JPH0327601B2 - - Google Patents
Info
- Publication number
- JPH0327601B2 JPH0327601B2 JP63103885A JP10388588A JPH0327601B2 JP H0327601 B2 JPH0327601 B2 JP H0327601B2 JP 63103885 A JP63103885 A JP 63103885A JP 10388588 A JP10388588 A JP 10388588A JP H0327601 B2 JPH0327601 B2 JP H0327601B2
- Authority
- JP
- Japan
- Prior art keywords
- nickel
- titanium
- particles
- ultrafine particles
- ultrafine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011882 ultra-fine particle Substances 0.000 claims description 39
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 37
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 28
- 239000002131 composite material Substances 0.000 claims description 28
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 18
- 239000007789 gas Substances 0.000 claims description 18
- 239000010936 titanium Substances 0.000 claims description 18
- 229910052759 nickel Inorganic materials 0.000 claims description 17
- 229910052719 titanium Inorganic materials 0.000 claims description 17
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 15
- 229910052757 nitrogen Inorganic materials 0.000 claims description 14
- 229910001000 nickel titanium Inorganic materials 0.000 claims description 13
- 239000001257 hydrogen Substances 0.000 claims description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims description 11
- 239000002245 particle Substances 0.000 claims description 10
- 238000002844 melting Methods 0.000 claims description 6
- 230000008018 melting Effects 0.000 claims description 6
- 239000011261 inert gas Substances 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 4
- 239000011812 mixed powder Substances 0.000 claims description 4
- 238000007865 diluting Methods 0.000 claims description 2
- 238000001704 evaporation Methods 0.000 claims description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- 239000000203 mixture Substances 0.000 description 7
- 150000002431 hydrogen Chemical class 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- HZEWFHLRYVTOIW-UHFFFAOYSA-N [Ti].[Ni] Chemical compound [Ti].[Ni] HZEWFHLRYVTOIW-UHFFFAOYSA-N 0.000 description 5
