JPH06120507A - Thin film transistor - Google Patents

Thin film transistor

Info

Publication number
JPH06120507A
JPH06120507A JP26447292A JP26447292A JPH06120507A JP H06120507 A JPH06120507 A JP H06120507A JP 26447292 A JP26447292 A JP 26447292A JP 26447292 A JP26447292 A JP 26447292A JP H06120507 A JPH06120507 A JP H06120507A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
region
gate electrode
film
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26447292A
Other languages
Japanese (ja)
Other versions
JP2894108B2 (en
Inventor
Shinji Obara
伸治 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP26447292A priority Critical patent/JP2894108B2/en
Publication of JPH06120507A publication Critical patent/JPH06120507A/en
Application granted granted Critical
Publication of JP2894108B2 publication Critical patent/JP2894108B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To avoid the fluctuation in the characteristics of the FET used as a load of a SRAM caused by the dispersion in the offset region length in a drain region during manufacturing step. CONSTITUTION:A gate electrode 5 is formed on a polycrystalline silicon film 3 with a TFT channel formed thereon through the intermediary of a gate insulating film 4 and then a P<+>type source region 6 and a P<->type drain 7 are provided. In such a constitution, the impurity concentration in the drain region 7 is lower than that in the source region 6 furthermore, any offset region does not exist in the drain region 7 so that the TFT chracteristics may not be fluctuated by the dispersion in the offset region length.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は薄膜トランジスタ(Th
in Film Transistor)に関し、特に
スタテイックRAMの負荷素子として用いる薄膜トラン
ジスタに関する。
The present invention relates to a thin film transistor (Th
In Film Transistor), and more particularly to a thin film transistor used as a load element of a static RAM.

【0002】[0002]

【従来の技術】従来の薄膜トランジスタ(以下TFTと
記す)について図面を参照して説明する。
2. Description of the Related Art A conventional thin film transistor (hereinafter referred to as TFT) will be described with reference to the drawings.

【0003】図3(a)〜(c)は従来のTFTの製造
方法を説明するための工程順に示した断面図である。
3 (a) to 3 (c) are sectional views showing the order of steps for explaining a conventional method of manufacturing a TFT.

【0004】まず、図3(a)に示すように、シリコン
基板1の上にCVD法により堆積した厚さ100〜20
0nmの酸化シリコン膜2の上にCVD法により厚さ3
0〜50nmの多結晶シリコン膜3を堆積する。次に、
多結晶シリコン膜3にリンを導入した後パターニングし
て不純物濃度が1×1017〜1×1018cm-3の活性領
域を形成する。次に、多結晶シリコン膜3を含む表面に
CVD法により厚さ20〜50nmの酸化シリコン膜を
堆積してゲート絶縁膜4を形成する。
First, as shown in FIG. 3A, a thickness of 100 to 20 deposited on the silicon substrate 1 by the CVD method.
A thickness of 3 is formed on the 0 nm silicon oxide film 2 by the CVD method.
A polycrystalline silicon film 3 having a thickness of 0 to 50 nm is deposited. next,
Phosphorus is introduced into the polycrystalline silicon film 3 and then patterned to form an active region having an impurity concentration of 1 × 10 17 to 1 × 10 18 cm −3 . Then, a silicon oxide film having a thickness of 20 to 50 nm is deposited on the surface including the polycrystalline silicon film 3 by the CVD method to form the gate insulating film 4.

