JPH03289137A - Thin film transistor - Google Patents

Thin film transistor

Info

Publication number
JPH03289137A
JPH03289137A JP9071590A JP9071590A JPH03289137A JP H03289137 A JPH03289137 A JP H03289137A JP 9071590 A JP9071590 A JP 9071590A JP 9071590 A JP9071590 A JP 9071590A JP H03289137 A JPH03289137 A JP H03289137A
Authority
JP
Japan
Prior art keywords
thin film
source
insulating film
drain
film transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9071590A
Other languages
Japanese (ja)
Inventor
Wakao Miyazawa
和加雄 宮沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP9071590A priority Critical patent/JPH03289137A/en
Publication of JPH03289137A publication Critical patent/JPH03289137A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78642Vertical transistors

Abstract

PURPOSE:To form source and drain electrodes so as to simplify the process by implanting ions into the intrinsic semiconductor layer which is formed in the region including the step part provided at the surface of an insulating substrate. CONSTITUTION:After a desired step is given to the surface of an insulating substrate, an intrinsic semiconductor layer 103, which does not contain impurities, is stacked and patterned. Subsequently, an insulating film 104 to become a gate insulating film is stacked on the whole face. Next, the impurities form formation of a source and a drain are implanted by ion implantation method, and after heat treatment for activation, the conductor film layer to become a gate electrode is formed by sputtering or other method, and then it is etched excluding the part to become the gate electrode 105. Next, a layer insulating film 106 is stacked, and next the insulating film 104 and the layer insulating film 106 at the part in which to form source and drain electrodes are removed and made a contact hole 107 and at that part a source electrode 108 and a drain electrode 109 are formed. Hereby, the formation of the source and drain regions can be facilitated.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、薄膜トランジスタに関する。[Detailed description of the invention] [Industrial application fields] The present invention relates to thin film transistors.

[従来の技術] 従来の絶縁性基板上に薄膜トランジスタを形成する際の
、−殻内な製造方法の例を第3図に示す。
[Prior Art] FIG. 3 shows an example of a conventional in-shell manufacturing method for forming a thin film transistor on an insulating substrate.

まず、透明絶縁性基板301上に、ソース・ドレイン領
域として高濃度不純物を添加した半導体薄膜層302を
形成し、バターニングした後、能動領域として不純物を
含まない真性半導体層303を積層・バターニングし、
その後ゲート絶縁膜304とゲート電極305、層間絶
縁膜306を積層し、コンタクトホール307を開口し
た後、ソース電極端子308、ドレイン電極端子309
を形成して薄膜トランジスタが完成する。
First, a semiconductor thin film layer 302 doped with high concentration impurities is formed as a source/drain region on a transparent insulating substrate 301, and after patterning, an intrinsic semiconductor layer 303 containing no impurities is laminated and patterned as an active region. death,
After that, a gate insulating film 304, a gate electrode 305, and an interlayer insulating film 306 are laminated, and after opening a contact hole 307, a source electrode terminal 308 and a drain electrode terminal 309 are formed.
is formed to complete the thin film transistor.

[発明が解決しようとする課題] しかし、前述の従来の技術では、ソース・ドレイン領域
となる高濃度不純物を添加した半導体薄膜層と能動領域
となる真性半導体を別途に形成しなければならない。又
前述の従来の技術では、薄膜トランジスタのチャネル長
はソース・トレイン領域の距離により決定される。現状
では、大型基板対応のアライナ−の最小加工寸法は、3
〜4μmが限度であり、短チャネルの薄膜トランジスタ
の製作は非常に困難である。
[Problems to be Solved by the Invention] However, in the above-mentioned conventional technology, it is necessary to separately form a semiconductor thin film layer doped with high concentration impurities to serve as the source/drain region and an intrinsic semiconductor to serve as the active region. Furthermore, in the conventional technology described above, the channel length of a thin film transistor is determined by the distance between the source and train regions. Currently, the minimum processing size of aligners for large substrates is 3.
The maximum thickness is ~4 μm, making it extremely difficult to manufacture short-channel thin film transistors.

本発明は、この様な従来の薄膜トランジスタの問題点を
解決するもので、その目的とするところは、ソース・ド
レイン領域の形成を容易する薄膜トランジスタ及び、短
チヤネル薄膜トランジスタを提供するところにある。
The present invention solves the problems of conventional thin film transistors, and its purpose is to provide a thin film transistor and a short channel thin film transistor in which source/drain regions can be easily formed.