- 125000004429 atom Chemical group 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- 229910001069 Ti alloy Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000635 electron micrograph Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000011246 composite particle Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- -1 sensors Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
本発明は粒径1μm以下の超微粒化したニツケ
ル粒子と窒化チタン粒子が接合した複合超微粒子
の製造法に関する。この複合超微量子は触媒、例
えば水素と一般化炭素よりメタンを合成する触媒
として有用であり、またセンサー機能、電磁気的
性質等の発現も期待される。
ル粒子と窒化チタン粒子が接合した複合超微粒子
の製造法に関する。この複合超微量子は触媒、例
えば水素と一般化炭素よりメタンを合成する触媒
として有用であり、またセンサー機能、電磁気的
性質等の発現も期待される。
従来技術
従来の超微粒子の複合化技術としては、抵抗加
熱により別々に蒸発させた金属蒸気または金属酸
化物蒸気の両者を酸化雰囲気中で凝縮させる、酸
化物超微粒子同士の複合超微粒子の製造法がある
(例えば、フイジクスVol.7(1985)No.5、P292)。
熱により別々に蒸発させた金属蒸気または金属酸
化物蒸気の両者を酸化雰囲気中で凝縮させる、酸
化物超微粒子同士の複合超微粒子の製造法がある
(例えば、フイジクスVol.7(1985)No.5、P292)。
この方法では、超微粒子の複合化が必ずしも完
全でなく、また、酸化物以外の複合超微粒子を得
ることができない問題点があつた。
全でなく、また、酸化物以外の複合超微粒子を得
ることができない問題点があつた。
発明の目的
本発明は自然界に存在しない超微粒子化された
ニツケルと窒化チタン超微粒子の接合した複合超
微粒子を製造する方法を提供することを目的とす
る。
ニツケルと窒化チタン超微粒子の接合した複合超
微粒子を製造する方法を提供することを目的とす
る。
発明の構成
本発明者らは前記目的を達成すべく鋭意研究の
結果、窒素または窒素と水素の混合ガスあるいは
これらのガスを不活性ガスにより希釈したガス中
で発生させた熱プラズマにより、ニツケル−チタ
ン合金またはニツケルとチタンの混合粉末を加熱
溶融して蒸発させ、蒸発物を凝縮させると、ニツ
ケルと窒化チタンの超微粒子の接合した複合超微
粒子を形成することを見出した。この知見に基づ
いて本発明を完成したものである。
結果、窒素または窒素と水素の混合ガスあるいは
これらのガスを不活性ガスにより希釈したガス中
で発生させた熱プラズマにより、ニツケル−チタ
ン合金またはニツケルとチタンの混合粉末を加熱
溶融して蒸発させ、蒸発物を凝縮させると、ニツ
ケルと窒化チタンの超微粒子の接合した複合超微
粒子を形成することを見出した。この知見に基づ
いて本発明を完成したものである。
本発明の要旨は、
チタンを20原子%以上含んだニツケル−チタン
合金またはニツケルとチタンの混合粉末を窒素ま
たは窒素と水素の混合ガスあるいはこれらのガス
の不活性ガスにより希釈したガス中で発生させた
熱プラズマにより溶融・蒸発させ、蒸発物を凝縮
させて、ニツケル微粒子と窒化チタン微粒子を接
合することを特徴とするニツケルと窒化チタン超
微粒子の接合した複合超微粒子の製造法にある。
合金またはニツケルとチタンの混合粉末を窒素ま
たは窒素と水素の混合ガスあるいはこれらのガス
の不活性ガスにより希釈したガス中で発生させた
熱プラズマにより溶融・蒸発させ、蒸発物を凝縮
させて、ニツケル微粒子と窒化チタン微粒子を接
合することを特徴とするニツケルと窒化チタン超
微粒子の接合した複合超微粒子の製造法にある。
この複合超微粒子の生成機構の詳細は明らかで
はないが、本発明者らがさきに見出した水素プラ
ズマによる金属超微粒子の生成現象(特許第
1146170号)と同様に、アークプラズマ内で活性
化された水素や窒素(原子状あるいはイオン状の
水素や窒素)と溶融金属との反応過程において、
該溶融金属が強制的に蒸発されるとともに、この
蒸気がニツケル−チタン合金粒子として凝縮し、
この粒子が凝固・冷却する際に、該粒子中のチタ
ンが窒化チタンとして晶出することにより、ニツ
ケルと窒化チタンの複合化した超微粒子が形成さ
れるものと考えられる。
はないが、本発明者らがさきに見出した水素プラ
ズマによる金属超微粒子の生成現象(特許第
1146170号)と同様に、アークプラズマ内で活性
化された水素や窒素(原子状あるいはイオン状の
水素や窒素)と溶融金属との反応過程において、
該溶融金属が強制的に蒸発されるとともに、この
蒸気がニツケル−チタン合金粒子として凝縮し、
この粒子が凝固・冷却する際に、該粒子中のチタ
ンが窒化チタンとして晶出することにより、ニツ
ケルと窒化チタンの複合化した超微粒子が形成さ
れるものと考えられる。