【0005】次に、図3(b)に示すように、ゲート絶
縁膜4の上にCVD法により厚さ100〜150nmの
多結晶シリコン膜を堆積して不純物を導入して導電性を
持たせた後パターニングしてゲート電極5を形成する。
次に、ゲート電極5を含む表面にフォトレジスト膜9を
塗布してパターニングしオフセット領域形成用のパター
ンを形成する。次に、フォトレジスト膜9をマスクとし
て多結晶シリコン膜3にホウ素イオンを高濃度にイオン
注入して不純物濃度が1×1019〜1×1020cm-3
+ 型ソース領域6およびP+ 型ドレイン領域10を形
成する。ここでゲート電極5の端部からP+ 型ドレイン
領域10を離したオフセット構造にし、オフセット領域
の不純物濃度をP+ 型ドレイン領域10より低濃度のP
- 型とすることにより、TFTのオン・オフ特性を改善
できることが、例えば「平成3年春季第38回応用物理
学関係連合講演会・講演予稿集、第2分冊、第671
頁、30p−T−2」に記載されている。
Next, as shown in FIG. 3B, a polycrystalline silicon film having a thickness of 100 to 150 nm is deposited on the gate insulating film 4 by the CVD method and impurities are introduced to make it conductive. After that, the gate electrode 5 is formed by patterning.
Next, a photoresist film 9 is applied to the surface including the gate electrode 5 and patterned to form a pattern for forming an offset region. Next, with the photoresist film 9 as a mask, boron ions are implanted in the polycrystalline silicon film 3 at a high concentration, and the P + -type source regions 6 and P having an impurity concentration of 1 × 10 19 to 1 × 10 20 cm −3 are formed. A + type drain region 10 is formed. Here, the P + -type drain region 10 is separated from the end of the gate electrode 5 to form an offset structure, and the impurity concentration of the offset region is lower than that of the P + -type drain region 10.
By using the -type, it is possible to improve the on / off characteristics of the TFT by, for example, "Spring 1991: 38th Joint Lecture on Applied Physics / Proceedings, 2nd Volume, 671st.
Page, 30p-T-2 ".

【0006】次に、図3(c)に示すように、フォトレ
ジスト膜9を除去した後ゲート電極5をマスクとして多
結晶シリコン膜3にホウ素イオンを低濃度にイオン注入
し不純物濃度が1×1017〜1×1018cm-3であるP
- 型オフセット領域11を形成する。
Next, as shown in FIG. 3C, after the photoresist film 9 is removed, boron ions are ion-implanted at a low concentration into the polycrystalline silicon film 3 using the gate electrode 5 as a mask so that the impurity concentration is 1 ×. P that is 10 17 to 1 × 10 18 cm -3
- -type offset region 11.

【0007】以後、層間絶縁膜,金属配線,表面保護膜
などを順次形成してTFTを構成する。
After that, an interlayer insulating film, a metal wiring, a surface protective film, etc. are sequentially formed to form a TFT.

【0008】[0008]

【発明が解決しようとする課題】この従来のTFTで
は、ゲート電極とP+ 型ドレイン領域との間にP- 型オ
フセット領域を設けるためにフォトレジスト膜を用いて
+ 型ソース・ドレイン領域を形成している。4Mビッ
トクラスのスタテイックRAMではTFTのゲート電極
長は約1.0μm,オフセット領域長は約0.5μmで
あるが、ソース・ドレイン領域を決定するためのフォト
レジストマスクのアライメント精度は±0.15μm程
度しかないため、フォトレジストマスクがTFTのゲー
ト電極に対してずれを生じると、TFTの製造段階で低
濃度オフセット領域長に0.35〜0.65μmのばら
つきが生じる。オフセット領域長の変動はTFTのオン
・オフ特性に与える影響が非常に大きいため、従来のT
FTではオン・オフ特性がばらつきやすいという問題点
があった。
[Problems that the Invention is to Solve In the conventional TFT, the P + type source and drain regions using photoresist film to provide a P- type offset region between the gate electrode and the P + -type drain region Is forming. In a 4M bit class static RAM, the TFT gate electrode length is about 1.0 μm and the offset region length is about 0.5 μm, but the alignment accuracy of the photoresist mask for determining the source / drain regions is ± 0.15 μm. Since the photoresist mask is misaligned with respect to the gate electrode of the TFT, the low-concentration offset region length varies by 0.35 to 0.65 μm in the manufacturing process of the TFT. Since the variation of the offset region length has a great influence on the on / off characteristics of the TFT, the conventional T
The FT has a problem that the on / off characteristics are likely to vary.

【0009】[0009]

【課題を解決するための手段】本発明の第1のTFT
は、半導体基板上に設けた絶縁膜上に選択的に設けた一
導電型の多結晶シリコン膜と、前記多結晶シリコン膜の
表面に設けたゲート絶縁膜と、前記ゲート絶縁膜上に設
けたゲート電極と、前記ゲート電極に整合して前記多結
晶シリコン膜に設けた高不純物濃度の逆導電型ソース領
域と、前記ゲート電極に整合して前記多結晶シリコン膜
に設けた前記ソース領域よりも低不純物濃度で且つほぼ
均一な濃度分布を有する逆導電型ドレイン領域とを備え
ている。
Means for Solving the Problem First TFT of the present invention
Is a polycrystalline silicon film of one conductivity type selectively provided on an insulating film provided on a semiconductor substrate, a gate insulating film provided on the surface of the polycrystalline silicon film, and provided on the gate insulating film. A gate electrode, a high impurity concentration reverse conductivity type source region provided in the polycrystalline silicon film in alignment with the gate electrode, and a source region provided in the polycrystalline silicon film in alignment with the gate electrode. And a reverse-conductivity-type drain region having a low impurity concentration and a substantially uniform concentration distribution.