[課題を解決するための手段] 本発明の薄膜トランジスタは、 絶縁性基板上にソース・ドレイン電極として高濃度不純
物を添加した半導体層と、能動領域としての真性半導体
層とを有する薄膜トランジスタにおいて、前記絶縁性基
板表面に付与された段差部を含む領域に形成された真性
半導体層に、イオン打ち込みを行う事によりソース・ド
レイン電極を形成したことを特徴とする薄膜トランジス
タ。
[Means for Solving the Problems] A thin film transistor of the present invention includes a semiconductor layer doped with high concentration impurities as source/drain electrodes on an insulating substrate, and an intrinsic semiconductor layer as an active region. 1. A thin film transistor characterized in that source and drain electrodes are formed by ion implantation into an intrinsic semiconductor layer formed in a region including a stepped portion provided on a surface of a transparent substrate.

[実施例コ 第1図は、本発明の第1の実施例を、工程順に示す図で
ある。まず第1図(a)に示すように、絶縁性基板10
1の表面に、ホトリソグラフィー技術を用いて、所望の
段差を付与する。次に不純物を含まない真性半導体層1
03を、シランの熱分解などによって100OA程度の
厚さに積層し、バターニングする。この状態が第1図(
b)である、シランは300℃以上で分解するが、理想
的には600℃前後が望ましい、ついで、全面にゲート
絶縁膜となる絶縁薄膜104を、約1500A程度の厚
さに積層し、第1図(c)とする。前記絶縁薄膜には、
二酸化珪素膜や窒化珪素膜などが、常圧CVD法、減圧
CVD法、プラズマCVD法、ECRプラズ7CVD法
、光CVD法、またはこれらの組合せにより、形成され
、使用される。
[Example 1] Fig. 1 is a diagram showing a first example of the present invention in order of steps. First, as shown in FIG. 1(a), an insulating substrate 10
A desired level difference is provided on the surface of 1 using photolithography technology. Next, an intrinsic semiconductor layer 1 containing no impurities
03 is laminated to a thickness of about 100 OA by thermal decomposition of silane, etc., and buttered. This state is shown in Figure 1 (
In b), silane decomposes at temperatures above 300°C, but ideally around 600°C. Next, an insulating thin film 104 that will become a gate insulating film is laminated to a thickness of about 1500 A over the entire surface, and the 1 (c). The insulating thin film includes:
A silicon dioxide film, a silicon nitride film, or the like is formed and used by a normal pressure CVD method, a low pressure CVD method, a plasma CVD method, an ECR Plas 7 CVD method, a photoCVD method, or a combination thereof.

ついでソース・ドレイン形成の為の不純物をイオ・ン打
ち込み法により打ち込み、活性化の為の熱処理を施した
のちにゲート電極となる導体薄膜層をスパッタ法などに
より形成した後、ゲート電極105となる部分を除きエ
ツチングして、第1図(d)を得る。ゲート電極には、
アルミニュウムあるいはクロム等の金属や、多結晶シリ
コン膜が使用される。次に、層間絶縁膜106を積層、
ついで、ソース・ドレイン電極を形成する部分の絶縁薄
膜104と層間絶縁膜106を除去し、コンタクトホー
ル107としその部分にソース電極108、 ドレイン
電極109を形成し、第1図(e)となる。上記層間絶
縁膜106には、前記絶縁薄膜104と同じ方法で形成
された絶縁膜の他に、ボリノミド等の有機膜が使用され
ることもある。
Next, impurities for forming the source and drain are implanted by ion implantation, heat treatment is performed for activation, and a conductive thin film layer that will become the gate electrode is formed by sputtering or the like, and then the gate electrode 105 is formed. The portion is removed and etched to obtain the image shown in FIG. 1(d). The gate electrode has
A metal such as aluminum or chromium or a polycrystalline silicon film is used. Next, an interlayer insulating film 106 is laminated,
Next, the insulating thin film 104 and the interlayer insulating film 106 in the portions where the source/drain electrodes are to be formed are removed, a contact hole 107 is formed, and a source electrode 108 and a drain electrode 109 are formed in the contact hole 107, as shown in FIG. 1(e). In addition to an insulating film formed by the same method as the insulating thin film 104, an organic film such as boronomide may be used for the interlayer insulating film 106.

第2図は、本発明の第2の実施例を、工程順に示す図で
ある。まず第2図(a)に示すように、絶縁性基板20
1の表面に、ホトリソグラフィー技術を用いて、所望の
段差を付与する。次に不純物を含まない真性半導体層2
03を、シランの熱分解などによって100OA程度の
厚さに積層し、ついでソース・ドレイン形成の為の不純
物をイオン打ち込み法によりうちこみ、活性化の為の熱
処理を施したのちにバターニングする。この状態が第2
図(b)である。ついで、全面にゲート絶縁膜となる絶
縁薄膜204を、約1500A程度の厚さに積層し、第
1図(C)とする。前記絶縁薄膜には、二酸化珪素膜や
窒化珪素膜などが、常圧CVD法、減圧CVD法、プラ
ズマCVD法、 ECRプラズマCVD法、光CVD法
、またはこれらの組合せにより、形成され、使用される
FIG. 2 is a diagram showing a second embodiment of the present invention in order of steps. First, as shown in FIG. 2(a), an insulating substrate 20
A desired level difference is provided on the surface of 1 using photolithography technology. Next, an intrinsic semiconductor layer 2 containing no impurities
03 is laminated to a thickness of about 100 OA by thermal decomposition of silane, impurities for forming sources and drains are implanted by ion implantation, heat treatment is performed for activation, and buttering is performed. This state is the second
It is figure (b). Next, an insulating thin film 204, which will become a gate insulating film, is laminated on the entire surface to a thickness of about 1500 Å, as shown in FIG. 1(C). A silicon dioxide film, a silicon nitride film, or the like is formed and used as the insulating thin film by a normal pressure CVD method, a low pressure CVD method, a plasma CVD method, an ECR plasma CVD method, a photoCVD method, or a combination thereof. .

ついで、ゲート電極となる導体薄膜層をスパッタ法など
により形成した後、ゲート電極205となる部分を除き
エツチングして、第1図(d)を得る。ゲート電極には
、アルミニュウムあるいはクロム等の金属や、多結晶シ
リコン膜が使用される。
Next, a conductive thin film layer that will become the gate electrode is formed by sputtering or the like, and then etched except for the portion that will become the gate electrode 205, to obtain the structure shown in FIG. 1(d). A metal such as aluminum or chromium or a polycrystalline silicon film is used for the gate electrode.

次に、層間絶縁膜206を積層、ついで、ソースドレイ
ン電極を形成する部分の絶縁薄膜204と層間絶縁膜2
06を除去し、コンタクトホール207としその部分に
ソース電極208、ドレイン電極209を形成し、第1
図(e)となる。上記層間絶縁膜206には、前記絶縁
薄膜204と同じ方法で形成された絶縁膜の他に、ポリ
イミド等の有機膜が使用されることもある。
Next, an interlayer insulating film 206 is laminated, and then the insulating thin film 204 and the interlayer insulating film 2
06 is removed, a contact hole 207 is formed, and a source electrode 208 and a drain electrode 209 are formed in the contact hole 207.
The result is shown in Figure (e). In addition to an insulating film formed by the same method as the insulating thin film 204, an organic film such as polyimide may be used for the interlayer insulating film 206.

[発明の効果] 以上述べた様に本発明の薄膜トランジスタによれば、ソ
ース・ドレイン領域となる高濃度不純物を添加した半導
体薄膜層と能動領域となる真性半導体を別途に形成する
必要がない。この為プロセスの簡略化が可能である。
[Effects of the Invention] As described above, according to the thin film transistor of the present invention, there is no need to separately form a semiconductor thin film layer doped with high concentration impurities to serve as the source/drain region and an intrinsic semiconductor to serve as the active region. Therefore, the process can be simplified.

さらには、絶縁性基板表面に付与する段差の寸法により
、薄膜トランジスタのチャネル長を決定できるので、大
型基板においても短チャネルの薄膜トランジスタ 大型基板対応のアライナ−の最小加工寸法が、3〜4μ
mであり短チャンネルが不可能な現状と比較すると、非
常に効果がある。
Furthermore, since the channel length of the thin film transistor can be determined by the dimension of the step provided on the surface of the insulating substrate, the minimum processing size of the aligner for short channel thin film transistors on large substrates is 3 to 4 μm even on large substrates.
This is extremely effective compared to the current situation where short channels are not possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(e)は、本発明の第一の実施例を示す
薄膜トランジスタの製造工程ごとの素子断面図 第2図
(a)〜(e)は、本発明の第二の実施例を示す薄膜ト
ランジスタの製造工程ごとの素子断面図。第3図(a)
〜(e)は従来の薄膜トランジスタの素子断面図。 101、201,301・・・絶縁性基板102、20
2,302・・・ソース・ドレイン領域 103、203,303・・・真性半導体層104、2
04,304・・・ゲート絶縁膜105、205.3C
15・・・ゲート電極106、206,306・・・層
間絶縁膜↓ ↓ ↓ ↓ ↓ ↓ ◆ ↓ rヘノイオンビーム 第1図 07。 207。 307・・・コンタクトホー 08。 09。 208、308・・・ソース電極 209、 309・・・ドレイン電極 以上
FIGS. 1(a) to (e) are cross-sectional views of elements for each manufacturing process of a thin film transistor showing a first embodiment of the present invention. FIGS. 2(a) to (e) are device sectional views showing a second embodiment of the present invention. FIG. 2 is a cross-sectional view of an example thin film transistor for each manufacturing process. Figure 3(a)
-(e) are element cross-sectional views of conventional thin film transistors. 101, 201, 301... Insulating substrates 102, 20
2, 302... Source/drain region 103, 203, 303... Intrinsic semiconductor layer 104, 2
04,304...Gate insulating film 105, 205.3C
15... Gate electrodes 106, 206, 306... Interlayer insulating film ↓ ↓ ↓ ↓ ↓ ↓ ◆ ↓ r Heno ion beam Figure 1 07. 207. 307...Contact Ho08. 09. 208, 308...Source electrode 209, 309...Drain electrode or higher

Claims (1)

【特許請求の範囲】[Claims]  絶縁性基板上にソース・ドレイン電極として高濃度不
純物を添加した半導体層と、能動領域としての真性半導
体層とを有する薄膜トランジスタにおいて、前記絶縁性
基板表面に付与された段差部を含む領域に形成された真
性半導体層に、イオン打ち込みを行う事によりソース・
ドレイン電極を形成したことを特徴とする薄膜トランジ
スタ。
In a thin film transistor having a semiconductor layer doped with high concentration impurities as source/drain electrodes on an insulating substrate and an intrinsic semiconductor layer as an active region, the thin film transistor is formed in a region including a stepped portion provided on the surface of the insulating substrate. By implanting ions into the intrinsic semiconductor layer, the source and
A thin film transistor characterized by forming a drain electrode.
JP9071590A 1990-04-05 1990-04-05 Thin film transistor Pending JPH03289137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9071590A JPH03289137A (en) 1990-04-05 1990-04-05 Thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9071590A JPH03289137A (en) 1990-04-05 1990-04-05 Thin film transistor

Publications (1)

Publication Number Publication Date
JPH03289137A true JPH03289137A (en) 1991-12-19

Family

ID=14006238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9071590A Pending JPH03289137A (en) 1990-04-05 1990-04-05 Thin film transistor

Country Status (1)

Country Link
JP (1) JPH03289137A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0418525A (en) * 1990-05-14 1992-01-22 Matsushita Electron Corp Liquid crystal display device and production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0418525A (en) * 1990-05-14 1992-01-22 Matsushita Electron Corp Liquid crystal display device and production thereof

Similar Documents

Publication Publication Date Title
JPH05109737A (en) Manufacture of thin film transistor
JP2571004B2 (en) Thin film transistor
JPS6251216A (en) Manufacture of semiconductor device
JPH03289137A (en) Thin film transistor
JP3131850B2 (en) Method for manufacturing thin film transistor
JP2864658B2 (en) Method for manufacturing thin film transistor
JPH077157A (en) Manufacture of thin film transistor
JP2699933B2 (en) Thin film transistor and method of manufacturing the same
JPH0127589B2 (en)
JPH0794721A (en) Semiconductor device and manufacture thereof
JP3644977B2 (en) Method for manufacturing polycrystalline silicon thin film transistor
JPH0369168A (en) Thin film field effect transistor
JPH05136414A (en) Thin film transistor and its manufacture
JPH01260857A (en) Semiconductor device and manufacture thereof
JP2838932B2 (en) Field effect type semiconductor device
JPH04338650A (en) Semiconductor device and manufacture thereof
JPH05110103A (en) Semiconductor device
JPH06120507A (en) Thin film transistor
JPS59154072A (en) Semiconductor device and manufacture thereof
JPS60105268A (en) Semiconductor device and manufacture thereof
JPS62206873A (en) Manufacture of semiconductor device
JPS6188543A (en) Manufacture of semiconductor device
JPH0529624A (en) Thin film transistor and manufacture thereof
JPH0487339A (en) Semiconductor device and its manufacture
JPS61212067A (en) Manufacture of semiconductor device