JPH0326507B2 - - Google Patents

Info

Publication number
JPH0326507B2
JPH0326507B2 JP56184686A JP18468681A JPH0326507B2 JP H0326507 B2 JPH0326507 B2 JP H0326507B2 JP 56184686 A JP56184686 A JP 56184686A JP 18468681 A JP18468681 A JP 18468681A JP H0326507 B2 JPH0326507 B2 JP H0326507B2
Authority
JP
Japan
Prior art keywords
fuel
flow path
carbon dioxide
electrode
oxidizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56184686A
Other languages
Japanese (ja)
Other versions
JPS5887770A (en
Inventor
Masatsugu Yoshimori
Hitoshi Kuramoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56184686A priority Critical patent/JPS5887770A/en
Publication of JPS5887770A publication Critical patent/JPS5887770A/en
Publication of JPH0326507B2 publication Critical patent/JPH0326507B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04104Regulation of differential pressures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 (1) 発明の技術分野 本発明は燃料電池の酸化剤極と燃料極との間の
極間差圧を制御する極間差圧制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to an interelectrode pressure differential control device for controlling an interelectrode pressure differential between an oxidizer electrode and a fuel electrode of a fuel cell.

第1図は燃料電池の基本構造を示した斜視図で
ある。1は電解液マトリツクスで、フエノール系
繊維の不織布または炭化けい素の微粒子からなる
層にリン酸電解液を保持させたものである。この
電解液マトリツクス1を両側からはさむ形で酸化
剤極2aと燃料極2bとが配置されている。この
2つの電極は、カーボンペーパ等を基剤とし、そ
の電解液マトリツクス1と接する面には、プラチ
ナ等の触媒が付着されており、裏面には撥水処理
を施した構造となつている。
FIG. 1 is a perspective view showing the basic structure of a fuel cell. 1 is an electrolyte matrix in which a phosphoric acid electrolyte is held in a layer made of a nonwoven fabric of phenolic fibers or fine particles of silicon carbide. An oxidizer electrode 2a and a fuel electrode 2b are arranged to sandwich the electrolyte matrix 1 from both sides. These two electrodes are made of carbon paper or the like, have a catalyst such as platinum adhered to the surface in contact with the electrolyte matrix 1, and have a water-repellent treatment applied to the back surface.

この電解液マトリツクス1と酸化剤極2aおよ
び燃料極2bとから構成されたものは、単電池と
よばれ一体化して製造されるのが普通である。
A cell composed of the electrolyte matrix 1, the oxidizer electrode 2a, and the fuel electrode 2b is called a single cell and is usually manufactured in an integrated manner.

この単電池を積層して燃料電池積層体を形成す
るために、カーボン板3a,3bが単電池をはさ
みこむような形で配置されている。
In order to form a fuel cell stack by stacking these single cells, carbon plates 3a and 3b are arranged so as to sandwich the single cells.

このカーボン板3a,3bには、それぞれ酸化
剤極2a、燃料極2bへそれぞれ酸化剤、燃料を
供給するためのガス流路4a,4bが形成されて
いる。
Gas channels 4a and 4b are formed in the carbon plates 3a and 3b for supplying an oxidizer and fuel to the oxidizer electrode 2a and fuel electrode 2b, respectively.

燃料電池の電極反応は、燃料ガス(または酸化
剤ガス)と触媒および電解液の共存下での反応、
すなわち気体、固体、液体の三相共存下における
界面反応である。すなわち正常な動作状態下で
は、流路4b中を流れる燃料流中のH2が燃料極
2bの表面でH+となり、これが電解液マトリツ
クス1内を酸化剤極2aへと移動し、酸化剤極2
aの表面で流路4a内を流れる酸化剤流中のO2
から生じたO--と反応してH2O(水)が生成され
る。
The electrode reaction of a fuel cell is a reaction in the coexistence of fuel gas (or oxidant gas), catalyst, and electrolyte.
In other words, it is an interfacial reaction in the coexistence of three phases: gas, solid, and liquid. That is, under normal operating conditions, H 2 in the fuel flow flowing through the flow path 4b becomes H + on the surface of the fuel electrode 2b, which moves within the electrolyte matrix 1 to the oxidizer electrode 2a, and is transferred to the oxidizer electrode 2a. 2
O 2 in the oxidant flow flowing in the flow path 4a on the surface of a
H 2 O (water) is generated by reacting with O -- generated from