【0010】本発明の第2のTFTは、半導体基板上に
設けた絶縁膜上に設けたゲート電極及び一導電型不純物
を含むブロック電極と、前記ゲート電極及びブロック電
極を含む表面に設けたゲート絶縁膜と、前記ゲート絶縁
膜に設けて前記ブロック電極の上面を露出させるコンタ
クトホールと、前記コンタクトホールを含むゲート絶縁
膜の上に設けた逆導電型の多結晶シリコン膜と、前記ゲ
ート電極の一方の側の前記コンタクトホールを介してブ
ロック電極に接続する多結晶シリコン膜に設けた一導電
型低不純物濃度を有するドレイン領域と前記ゲート電極
の他方の側に設けて前記ドレイン領域よりも高濃度の一
導電型不純物濃度を有するソース領域とを備えている。
A second TFT of the present invention comprises a gate electrode provided on an insulating film provided on a semiconductor substrate and a block electrode containing one conductivity type impurity, and a gate provided on the surface including the gate electrode and the block electrode. An insulating film; a contact hole formed in the gate insulating film to expose the upper surface of the block electrode; a reverse conductivity type polycrystalline silicon film formed on the gate insulating film including the contact hole; A drain region having one conductivity type low impurity concentration provided in the polycrystalline silicon film connected to the block electrode through the contact hole on one side and a higher concentration than the drain region provided on the other side of the gate electrode. And a source region having an impurity concentration of one conductivity type.

【0011】[0011]

【実施例】次に、本発明について図面を参照して説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.

【0012】図1は本発明の第1の実施例を説明するた
めの断面図である。
FIG. 1 is a sectional view for explaining a first embodiment of the present invention.

【0013】図1に示すように、まず、シリコン基板1
の上にCVD法により厚さ100〜200nmの酸化シ
リコン膜2を形成する。次に、酸化シリコン膜2の上に
CVD法により厚さ30〜50nmの多結晶シリコン膜
3を堆積した後リンを1×1017〜1×1018cm-3
不純物濃度になるように導入し、パターニングして活性
領域を形成する。次に、多結晶シリコン膜3を含む表面
にCVD法により厚さ20〜50nmの酸化シリコ膜を
堆積してゲート絶縁膜4を形成する。次に、ゲート絶縁
膜4の上に厚さ100〜150nmの多結晶シリコン膜
を堆積してパターニングしゲート電極5を形成し、公知
の手段により導電性を持たせる。次に、フォトレジスト
膜を用いてゲート電極5及びドレイン形成領域上をマス
クして多結晶シリコン膜3にホウ素イオンを高濃度にイ
オン注入して1×1019〜1×1020cm-3の不純物濃
度を有するP+ 型ソース領域6を形成する。
As shown in FIG. 1, first, a silicon substrate 1
A silicon oxide film 2 having a thickness of 100 to 200 nm is formed thereon by the CVD method. Next, after depositing a polycrystalline silicon film 3 having a thickness of 30 to 50 nm on the silicon oxide film 2 by a CVD method, phosphorus is introduced so as to have an impurity concentration of 1 × 10 17 to 1 × 10 18 cm −3. Then, patterning is performed to form an active region. Then, a silicon oxide film having a thickness of 20 to 50 nm is deposited on the surface including the polycrystalline silicon film 3 by the CVD method to form the gate insulating film 4. Next, a polycrystalline silicon film having a thickness of 100 to 150 nm is deposited on the gate insulating film 4 and patterned to form a gate electrode 5, which is made conductive by a known means. Next, using a photoresist film, the gate electrode 5 and the drain formation region are masked and boron ions are ion-implanted into the polycrystalline silicon film 3 at a high concentration to form a 1 × 10 19 to 1 × 10 20 cm −3 film. A P + type source region 6 having an impurity concentration is formed.

【0014】この際、従来例のように低濃度オフセット
領域を形成する必要がないため、フォトレジスト膜のゲ
ート電極に対するアライメント精度への要求が緩和され
る。
At this time, since it is not necessary to form the low-concentration offset region as in the conventional example, the requirement for the alignment accuracy of the photoresist film with respect to the gate electrode is relaxed.

【0015】次に、フォトレジスト膜を除去した後ゲー
ト電極5をマスクとするセルフアラインで多結晶シリコ
ン膜3にホウ素イオンを低濃度にイオン注入して1×1
17〜1×1018cm-3の不純物濃度を有するP- 型ド
レイン領域7を形成する。
Next, after removing the photoresist film, boron ions are ion-implanted at a low concentration into the polycrystalline silicon film 3 by self-alignment using the gate electrode 5 as a mask, and then 1 × 1.
A P type drain region 7 having an impurity concentration of 0 17 to 1 × 10 18 cm −3 is formed.

【0016】この際、先に形成したP+ 型ソース領域6
にも再びホウ素が導入されるが、P+ 型ソース領域6の
不純物濃度は十分に高いためドレイン領域形成の際のホ
ウ素導入によって何ら影響を受けることはない。
At this time, the P + type source region 6 previously formed
Boron is again introduced into the semiconductor substrate, but the impurity concentration of the P + type source region 6 is sufficiently high and is not affected by the introduction of boron at the time of forming the drain region.

【0017】図2(a),(b)は本発明の第2の実施
例の製造方法を説明するための工程順に示した断面図で
ある。
2 (a) and 2 (b) are sectional views showing the order of steps for explaining the manufacturing method of the second embodiment of the present invention.

【0018】まず、図2(a)に示すように、シリコン
基板1の上に形成した酸化シリコン膜2の上に厚さ10
0〜150nmの多結晶シリコン膜を堆積してパターニ
ングしゲート電極およびブロック電極5aを形成し、ホ
ウ素を1×1018〜1×1019cm-3の不純物濃度にな
るように導入する。次に、ゲート電極5およびブロック
電極5aを含む表面に厚さ20〜50nmの酸化シリコ
ン膜を堆積してゲート絶縁膜4を形成する。次に、ブロ
ック電極5a上のゲート絶縁膜4を選択的にエッチング
してコンタクトホール8を形成する。
First, as shown in FIG. 2A, a silicon oxide film 2 formed on a silicon substrate 1 has a thickness of 10
A polycrystalline silicon film of 0 to 150 nm is deposited and patterned to form a gate electrode and a block electrode 5a, and boron is introduced so as to have an impurity concentration of 1 × 10 18 to 1 × 10 19 cm −3 . Next, a silicon oxide film having a thickness of 20 to 50 nm is deposited on the surface including the gate electrode 5 and the block electrode 5a to form the gate insulating film 4. Next, the gate insulating film 4 on the block electrode 5a is selectively etched to form a contact hole 8.

【0019】次に、図2(b)に示すように、ゲート絶
縁膜4の上に厚さ30〜50nmの多結晶シリコン膜3
を堆積した後、リンを導入してパターニングし、1×1
17〜1×1018cm-3の不純物濃度を有する活性領域
を形成する。次に、900℃の窒素雰囲気中で熱処理
し、コンタクトホール8のブロック電極5aから多結晶
シリコン膜3中へホウ素を拡散させて1×1018cm-3
未満の不純物濃度のP-型ドレイン領域7を形成する。
この際、熱処理時間を調節することによりゲート電極5
の端部でP- 型ドレイン領域7を形成するホウ素の拡散
を停止させることができる。P- 型ドレイン領域7の端
部がゲート電極5の端部より多少内側に入り込んでもT
FTの電気的特性に重大な影響を与えないが、従来の低
濃度オフセット領域を有するTFTをこの方法で製造す
る場合にはフォトレジストマスクを用いてオフセット領
域長を厳密にコントロールしなけらばならず製造の難易
度が増す。次に、フォトレジスト膜を用いて多結晶シリ
コン膜3のチャネル領域及びP- 型ドレイン領域7をマ
スクし、多結晶シリコン膜3にホウ素を高濃度に導入し
て1×1019〜1×1020cm-3の不純物濃度を有する
+ 型ソース領域6を形成する。
Next, as shown in FIG. 2B, a polycrystalline silicon film 3 having a thickness of 30 to 50 nm is formed on the gate insulating film 4.
Then, phosphorus is introduced and patterned to form 1 × 1
An active region having an impurity concentration of 0 17 to 1 × 10 18 cm −3 is formed. Next, heat treatment is performed in a nitrogen atmosphere at 900 ° C. to diffuse boron from the block electrode 5a in the contact hole 8 into the polycrystalline silicon film 3 to form 1 × 10 18 cm −3.
A P type drain region 7 having an impurity concentration of less than is formed.
At this time, the gate electrode 5 is adjusted by adjusting the heat treatment time.
It is possible to stop the diffusion of boron forming the P type drain region 7 at the edge of the. Even if the end of the P type drain region 7 is slightly inward from the end of the gate electrode 5, T
Although it does not seriously affect the electrical characteristics of FT, when a conventional TFT having a low concentration offset region is manufactured by this method, the length of the offset region must be strictly controlled using a photoresist mask. The difficulty of manufacturing increases. Next, the photoresist film is used to mask the channel region of the polycrystalline silicon film 3 and the P -type drain region 7, and boron is introduced into the polycrystalline silicon film 3 at a high concentration to obtain 1 × 10 19 to 1 × 10 7. A P + type source region 6 having an impurity concentration of 20 cm −3 is formed.

【0020】[0020]

【発明の効果】以上説明したように本発明は、ドレイン
領域の不純物濃度をソース領域の不純物濃度よりも低
く、且つドレイン領域内での不純物濃度分布をほぼ一定
にすることにより、オフセット領域をなくし、フォトレ
ジスト膜を用いて高濃度不純物をソース領域に導入する
際の、ゲート電極に対するフォトレジスト膜のアライメ
ント精度に対する要求を緩和できるという効果を有す
る。
As described above, the present invention eliminates the offset region by making the impurity concentration in the drain region lower than the impurity concentration in the source region and making the impurity concentration distribution in the drain region substantially constant. The effect of relaxing the requirement for the alignment accuracy of the photoresist film with respect to the gate electrode when introducing a high concentration impurity into the source region using the photoresist film is obtained.

【0021】また、本発明のTFTをスタテイックRA
Mの負荷素子として使用する際に特に重要なTFTのオ
フ特性が従来のTFTと比較して何ら損われることもな
い。
Further, the TFT of the present invention can be used as a static RA.
When used as a load element of M, the off characteristic of the TFT, which is particularly important, is not impaired as compared with the conventional TFT.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を説明するための断面
図。
FIG. 1 is a cross-sectional view for explaining a first embodiment of the present invention.

【図2】本発明の第2の実施例の製造方法を説明するた
めの工程順に示した断面図。
2A to 2D are sectional views showing the manufacturing method of the second embodiment of the present invention in the order of steps for explaining the manufacturing method.

【図3】従来のTFTの製造方法を説明するための工程
順に示した断面図。
3A to 3D are cross-sectional views showing the order of steps for explaining a conventional method for manufacturing a TFT.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 酸化シリコン膜 3 多結晶シリコン膜 4 ゲート絶縁膜 5 ゲート電極 5a ブロック電極 6 P+ 型ソース領域 7 P- 型ドレイン領域 8 コンタクトホール 9 フォトレジスト膜 10 P+ 型ドレイン領域 11 P- 型オフセット領域1 Silicon Substrate 2 Silicon Oxide Film 3 Polycrystalline Silicon Film 4 Gate Insulating Film 5 Gate Electrode 5a Block Electrode 6 P + Type Source Region 7 P Type Drain Region 8 Contact Hole 9 Photoresist Film 10 P + Type Drain Region 11 P Mold offset area

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に設けた絶縁膜上に選択的
に設けた一導電型の多結晶シリコン膜と、前記多結晶シ
リコン膜の表面に設けたゲート絶縁膜と、前記ゲート絶
縁膜上に設けたゲート電極と、前記ゲート電極に整合し
て前記多結晶シリコン膜に設けた高不純物濃度の逆導電
型ソース領域と、前記ゲート電極に整合して前記多結晶
シリコン膜に設けた前記ソース領域よりも低不純物濃度
で且つほぼ均一な濃度分布を有する逆導電型ドレイン領
域とを備えたことを特徴とする薄膜トランジスタ。
1. A polycrystalline silicon film of one conductivity type selectively provided on an insulating film provided on a semiconductor substrate, a gate insulating film provided on the surface of the polycrystalline silicon film, and on the gate insulating film. A high-impurity-concentration reverse-conductivity-type source region provided in the polycrystalline silicon film in alignment with the gate electrode, and the source provided in the polycrystalline silicon film in alignment with the gate electrode. A thin film transistor having an opposite conductivity type drain region having an impurity concentration lower than that of the region and having a substantially uniform concentration distribution.
【請求項2】 半導体基板上に設けた絶縁膜上に設けた
ゲート電極及び一導電型不純物を含むブロック電極と、
前記ゲート電極及びブロック電極を含む表面に設けたゲ
ート絶縁膜と、前記ゲート絶縁膜に設けて前記ブロック
電極の上面を露出させるコンタクトホールと、前記コン
タクトホールを含むゲート絶縁膜の上に設けた逆導電型
の多結晶シリコン膜と、前記ゲート電極の一方の側の前
記コンタクトホールを介してブロック電極に接続する多
結晶シリコン膜に設けた一導電型低不純物濃度を有する
ドレイン領域と前記ゲート電極の他方の側に設けて前記
ドレイン領域よりも高濃度の一導電型不純物濃度を有す
るソース領域とを備えたことを特徴とする薄膜トランジ
スタ。
2. A gate electrode provided on an insulating film provided on a semiconductor substrate and a block electrode containing an impurity of one conductivity type,
A gate insulating film provided on the surface including the gate electrode and the block electrode, a contact hole provided on the gate insulating film to expose the upper surface of the block electrode, and a reverse provided on the gate insulating film including the contact hole. A conductive type polycrystalline silicon film, a drain region having one conductivity type low impurity concentration provided in the polycrystalline silicon film connected to the block electrode through the contact hole on one side of the gate electrode, and the gate electrode A thin film transistor, comprising: a source region provided on the other side and having a higher concentration of one conductivity type impurity concentration than the drain region.
JP26447292A 1992-10-02 1992-10-02 Thin film transistor Expired - Fee Related JP2894108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26447292A JP2894108B2 (en) 1992-10-02 1992-10-02 Thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26447292A JP2894108B2 (en) 1992-10-02 1992-10-02 Thin film transistor

Publications (2)

Publication Number Publication Date
JPH06120507A true JPH06120507A (en) 1994-04-28
JP2894108B2 JP2894108B2 (en) 1999-05-24

Family

ID=17403701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26447292A Expired - Fee Related JP2894108B2 (en) 1992-10-02 1992-10-02 Thin film transistor

Country Status (1)

Country Link
JP (1) JP2894108B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128577A1 (en) * 2012-02-28 2013-09-06 富士通株式会社 Semiconductor device, and production method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128577A1 (en) * 2012-02-28 2013-09-06 富士通株式会社 Semiconductor device, and production method therefor
JPWO2013128577A1 (en) * 2012-02-28 2015-07-30 富士通株式会社 Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2894108B2 (en) 1999-05-24

Similar Documents

Publication Publication Date Title
US4419809A (en) Fabrication process of sub-micrometer channel length MOSFETs
JP3521246B2 (en) Field effect transistor and method of manufacturing the same
JPH0347577B2 (en)
EP0083784B1 (en) Procedure for manufacturing integrated circuit devices having sub-micrometer dimension elements, and resulting structure
KR910006700B1 (en) The method of manufacturing of mos type semiconductor device
JPH02228041A (en) Manufacture of semiconductor device
KR950001950B1 (en) Method of making mos fet within ic
KR950011020B1 (en) Semiconductor device and its making method
JPH06120507A (en) Thin film transistor
JP2000294782A (en) Manufacture of semiconductor device
JPH0548110A (en) Manufacture of semiconductor element
JPS6333868A (en) Manufacture of mis field-effect transistor
JP2553778B2 (en) Method of manufacturing thin film semiconductor device
JPH04346476A (en) Manufacture of mosfet
JPH0369168A (en) Thin film field effect transistor
KR100223918B1 (en) Structure of semiconductor devices and the manufacturing method thereof
JPH0621461A (en) Thin-film transistor
JP2967596B2 (en) Method for manufacturing semiconductor device
JPH01143358A (en) Manufacture of mos semiconductor integrated circuit device
JPS6229165A (en) Manufacture of vertical semiconductor device
JPH01125977A (en) Mos semiconductor device
KR0135670B1 (en) Method of manufacturing semiconductor device
JPH03289137A (en) Thin film transistor
JPH04109630A (en) Manufacture of mos type semiconductor device
JPH0555585A (en) Manufacture of insulated-gate field-effect transistor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990202

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees