eliminate product defects due to cracking and bubbling phenomena, which occur at a rate of 70 to 80% in conventional heat treatments. [Table 1] shows that in the process shown in the example, 5
This is the result of investigating the dependence of the number of cracks generated per cm 2 on the coating film thickness t in the flat area of PLOS and the temperature of the second heat treatment for 60 minutes. According to this table, it can be seen that when the second heat treatment temperature is 400° C., cracks will not occur if the coating film thickness t on the flat portion is 0.2 μm or less. Conditions below 300°C cannot be used because bubbling occurs during the subsequent step of growing an insulating film using the CVD method.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明のごとく第1の熱処
理後耐熱性樹脂と絶縁膜のエツチング速度を等し
くしてコントロールエツチングを行えば、樹脂及
び絶縁膜表面を平坦に保ちつつ、樹脂膜厚を薄く
することが可能となるので、従来より高温で第2
の熱処理を行つてもクラツクは発生しない。 また、第2の熱処理が従来よりも高温で行なえ
るので、後工程でCVD法等により絶縁膜を成長
してもバブリング現象が起きることもない。 本工程を採用した結果、クラツク,バブリング
現象の不良を回避できる。
As explained above, if controlled etching is performed by equalizing the etching speed of the heat-resistant resin and the insulating film after the first heat treatment as in the present invention, the resin film thickness can be reduced while keeping the surfaces of the resin and the insulating film flat. This makes it possible to perform the second
Cracks do not occur even after heat treatment. Furthermore, since the second heat treatment can be performed at a higher temperature than conventional methods, bubbling does not occur even when an insulating film is grown by CVD or the like in a subsequent process. As a result of adopting this process, defects such as cracks and bubbling phenomena can be avoided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第6図は本発明の実施例における各工
程の配線部断面図、第7図は従来方法における完
成した配線断面図である。 11…半導体基板、12…SiO2膜、13…下
層配線層、14…下層絶縁膜、15…耐熱性樹
脂、16…上層絶縁膜、17…上層配線層。
1 to 6 are cross-sectional views of wiring portions in each step in an embodiment of the present invention, and FIG. 7 is a cross-sectional view of completed wiring in a conventional method. DESCRIPTION OF SYMBOLS 11... Semiconductor substrate, 12... SiO2 film, 13... Lower layer wiring layer, 14... Lower layer insulating film, 15... Heat resistant resin, 16... Upper layer insulating film, 17... Upper layer wiring layer.

Claims (1)

【特許請求の範囲】 1 表面に電極配線パターンを有する基板上に、
絶縁膜を被着する工程と、 全面に耐熱性樹脂溶液を塗布する工程と、 該耐熱性樹脂溶液中の溶媒除去のための第一の
熱処理を行う工程と、 該耐熱性樹脂及び該絶縁膜のエツチング速度を
ほぼ等しくしてエツチングを施し、少なくとも後
に前記第一の熱処理よりも高い温度で行う第二の
熱処理においてクラツクが生じない膜厚になるま
で該耐熱性樹脂を薄膜化する工程と、 該耐熱性樹脂中の、熱処理により気化する成分
を除去するための第二の熱処理を行う工程とを含
むことを特徴とする層間絶縁膜の形成方法。
[Claims] 1. On a substrate having an electrode wiring pattern on its surface,
a step of applying an insulating film; a step of applying a heat-resistant resin solution to the entire surface; a step of performing a first heat treatment to remove the solvent in the heat-resistant resin solution; and a step of applying the heat-resistant resin and the insulating film. etching the heat-resistant resin at approximately the same etching rate, and thinning the heat-resistant resin to a film thickness that does not cause cracks at least in a second heat treatment performed later at a higher temperature than the first heat treatment; A method for forming an interlayer insulating film, comprising the step of performing a second heat treatment to remove components vaporized by heat treatment in the heat-resistant resin.
JP59223351A 1984-02-10 1984-10-24 Formation of interlaminar insulating film Granted JPS61116858A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59223351A JPS61116858A (en) 1984-10-24 1984-10-24 Formation of interlaminar insulating film
KR1019850000744A KR900004968B1 (en) 1984-02-10 1985-02-06 Method for semiconductor device
US06/698,901 US4654113A (en) 1984-02-10 1985-02-06 Process for fabricating a semiconductor device
DE8585300829T DE3586109D1 (en) 1984-02-10 1985-02-08 METHOD FOR PRODUCING A CONNECTION STRUCTURE FROM A SEMICONDUCTOR ARRANGEMENT.
EP85300829A EP0154419B1 (en) 1984-02-10 1985-02-08 Process for producing an interconnection structure of a semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59223351A JPS61116858A (en) 1984-10-24 1984-10-24 Formation of interlaminar insulating film

Publications (2)

Publication Number Publication Date
JPS61116858A JPS61116858A (en) 1986-06-04
JPH0329298B2 true JPH0329298B2 (en) 1991-04-23

Family

ID=16796799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59223351A Granted JPS61116858A (en) 1984-02-10 1984-10-24 Formation of interlaminar insulating film

Country Status (1)

Country Link
JP (1) JPS61116858A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0669038B2 (en) * 1984-12-19 1994-08-31 セイコーエプソン株式会社 Method for manufacturing semiconductor device
JPS61196555A (en) * 1985-02-26 1986-08-30 Nec Corp Formation for multilayer interconnection
FR2588418B1 (en) * 1985-10-03 1988-07-29 Bull Sa METHOD FOR FORMING A MULTI-LAYER METAL NETWORK FOR INTERCONNECTING THE COMPONENTS OF A HIGH DENSITY INTEGRATED CIRCUIT AND RESULTING INTEGRATED CIRCUIT
JPS62295437A (en) * 1986-06-14 1987-12-22 Yamaha Corp Forming method for multilayer interconnection
JPH03201438A (en) * 1989-12-28 1991-09-03 Mitsubishi Electric Corp Manufacture of semiconductor device
KR970023723A (en) * 1995-10-20 1997-05-30 김주용 Metal wiring method of semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5768050A (en) * 1980-10-15 1982-04-26 Hitachi Ltd Multilayer wire structure and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5768050A (en) * 1980-10-15 1982-04-26 Hitachi Ltd Multilayer wire structure and manufacture thereof

Also Published As

Publication number Publication date
JPS61116858A (en) 1986-06-04

Similar Documents

Publication Publication Date Title
US5393709A (en) Method of making stress released VLSI structure by the formation of porous intermetal layer
KR970007114B1 (en) Fabration method of semiconductor device
JP3077990B2 (en) Method for manufacturing semiconductor device
JPH0329298B2 (en)
JPS586306B2 (en) Handout Taisouchino Seizouhouhou
JPH04370934A (en) Manufacture of semiconductor device
JP2928409B2 (en) Method for manufacturing semiconductor device
JPH0565049B2 (en)
JPH0265256A (en) Manufacture of semiconductor device
JPS5935451A (en) Forming method for inter-layer insulating film
JPH0427703B2 (en)
JPS61154148A (en) Manufacture of semiconductor device
JPS63262856A (en) Manufacture of semiconductor device
JPS63164342A (en) Formation of insulating film
JPH11251312A (en) Manufacture of semiconductor device
JPH0629282A (en) Manufacture of semiconductor device
JPH02254741A (en) Manufacture of multilayer wiring
JPH0583177B2 (en)
JPS5946419B2 (en) Method of forming polyimide film in semiconductor device
JPH09167761A (en) Deposition of sog film
JPH0534839B2 (en)
JPH06349951A (en) Manufacture of semiconductor device
JPH01207931A (en) Manufacture of semiconductor device
JPS6227745B2 (en)
JPH01108109A (en) Flat membrane and formation thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term