この際、外部回路を通してエレクトロン(e-
が燃料極2bから酸化剤極2aへと流れ直流電力
が得られる。このような燃料電池の性能を最大限
に引き出すためには、三相界面の維持およびその
制御が綿密に行なわれなければならず、したがつ
て酸化剤極2aと燃料極2bとの間の極間差圧の
制御がきわめて重要な問題となる。
At this time, electrons (e - ) are emitted through the external circuit.
flows from the fuel electrode 2b to the oxidizer electrode 2a, and DC power is obtained. In order to maximize the performance of such a fuel cell, the three-phase interface must be maintained and controlled carefully. Controlling the differential pressure becomes an extremely important issue.

しかも、一般に単電池を構成している酸化剤極
2aや燃料極2bは、カーボンペーパ等の極めて
もろく破損しやすい材質でできており、又電極反
応に際して三相界面を維持し、制御する必要があ
るため酸化剤極2aと燃料極2bとの間の極間差
圧の制御は極めて慎重に行わなければならない。
Moreover, the oxidizer electrode 2a and fuel electrode 2b that generally constitute a single cell are made of extremely brittle and easily damaged materials such as carbon paper, and it is necessary to maintain and control the three-phase interface during electrode reactions. Therefore, the interelectrode pressure difference between the oxidizer electrode 2a and the fuel electrode 2b must be controlled extremely carefully.

また両極間の極間差圧が増大すると、燃料ある
いは酸化剤が他の流路へもれ出し、電極の表面で
燃焼して燃料や酸化剤を消費してしまうクロスオ
ーバが発生する。このクロスオーバが激しくおこ
ると電極自体が燃焼してしまう可能性もあるの
で、電池性能維持の観点からもクロスオーバの発
生は極力防止しなければならない。
Furthermore, when the interelectrode pressure difference between the two electrodes increases, a crossover occurs in which fuel or oxidant leaks into another flow path, burns on the surface of the electrode, and consumes the fuel or oxidant. If this crossover occurs violently, there is a possibility that the electrode itself will burn, so from the viewpoint of maintaining battery performance, the occurrence of crossover must be prevented as much as possible.

少量のクロスオーバであつても、電池反応に寄
与しない反応ガスが存在するわけであるからその
分だけ燃料の利用効率、酸化剤の利用効率が低下
することになり、燃料電池の総合効率も低下す
る。
Even if there is a small amount of crossover, there will be reactant gas that does not contribute to the cell reaction, which will reduce the fuel usage efficiency and oxidant usage efficiency, and the overall efficiency of the fuel cell will also decrease. do.

したがつて燃料電池においては、このクロスオ
ーバを極力防止して燃料の利用効率、酸化剤の利
用効率を高めることにより、総合効率の向上を図
ることが必要である。
Therefore, in a fuel cell, it is necessary to improve the overall efficiency by preventing this crossover as much as possible and increasing the fuel usage efficiency and the oxidant usage efficiency.

(2) 従来技術 第2図は従来の燃料電池の極間差圧の制御装置
の概略を示す構成図である。
(2) Prior Art FIG. 2 is a block diagram schematically showing a conventional control device for interelectrode pressure difference of a fuel cell.

収納容器5内には、第1図で説明したような積
層構造を有する燃料電池が収納されており、囲り
には不活性ガス8が充填されている。
A fuel cell having a stacked structure as described in FIG. 1 is housed in the storage container 5, and the surrounding area is filled with an inert gas 8.

酸化剤流路4aへは酸化剤供給路9から酸化剤
ガスが供給され、排出路10へ排出される。
Oxidizing gas is supplied to the oxidizing agent flow path 4a from the oxidizing agent supply path 9 and is discharged to the exhaust path 10.

燃料流路4bへは、燃料供給路11から燃料ガ
スが供給され、排出路12へ排出される。
Fuel gas is supplied to the fuel flow path 4b from the fuel supply path 11 and is discharged to the exhaust path 12.

収納容器5内の不活性ガス8は不活性ガス供給
流路17から供給されており、通常アルゴンやチ
ツ素等の不活性ガスが使用されている。
The inert gas 8 in the storage container 5 is supplied from an inert gas supply flow path 17, and usually an inert gas such as argon or nitrogen is used.

酸化剤流路4a内を流れる酸化剤ガスの圧力
は、不活性ガス8の圧力を基準として差圧制御器
13により測定される。
The pressure of the oxidant gas flowing in the oxidant flow path 4a is measured by the differential pressure controller 13 based on the pressure of the inert gas 8.

同様に燃料流路4b内の圧力も不活性ガス8を
基準として差圧制御器14により測定される。差
圧制御器13,14は、あらかじめ設定された圧
力差となるようにそれぞれ排出路10,12中に
設けられた圧力調整弁15,16を制御してい
る。
Similarly, the pressure within the fuel flow path 4b is also measured by the differential pressure controller 14 with reference to the inert gas 8. Differential pressure controllers 13 and 14 control pressure regulating valves 15 and 16 provided in discharge passages 10 and 12, respectively, so as to achieve a preset pressure difference.

(3) 従来技術の問題点 このような従来の極間差圧制御装置では、クロ
スオーバをできるだけなくすように、状況に応じ
て差圧制御器13,14の設定値を変更できるよ
うな回路は設けられていないので、燃料電池の特
性変化に応じて常に最適な圧力制御を維持するこ
とはできない。
(3) Problems with the conventional technology In such a conventional interelectrode differential pressure control device, there is no circuit that can change the set values of the differential pressure controllers 13 and 14 according to the situation so as to eliminate crossover as much as possible. Since this is not provided, it is not possible to maintain optimal pressure control at all times in response to changes in the characteristics of the fuel cell.

燃料電池の圧力制御の基本は、前述したように
三相界面の維持、制御をいかに精度よく行うかと
いうことにつきるが、マクロ的にみれば、燃料ガ
スあるいは酸化剤ガスが電極や電解液マトリツク
ス中を突き抜けて他の流路へもれ出すのを防ぐこ
とにある。電極や電解液マトリツクスには粘性抵
抗があるため、極間差圧がわずかに変動してもす
ぐにはクロスオーバとして影響してこない。しか
し、粘性抵抗は温度によつて大きく変化し、更に
長時間の運転により電解液マトリツクス中の電解
液の濃度が変化して粘性抵抗の値が時間とともに
変わる可能性もあり、燃料電池圧力の最適制御を
行なうためには、これらの変化に対応できるよう
に極間差圧を制御する必要がある。
As mentioned above, the basics of fuel cell pressure control is how to accurately maintain and control the three-phase interface, but from a macroscopic perspective, the fuel gas or oxidant gas is connected to the electrodes or electrolyte matrix. The purpose is to prevent it from penetrating through the inside and leaking out into other channels. Since the electrodes and electrolyte matrix have viscous resistance, even slight fluctuations in the pressure difference between the electrodes do not immediately affect crossover. However, the viscous resistance changes greatly depending on the temperature, and furthermore, the concentration of the electrolyte in the electrolyte matrix changes due to long-term operation, and the value of the viscous resistance may change over time. In order to carry out the control, it is necessary to control the interelectrode differential pressure so as to be able to respond to these changes.

(4) 発明の日的 本発明の目的は、燃料電池におけるクロスオー
バを極少化するのに有効な燃料電池の極間差圧制
御装置を提供するにある。
(4) Summary of the Invention An object of the present invention is to provide a fuel cell interelectrode differential pressure control device that is effective in minimizing crossover in a fuel cell.

(5) 発明の構成 本発明においては、上記目的を達成するために
排出流路内の二酸化炭素濃度を検出して、この検
出値に応じて極間差圧を制御するようにしてい
る。
(5) Structure of the Invention In the present invention, in order to achieve the above object, the concentration of carbon dioxide in the discharge flow path is detected, and the interelectrode pressure difference is controlled according to this detected value.

(6) 発明の実施例 以下、本発明の実施例を第3図に基づいて詳細
に説明する。なお第3図中第2図に示した部分と
同一部分は、同一符号を付して示した。第3図
は、本発明の実施例を示す燃料電池の極間差圧制
御装置の構成図である。第2図に示した従来の装
置に二酸化炭素濃度計18とその二酸化炭素濃度
計18からの信号を処理して差圧制御器14内の
差圧設定値を変更させる信号に変換する変換器1
9とを付加している。
(6) Embodiments of the invention Hereinafter, embodiments of the invention will be described in detail based on FIG. 3. In FIG. 3, the same parts as those shown in FIG. 2 are denoted by the same reference numerals. FIG. 3 is a configuration diagram of a fuel cell interelectrode differential pressure control device showing an embodiment of the present invention. A conventional device shown in FIG. 2 includes a carbon dioxide concentration meter 18 and a converter 1 that processes a signal from the carbon dioxide concentration meter 18 and converts it into a signal that changes the differential pressure setting value in the differential pressure controller 14.
9 is added.

次に第3図に示す実施例の動作について説明す
る。通常の動作状態においては化学反応は、電解
液マトリツクス1と酸化剤極2aとの界面および
電解液マトリツクス1と燃料極2bとの界面でお
こるため、燃料流路4bから電解液マトリツクス
1を通して酸化剤排出路10中に二酸化炭素が放
出されることはない。
Next, the operation of the embodiment shown in FIG. 3 will be explained. Under normal operating conditions, chemical reactions occur at the interface between the electrolyte matrix 1 and the oxidizer electrode 2a and at the interface between the electrolyte matrix 1 and the fuel electrode 2b. No carbon dioxide is released into the exhaust channel 10.

しかし前述したように、電極間差圧が増大して
クロスオーバがおこつた場合には、酸化剤極2a
または燃料極2b上で燃焼反応がおこり、触媒活
性を低下させる。
However, as mentioned above, when the pressure difference between the electrodes increases and crossover occurs, the oxidizer electrode 2a
Alternatively, a combustion reaction occurs on the fuel electrode 2b, reducing the catalytic activity.

また、このような燃焼反応がおこると酸化剤極
2aまたは燃料極2b内のカーボンが燃焼するの
で、この結果二酸化炭素が発生し酸化剤流路4a
または燃料流路4b中に放出される。
Furthermore, when such a combustion reaction occurs, the carbon in the oxidizer electrode 2a or the fuel electrode 2b is burned, and as a result, carbon dioxide is generated and the oxidant flow path 4a is
Or it is released into the fuel flow path 4b.

すると二酸化炭素濃度計18がこの流路内の二
酸化炭素の量を検出し、変換器19を介して差圧
制御器14内の差圧設定値を変更させるように動
作する。このようにして燃料流路内の燃料ガスと
収納容器5内の不活性ガス8との差圧が変化すれ
ば酸化剤極2aを燃料極2bとの間の極間差圧
は、それに伴つて変化することになる。
Then, the carbon dioxide concentration meter 18 detects the amount of carbon dioxide in this flow path, and operates to change the differential pressure setting value in the differential pressure controller 14 via the converter 19. If the pressure difference between the fuel gas in the fuel flow path and the inert gas 8 in the storage container 5 changes in this way, the pressure difference between the oxidizer electrode 2a and the fuel electrode 2b changes accordingly. It's going to change.

二酸化炭素濃度計18の検出値が大きい場合に
は、酸化剤極2aと燃料極2bとの極間差圧を小
さくして、クロスオーバを減少させるように変換
器19を動作させなければならない。
When the detected value of the carbon dioxide concentration meter 18 is large, the converter 19 must be operated to reduce the pressure difference between the oxidizer electrode 2a and the fuel electrode 2b, thereby reducing crossover.

なお、燃料極の圧力の方が酸化剤極の圧力より
も大きくなつている場合にはクロスオーバによる
燃焼反応は酸化剤極2aの表面で発生し、逆の場
合には燃料極2bの表面で発生する。
Note that when the pressure at the fuel electrode is greater than the pressure at the oxidizer electrode, the combustion reaction due to crossover occurs on the surface of the oxidizer electrode 2a, and in the opposite case, the combustion reaction occurs at the surface of the fuel electrode 2b. Occur.

したがつて、二酸化炭素濃度計18はいずれの
電極上でクロスオーバが発生しても、二酸化炭素
濃度を検出できるように配置してあることが望ま
しい。
Therefore, it is desirable that the carbon dioxide concentration meter 18 be arranged so that the carbon dioxide concentration can be detected no matter which electrode crossover occurs.

ところで、上記のような燃焼反応を伴わない場
合でも次に示す様な原理でクロスオーバー検出が
可能である。すなわち、燃料電池の燃料としては
一般に石油から水蒸気改質等のプロセスを経て得
られたガスが用いられており、その組成は水素80
%に対して二酸化炭素20%程度のものである。一
方、酸化剤としては一般に空気が用いられ、空気
中の二酸化炭素濃度は0.1%以下と非常に少ない
値である。このため、クロスオーバーの発生によ
り燃料が電解液マトリツクス1を突き抜けて酸化
剤流路9中に入つた場合、二酸化炭素は酸化剤と
は反応しないため、酸化剤流路9中の二酸化炭素
濃度が増加する。従つて、酸化剤流路9から酸化
剤を排出する酸化剤排出路10の中の二酸化炭素
の濃度を二酸化炭素濃度計18で測定することに
より、クロスオーバーの程度を判定することがで
きる。逆に、酸化剤がマトリクス1を突き抜けて
燃料流路11に入つた場合は燃料流路11中の二
酸化炭素濃度が減少する。従つて、燃料流路11
から燃料を排出する燃料排出路12中の二酸化炭
素の濃度を二酸化炭素濃度計(図示略)で測定す
ることによつてもクロスオーバーの程度を判定す
ることができる。
By the way, even in the case where the combustion reaction as described above is not involved, crossover detection is possible using the following principle. In other words, gas obtained from petroleum through processes such as steam reforming is generally used as fuel for fuel cells, and its composition is 80% hydrogen.
%, and carbon dioxide is about 20%. On the other hand, air is generally used as the oxidizing agent, and the carbon dioxide concentration in the air is extremely low, at 0.1% or less. Therefore, when the fuel penetrates the electrolyte matrix 1 and enters the oxidizer flow path 9 due to the occurrence of crossover, the carbon dioxide concentration in the oxidizer flow path 9 decreases because carbon dioxide does not react with the oxidizer. To increase. Therefore, by measuring the concentration of carbon dioxide in the oxidant discharge path 10 that discharges the oxidant from the oxidant flow path 9 with the carbon dioxide concentration meter 18, the degree of crossover can be determined. Conversely, when the oxidizer penetrates the matrix 1 and enters the fuel flow path 11, the carbon dioxide concentration in the fuel flow path 11 decreases. Therefore, the fuel flow path 11
The degree of crossover can also be determined by measuring the concentration of carbon dioxide in the fuel discharge path 12 from which fuel is discharged using a carbon dioxide concentration meter (not shown).

したがつて、変換器19を介して極間差圧を制
御する場合に第3図に示した実施例では、燃料極
側に設けられた差圧制御器14内の設定値を変更
することによつて行なつているが、酸化剤極側に
設けられた差圧制御器13内の設定値を制御する
ことによつても同様の目的を達成することができ
る。
Therefore, in the embodiment shown in FIG. 3 when controlling the inter-electrode differential pressure via the converter 19, it is necessary to change the set value in the differential pressure controller 14 provided on the fuel electrode side. However, the same objective can also be achieved by controlling the set value in the differential pressure controller 13 provided on the oxidizer electrode side.

なお、第3図の実施例においては、二酸化炭素
濃度計18は排出路10内の二酸化炭素濃度を検
出するように配置されているが、これはクロスオ
ーバが燃料極2bから酸化剤極2aの方向に発生
した場合を想定しているからである。
In the embodiment shown in FIG. 3, the carbon dioxide concentration meter 18 is arranged to detect the carbon dioxide concentration in the exhaust path 10, but this is because the crossover is from the fuel electrode 2b to the oxidizer electrode 2a. This is because it is assumed that the occurrence occurs in the direction.

(7) 発明の効果 以上説明したように本発明はクロスオーバが発
生して酸化剤極または燃料極上で燃焼反応がおこ
つた場合に電極を構成しているカーボンが燃焼
し、その結果二酸化炭素が発生して排出路中に放
出されることによつて排出路中の二酸化炭素濃度
に変化が生じる点、また燃料流中の二酸化炭素が
クロスオーバによつて酸化剤流に流入し、酸化剤
排出流10中の二酸化炭素濃度を変化させる点等
に着眼し、この排出路中の二酸化炭素濃度を検出
して酸化剤極と燃料極との間に極間差圧を制御す
るようにしたので、燃料電池内でのクロスオーバ
を極少化できるという優れた効果がある。
(7) Effects of the Invention As explained above, in the present invention, when crossover occurs and a combustion reaction occurs on the oxidizer electrode or the fuel electrode, the carbon constituting the electrode burns, and as a result, carbon dioxide is released. The carbon dioxide concentration in the exhaust passage changes as carbon dioxide is generated and released into the exhaust passage, and the carbon dioxide in the fuel stream enters the oxidizer stream by crossover, causing a change in the carbon dioxide concentration in the exhaust passage. Focusing on changing the carbon dioxide concentration in the exhaust stream 10, we detected the carbon dioxide concentration in this exhaust path and controlled the interelectrode pressure between the oxidizer electrode and the fuel electrode. This has the excellent effect of minimizing crossover within the fuel cell.

またクロスオーバによる局部加熱が起りにくく
なるので、燃料電池の寿命を長くする効果が大で
ある。
Furthermore, since local heating due to crossover is less likely to occur, the life of the fuel cell is greatly extended.

さらに、クロスオーバの発生に伴う燃料および
酸化剤のむだな消費がなくなるため効率が向上す
るという利点もある。
Furthermore, there is the advantage that efficiency is improved because wasteful consumption of fuel and oxidizer due to the occurrence of crossover is eliminated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は燃料電池の概略構成を示す斜視図、第
2図は従来の燃料電池の極間差圧制御装置の構成
図、第3図は本発明の実施例を示す構成図であ
る。 1……電解液マトリツクス、2a……酸化剤
極、2b……燃料極、4a……酸化剤流路、4b
……燃料流路、5……収納容器、8……不活性ガ
ス、9……酸化剤供給路、10……酸化剤排出
路、11……燃料供給路、12……燃料排出路、
13,14……差圧制御器、15,16……圧力
制御弁、18……二酸化炭素濃度計、19……変
換器。
FIG. 1 is a perspective view showing a schematic configuration of a fuel cell, FIG. 2 is a configuration diagram of a conventional interelectrode pressure differential control device for a fuel cell, and FIG. 3 is a configuration diagram showing an embodiment of the present invention. 1... Electrolyte matrix, 2a... Oxidizer electrode, 2b... Fuel electrode, 4a... Oxidizer channel, 4b
... Fuel flow path, 5 ... Storage container, 8 ... Inert gas, 9 ... Oxidizer supply path, 10 ... Oxidizer discharge path, 11 ... Fuel supply path, 12 ... Fuel discharge path,
13, 14... Differential pressure controller, 15, 16... Pressure control valve, 18... Carbon dioxide concentration meter, 19... Converter.

Claims (1)

【特許請求の範囲】 1 燃料流路および酸化剤流路のうち少なくとも
一方を制御対象流路とし、該制御対象流路と燃料
電池収納容器との差圧が設定値になるように制御
する差圧制御手段と、 前記燃料流路および酸化剤流路に繋がるそれぞ
れの排気路のうち少なくとも一方を検出対象流路
とし、該検出対象流路における二酸化炭素濃度を
検出する二酸化炭素濃度検出手段と、 前記差圧制御手段の設定値を該二酸化炭素濃度
検出手段からの検出信号に応じた値に可変制御す
る差圧設定値制御手段と、 を備えている燃料電池の極間差圧制御装置。
[Scope of Claims] 1. At least one of the fuel flow path and the oxidizer flow path is a flow path to be controlled, and the pressure difference between the flow path to be controlled and the fuel cell storage container is controlled to a set value. a pressure control means; a carbon dioxide concentration detection means for detecting the carbon dioxide concentration in the detection target flow path, with at least one of the exhaust paths connected to the fuel flow path and the oxidizer flow path being a detection target flow path; An interelectrode differential pressure control device for a fuel cell, comprising: differential pressure set value control means for variably controlling the set value of the differential pressure control means to a value according to a detection signal from the carbon dioxide concentration detection means.
JP56184686A 1981-11-18 1981-11-18 Interelectrode differential pressure control device of fuel cell Granted JPS5887770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56184686A JPS5887770A (en) 1981-11-18 1981-11-18 Interelectrode differential pressure control device of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56184686A JPS5887770A (en) 1981-11-18 1981-11-18 Interelectrode differential pressure control device of fuel cell

Publications (2)

Publication Number Publication Date
JPS5887770A JPS5887770A (en) 1983-05-25
JPH0326507B2 true JPH0326507B2 (en) 1991-04-11

Family

ID=16157591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56184686A Granted JPS5887770A (en) 1981-11-18 1981-11-18 Interelectrode differential pressure control device of fuel cell

Country Status (1)

Country Link
JP (1) JPS5887770A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0171207B1 (en) * 1994-11-11 1999-03-30 와다 아키히로 Fuel cell
US7788048B2 (en) * 2003-04-24 2010-08-31 Hewlett-Packard Development Company, L.P. Apparatus and method for integrating a fuel supply and a fuel level sensing pressure sensor
JP4923426B2 (en) * 2005-03-25 2012-04-25 日産自動車株式会社 Fuel cell system
JP2007113764A (en) * 2005-10-24 2007-05-10 Aisin Seiki Co Ltd Diaphragm type control valve

Also Published As

Publication number Publication date
JPS5887770A (en) 1983-05-25

Similar Documents

Publication Publication Date Title
US6096448A (en) Method and apparatus for operating an electrochemical fuel cell with periodic fuel starvation at the anode
US6280865B1 (en) Fuel cell system with hydrogen purification subsystem
JP3553101B2 (en) Solid polymer electrolyte fuel cell
JP4410965B2 (en) Power generation method using fuel cell power generation system and fuel cell power generation system
JPH041469B2 (en)
US6589678B1 (en) Fuel cell method of operation
JPH0326507B2 (en)
JP2002208428A (en) Fuel cell system
JPH01200567A (en) Power generation system of fuel cell
JPH0622144B2 (en) Fuel cell
JPH0719615B2 (en) Fuel cell power generation system
JP3575650B2 (en) Molten carbonate fuel cell
JPH06267562A (en) Solid high polymer electrolyte fuel cell
JPH0311559A (en) Operating method of fuel battery
JPS60258863A (en) Fuel cell
JPS5894767A (en) Fuel cell device
JPH0650639B2 (en) Fuel cell
JPS59105272A (en) Fuel cell power generating system
JPS62278766A (en) Operating method for phosphoric acid fuel cell
JPS61185872A (en) Fuel cell device
JPS59149665A (en) Fuel-cell system
JP2002141085A (en) Solid polymer fuel cell
JPH07169486A (en) Fuel cell
JPH0494062A (en) Fuel cell power generation system
JPH0795449B2 (en) Fuel cell power generation system