本発明における出発物質としては、ニツケルと
チタンの合金をそのまま用いてもよいがニツケル
粉とチタン粉を所定の割合で混合した混合物を熱
プラズマで加熱・溶融しても良い(この加熱・溶
融により、該混合物は合金化される)。なお、出
発物質としてのニツケル−チタの合金あるいは混
合物の組成は、ニツケルが1〜80原子%、チタン
が99〜20原子%の範囲、望ましくはニツケルが10
〜60原子%チタンが90〜40原子%の範囲である。
チタンの合金をそのまま用いてもよいがニツケル
粉とチタン粉を所定の割合で混合した混合物を熱
プラズマで加熱・溶融しても良い(この加熱・溶
融により、該混合物は合金化される)。なお、出
発物質としてのニツケル−チタの合金あるいは混
合物の組成は、ニツケルが1〜80原子%、チタン
が99〜20原子%の範囲、望ましくはニツケルが10
〜60原子%チタンが90〜40原子%の範囲である。
チタンが20原子%未満であると、生成したNi
超微粒子中にチタンが固溶し複合超微粒子は得ら
れないので、20原子%以上であることが必要であ
る。
超微粒子中にチタンが固溶し複合超微粒子は得ら
れないので、20原子%以上であることが必要であ
る。
熱プラズマを発生する雰囲気としては、窒素ま
たは窒素と水素の混合ガスあるいはこれらのガス
を不活性ガスで希釈した混合ガスが使用される
が、超微粒子の発生効率やプラズマの安定性、操
業性などの観点より、窒素を1〜30%(体積比)
含む窒素と水素の混合ガスあるいは窒素を1〜20
%、水素を20〜70%を含む窒素と水素と不活性ガ
スとの混合ガスとすることが望ましい。また、こ
の雰囲気の圧力は、熱プラズマを安定に発生・維
持しうる範囲(通常、約50Torr〜5atm)であれ
ば任意であるが、装置形態や操業性の観点からは
大気圧近傍の圧力が望ましい。
たは窒素と水素の混合ガスあるいはこれらのガス
を不活性ガスで希釈した混合ガスが使用される
が、超微粒子の発生効率やプラズマの安定性、操
業性などの観点より、窒素を1〜30%(体積比)
含む窒素と水素の混合ガスあるいは窒素を1〜20
%、水素を20〜70%を含む窒素と水素と不活性ガ
スとの混合ガスとすることが望ましい。また、こ
の雰囲気の圧力は、熱プラズマを安定に発生・維
持しうる範囲(通常、約50Torr〜5atm)であれ
ば任意であるが、装置形態や操業性の観点からは
大気圧近傍の圧力が望ましい。
該合金を加熱・溶融して蒸発させるための熱プ
ラズマとしては、直流または交流アーク、移行式
または非移行式プラズマジエツトが利用できる
が、熱効率の点より、直流アークあるいは移行式
プラズマジエツトを使用することが望ましい。
ラズマとしては、直流または交流アーク、移行式
または非移行式プラズマジエツトが利用できる
が、熱効率の点より、直流アークあるいは移行式
プラズマジエツトを使用することが望ましい。
本発明の方法におけるニツケル−窒化チタンの
複合超微粒子を製造するための装置としては第1
図に示したような、本発明者らが先に発明した金
属超微粒子の製造装置(特許第1226806号)が挙
げられる。図中、1は密閉容器、2は熱プラズ
マ、3は溶融ニツケル−チタン合金、4は雰囲気
ガスの導入口、5は溶解台、6は冷却器、7は超
微粒子捕集器である。
複合超微粒子を製造するための装置としては第1
図に示したような、本発明者らが先に発明した金
属超微粒子の製造装置(特許第1226806号)が挙
げられる。図中、1は密閉容器、2は熱プラズ
マ、3は溶融ニツケル−チタン合金、4は雰囲気
ガスの導入口、5は溶解台、6は冷却器、7は超
微粒子捕集器である。
溶融ニツケル−チタン合金から発生した蒸気
は、雰囲気ガス中で凝縮・冷却されて複合超微粒
子となり、雰囲気ガス導入口4から冷却器6を経
て超微粒子捕集器7へ向かう雰囲気ガス流によつ
て捕集器に搬送され、捕集される。
は、雰囲気ガス中で凝縮・冷却されて複合超微粒
子となり、雰囲気ガス導入口4から冷却器6を経
て超微粒子捕集器7へ向かう雰囲気ガス流によつ
て捕集器に搬送され、捕集される。
実施例 1
第1図に示す装置を用い、熱プラズマ発生方法
としては直流アーク(正極性、電流260A、電圧
25〜30V)を、雰囲気は7%窒素−46%水素−47
%アルゴンをそれぞれ使用し、80原子%チタン−
20原子%ニツケル合金を加熱・溶融し、ニツケル
−窒化チタンの複合超微粒子を作製した。得られ
たニツケル−窒化チタンの複合超微粒子の電子顕
微鏡写真を第2図に示す。この複合超微粒子は、
中央部に窒化チタンがあり、その両端や側面にニ
ツケルが結合したもので、その粒径はいずれも
0.5μm以下の超微粒子となつている。
としては直流アーク(正極性、電流260A、電圧
25〜30V)を、雰囲気は7%窒素−46%水素−47
%アルゴンをそれぞれ使用し、80原子%チタン−
20原子%ニツケル合金を加熱・溶融し、ニツケル
−窒化チタンの複合超微粒子を作製した。得られ
たニツケル−窒化チタンの複合超微粒子の電子顕
微鏡写真を第2図に示す。この複合超微粒子は、
中央部に窒化チタンがあり、その両端や側面にニ
ツケルが結合したもので、その粒径はいずれも
0.5μm以下の超微粒子となつている。
実施例 2
実施例1の装置およびプラズマ発生条件、雰囲
気を使用し、出発物質であるニツケル−チタン合
金チタン濃度を10〜90原子%の範囲で変化させて
ニツケル−窒化チタンの複合超微粒子を作製し
た。得られた複合超微粒子中の窒化チタン濃度
(モル%)とニツケル−チタン合金中のチタン濃
度(原子%)の関係を第3図に示す。同図より、
原料中のチタン濃度が20原子%未満では複合超微
粒子が得られず、チタン濃度が約40原子%以上に
おいて、複合超微粒子中の窒化チタン濃度が急激
に増大することがわかる。
気を使用し、出発物質であるニツケル−チタン合
金チタン濃度を10〜90原子%の範囲で変化させて
ニツケル−窒化チタンの複合超微粒子を作製し
た。得られた複合超微粒子中の窒化チタン濃度
(モル%)とニツケル−チタン合金中のチタン濃
度(原子%)の関係を第3図に示す。同図より、
原料中のチタン濃度が20原子%未満では複合超微
粒子が得られず、チタン濃度が約40原子%以上に
おいて、複合超微粒子中の窒化チタン濃度が急激
に増大することがわかる。
本発明の方法で作つた50原子%Ni−TiN複合
超微粒子を使用し、H2:CO=1:1の混合ガス
を原料とし、触媒温度を200〜350℃に変化させて
メタンを合成した。なお、比較のためにNiと
TiNの混合超微粉、ラネ−NiとTi超微粒子の混
合粉も併せて実験に供した。
超微粒子を使用し、H2:CO=1:1の混合ガス
を原料とし、触媒温度を200〜350℃に変化させて
メタンを合成した。なお、比較のためにNiと
TiNの混合超微粉、ラネ−NiとTi超微粒子の混
合粉も併せて実験に供した。
合成反応速度はいずれの場合もある温度(活性
増大温度)を境にして急激に増大する傾向を示し
た。その活性増大温度は混合超微粉(約300℃)、
ラネ−Ni−TiN(約280℃)、本発明の複合超微粒
子(250℃)の順に低下し、CO転化率は逆に上記
の順序で増大する傾向を示した。これにより複合
超微粒子が極めて高い触媒活性を有することがわ
かる。
増大温度)を境にして急激に増大する傾向を示し
た。その活性増大温度は混合超微粉(約300℃)、
ラネ−Ni−TiN(約280℃)、本発明の複合超微粒
子(250℃)の順に低下し、CO転化率は逆に上記
の順序で増大する傾向を示した。これにより複合
超微粒子が極めて高い触媒活性を有することがわ
かる。
発明の効果
本発明の方法によれば、簡易な装置により、容
易かつ無公害的にニツケルと窒化チタンの複合化
した超微粒子を製造することができる。このよう
にして得られたニツケル−窒化チタンの複合超微
粒子は、触媒やセンサー、電子材料として新しい
機能を開発することができるという優れた効果も
発現し得られるという効果を有する。
易かつ無公害的にニツケルと窒化チタンの複合化
した超微粒子を製造することができる。このよう
にして得られたニツケル−窒化チタンの複合超微
粒子は、触媒やセンサー、電子材料として新しい
機能を開発することができるという優れた効果も
発現し得られるという効果を有する。
第1図は本発明の方法を実施する装置の概要
図、第2図は本発明の方法で得られたニツケルと
窒化チタン超微粒子の複合超微粒子の電子顕微鏡
写真、第3図は原料のチタン濃度と得られる複合
超微粒子中の窒化チタン濃度(モル%)の関係図
を示す。 1:密閉容器、2:熱プラズマ、3:溶融ニツ
ケル−チタン合金、4:雰囲気ガスの導入口、
5:溶解台、6:冷却器、7:超微粒子捕集器。
図、第2図は本発明の方法で得られたニツケルと
窒化チタン超微粒子の複合超微粒子の電子顕微鏡
写真、第3図は原料のチタン濃度と得られる複合
超微粒子中の窒化チタン濃度(モル%)の関係図
を示す。 1:密閉容器、2:熱プラズマ、3:溶融ニツ
ケル−チタン合金、4:雰囲気ガスの導入口、
5:溶解台、6:冷却器、7:超微粒子捕集器。
Claims (1)
- 1 チタンを20原子%以上含んだニツケル−チタ
ン合金またはニツケルとチタンの混合粉末を、窒
素または窒素と水素の混合ガスあるいはこれらの
ガスを不活性ガスにより希釈したガス中で発生さ
せた熱プラズマにより溶融・蒸発させ、蒸発物を
凝縮させて、ニツケル超微粒子と窒化チタン超微
粒子を接合することを特徴とするニツケルと窒化
チタン超微粒子の接合した複合超微粒子の製造
法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10388588A JPH01275708A (ja) | 1988-04-28 | 1988-04-28 | ニッケルと窒化チタン超微粒子の接合した複合超微粒子の製造法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10388588A JPH01275708A (ja) | 1988-04-28 | 1988-04-28 | ニッケルと窒化チタン超微粒子の接合した複合超微粒子の製造法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01275708A JPH01275708A (ja) | 1989-11-06 |
JPH0327601B2 true JPH0327601B2 (ja) | 1991-04-16 |
Family
ID=14365887
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10388588A Granted JPH01275708A (ja) | 1988-04-28 | 1988-04-28 | ニッケルと窒化チタン超微粒子の接合した複合超微粒子の製造法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01275708A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003530679A (ja) * | 2000-04-10 | 2003-10-14 | テトロニクス リミテッド | ツイン・プラズマ・トーチ装置 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008140786A1 (en) | 2007-05-11 | 2008-11-20 | Sdc Materials, Inc. | Method and apparatus for making uniform and ultrasmall nanoparticles |
US8575059B1 (en) | 2007-10-15 | 2013-11-05 | SDCmaterials, Inc. | Method and system for forming plug and play metal compound catalysts |
TWI483999B (zh) * | 2009-06-15 | 2015-05-11 | Toray Industries | 黑色複合微粒子、黑色樹脂組成物、彩色濾光片基板及液晶顯示裝置 |
US8652992B2 (en) | 2009-12-15 | 2014-02-18 | SDCmaterials, Inc. | Pinning and affixing nano-active material |
US9126191B2 (en) | 2009-12-15 | 2015-09-08 | SDCmaterials, Inc. | Advanced catalysts for automotive applications |
US9039916B1 (en) | 2009-12-15 | 2015-05-26 | SDCmaterials, Inc. | In situ oxide removal, dispersal and drying for copper copper-oxide |
US8669202B2 (en) | 2011-02-23 | 2014-03-11 | SDCmaterials, Inc. | Wet chemical and plasma methods of forming stable PtPd catalysts |
JP2014524352A (ja) | 2011-08-19 | 2014-09-22 | エスディーシーマテリアルズ, インコーポレイテッド | 触媒作用および触媒コンバータに使用するための被覆基材ならびにウォッシュコート組成物で基材を被覆する方法 |
US9156025B2 (en) | 2012-11-21 | 2015-10-13 | SDCmaterials, Inc. | Three-way catalytic converter using nanoparticles |
US9511352B2 (en) | 2012-11-21 | 2016-12-06 | SDCmaterials, Inc. | Three-way catalytic converter using nanoparticles |
JP5992358B2 (ja) * | 2013-04-10 | 2016-09-14 | 東芝三菱電機産業システム株式会社 | 微粒子生成装置 |
WO2015013545A1 (en) | 2013-07-25 | 2015-01-29 | SDCmaterials, Inc. | Washcoats and coated substrates for catalytic converters |
CA2926135A1 (en) | 2013-10-22 | 2015-04-30 | SDCmaterials, Inc. | Compositions of lean nox trap |
JP2016536120A (ja) | 2013-10-22 | 2016-11-24 | エスディーシーマテリアルズ, インコーポレイテッド | ヘビーデューティディーゼルの燃焼機関のための触媒デザイン |
WO2015143225A1 (en) | 2014-03-21 | 2015-09-24 | SDCmaterials, Inc. | Compositions for passive nox adsorption (pna) systems |
CN104858443A (zh) * | 2015-05-25 | 2015-08-26 | 常熟锐钛金属制品有限公司 | 一种高纯度纳米级钛镍合金粉的制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59190302A (ja) * | 1983-03-11 | 1984-10-29 | Tokyo Tekko Kk | 超微粒子製造方法および装置 |
JPS61113703A (ja) * | 1984-11-09 | 1986-05-31 | Ulvac Corp | 微粉末製造方法 |
-
1988
- 1988-04-28 JP JP10388588A patent/JPH01275708A/ja active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59190302A (ja) * | 1983-03-11 | 1984-10-29 | Tokyo Tekko Kk | 超微粒子製造方法および装置 |
JPS61113703A (ja) * | 1984-11-09 | 1986-05-31 | Ulvac Corp | 微粉末製造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003530679A (ja) * | 2000-04-10 | 2003-10-14 | テトロニクス リミテッド | ツイン・プラズマ・トーチ装置 |
Also Published As
Publication number | Publication date |
---|---|
JPH01275708A (ja) | 1989-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0327601B2 (ja) | ||
US4642207A (en) | Process for producing ultrafine particles of ceramics | |
US4610857A (en) | Method for making ultra-fine ceramic particles | |
JP2662986B2 (ja) | タングステンもしくは酸化タングステン超微粒子の製造方法 | |
Majumdar et al. | Copper (I) oxide powder generation by spray pyrolysis | |
JP3211960B2 (ja) | バナジウムを多く含む水素吸蔵合金の製造方法 | |
JP3645931B2 (ja) | 複合超微粒子の製造方法 | |
JPH11350010A (ja) | 金属粉末の製造方法 | |
JP5312341B2 (ja) | ナノサイズ粉末の製造方法 | |
JP2823494B2 (ja) | 非晶質金属超微粒子及びその製造方法 | |
JP2004124257A (ja) | 金属銅微粒子及びその製造方法 | |
JPS6140723B2 (ja) | ||
JPS63170212A (ja) | 金属硼化物の超微粉の製造法 | |
JPS6156209A (ja) | 貴金属超微粒子の製造法 | |
Aoki et al. | Amorphization of the TiV system by mechanical alloying and mechanical grinding in a hydrogen and nitrogen atmosphere | |
JPS61242902A (ja) | 高融点金属酸化物の超微粒子の製造法 | |
JPS62282635A (ja) | 窒化アルミニウム超微粉と耐酸化性アルミニウム超微粉の混合超微粉の製造法 | |
JPH06321511A (ja) | 窒化アルミニウム超微粒子及びその製造方法と超微粒子焼結体 | |
US5549951A (en) | Composite ultrafine particles of nitrides, method for production and sintered article thereof | |
JPH0243683B2 (ja) | ||
Li et al. | Preparation of fine Nb3Al powder by hydriding and dehydriding of bulk material | |
JP2001098309A (ja) | 金属微粉末の製造方法及びその装置並びに金属微粉末 | |
JP2005154834A (ja) | ルテニウム超微粉末およびその製造方法 | |
JPS61270301A (ja) | 水素吸蔵合金とその製造方法 | |
JPS61153208A (ja) | 高融点金属を媒体とした金属超微粉の製造法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |