JPH0311559A - Operating method of fuel battery - Google Patents

Operating method of fuel battery

Info

Publication number
JPH0311559A
JPH0311559A JP1147287A JP14728789A JPH0311559A JP H0311559 A JPH0311559 A JP H0311559A JP 1147287 A JP1147287 A JP 1147287A JP 14728789 A JP14728789 A JP 14728789A JP H0311559 A JPH0311559 A JP H0311559A
Authority
JP
Japan
Prior art keywords
fuel
passage
gas
potential
reaction gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1147287A
Other languages
Japanese (ja)
Inventor
Akira Okubo
大久保 旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1147287A priority Critical patent/JPH0311559A/en
Publication of JPH0311559A publication Critical patent/JPH0311559A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To prevent electrodes from being locally deteriorated, and thereby stabilize electricity generation performance by detecting potential at the inlet and outlet port sides of a reaction gas passage, and thereby turning over the flow direction of reaction gas in the reaction gas passage when the difference in potential between both of the port sides comes up to a specified level. CONSTITUTION:As operating time passes on, detected potential from a voltage sensor 41 located at the inlet port side for reaction gas becomes lower, and detected potential from a voltage sensor 42 located at the outlet port side becomes higher so that the difference in potential between both of them is thereby increased. When the difference comes up to a specified level, a controller 44 opens valves 22 and 23, and 32 and 33 based on signals from a potential difference detector 43 so that the switch-over of exciting current is made in order to close valves 21 and 14, and 31 and 34. Which thereby permits the flow direction of combustion gas 27 in a reaction gas passage to be turned over to the direction indicated by a solid arrow head line 27B, and also permits the flow direction of an oxidizing agent 37 to be turned over to the direction indicated by a dotted arrow head line 37B. As a result, the distribution of reaction gas concentration in a fuel passage and an oxdizing agent passage and the distribution of output current density can almost completely be equalized so that electricity generation characteristics can thereby be stabilized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は反応ガス給排用マニホールドを有する積層型
燃料電池の運転方法、特にその反応ガス供給方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of operating a stacked fuel cell having a manifold for supplying and discharging a reactant gas, and particularly to a method of supplying the reactant gas.

〔従来の技術〕[Conventional technology]

周知のように燃料電池は、燃料電極、酸化剤電極および
この両極の間に挟丑れた電解質マドIJックス層とから
なる単電池の積層体としてなシ、この積層体側面と気密
に結合されたマニホールドを介して単位電池に燃料ガス
及び酸化剤ガスを供給して発電運転が行われる。従来よ
シ、これら反応ガスの供給方法として電極基材又はセパ
レータに溝状に形成される反応ガス通路の改良により反
応ガスの流量分布全均一化し、電流密度分布の均一化を
図り、電池性能の安定化が行われてきた。しかしながら
、燃料ガスおよび酸化剤ガスの給排方向は運転頭初から
一定方向に保って発電運転が行われる。
As is well known, a fuel cell is a stack of single cells consisting of a fuel electrode, an oxidizer electrode, and an electrolyte IJx layer sandwiched between these two electrodes, which are airtightly connected to the sides of the stack. Power generation operation is performed by supplying fuel gas and oxidant gas to the unit cells through the manifold. Conventionally, as a method of supplying these reactive gases, the flow rate distribution of the reactive gas is completely uniformized by improving the reactive gas passage formed in the shape of a groove in the electrode base material or the separator, and the current density distribution is made uniform, which improves the battery performance. Stabilization has been carried out. However, power generation operation is performed with the supply and discharge directions of fuel gas and oxidant gas kept constant from the beginning of the operation.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第6図は従来方法における燃料通路、酸化剤通路等の反
応ガス通路1ツタの燃料ガス、酸化剤ガス等反応ガス中
の水素ある(白は酸素等活性物質の濃度分布を示す特性
線図であり、活性物質が発電反応によって消費されるた
めに、反応ガス碇度は入1コ1側で高く、出D (i+
!Iに向けて低くなる濃I〕!分布を示す。
Figure 6 shows the reaction gas passages such as the fuel passage and the oxidizer passage in the conventional method. Since the active substance is consumed by the power generation reaction, the reaction gas anchorage is high on the input 1 side and the output D (i+
! Dark I that decreases towards I]! Show the distribution.

第4図は従来方法における反応ガス通路の長さ方向の出
力電流密度分布を示す特性線図であり、反応ガス濃度、
すなわち水素分圧゛または酸素分圧が反応ガス通路の下
流側で低下することによって電極への活性物質の供給量
も低下するために、出力電流密度も反応ガス通路の出口
側に向けて低下する特性金示す。
FIG. 4 is a characteristic diagram showing the output current density distribution in the length direction of the reactant gas passage in the conventional method, and shows the reactant gas concentration,
In other words, as the hydrogen partial pressure or oxygen partial pressure decreases on the downstream side of the reaction gas passage, the amount of active material supplied to the electrode also decreases, so the output current density also decreases toward the outlet side of the reaction gas passage. Characteristic gold indicates.

周知のごとく、電池は取ジ出し電流密度に関係する分極
を生ずる。すなわち電流密度の低い部位が電位が高く、
電流密度が高い部位は電位が低い。
As is well known, batteries exhibit polarization that is related to the withdrawal current density. In other words, the potential is high in areas with low current density;
Areas with high current density have low potential.

燃料電池の寿命は電池電位の影響全骨け、電位の高い方
が電池構成材料の腐食や電極触媒の劣化が進むので寿命
が短かくなる。運転頭初より燃料ガス、酸化剤ガス等の
反応ガス給排方向が一定である場合、反応ガス出に1側
の(14成拐料の腐食、触媒劣化が進み、全体的にみた
燃料′電池の寿命を短くしてしまうという問題がある。
The lifespan of a fuel cell is completely influenced by the cell potential; the higher the potential, the more corrosion of the battery's constituent materials and the deterioration of the electrode catalyst, resulting in a shorter lifespan. If the direction of supply and discharge of reactant gases such as fuel gas and oxidizing gas is constant from the beginning of the operation head, corrosion of the reactant gas and catalyst deterioration on the first side (14) will progress and the fuel cell as a whole will deteriorate. There is a problem in that it shortens the lifespan of the

そしてこの事は、基材又はセパレータの反応ガス通路の
改良/どけでは十分に補えない問題である。
This is a problem that cannot be sufficiently compensated for by improving/removing the reaction gas passages in the base material or separator.

この発明の目的は、反応ガスの供給方法の改善により、
反応ガス通路内の反応ガス饋度および発電電流密度の分
布全等価的に均等化することにある。
The purpose of this invention is to improve the method of supplying a reaction gas.
The objective is to equalize the distribution of the reaction gas intensities and the power generation current density within the reaction gas passage.

〔課題を解決するだめの手段〕[Failure to solve the problem]

上記課題全解決するために、この発明によれば、電’1
14買層全挾んで燃料電極および酸化剤電極が配きれ両
電極に燃料ガス及び酸化剤ガスをそれぞれ供給する燃料
通路および酸化剤通路が互いに直交する方向に形成され
た単位電池の積層体からなり、この積層体の側面に気密
に結合された燃料マニホールド及びr波化剤マニホール
ドを介して前記燃料通路に燃料ガスヲ、酸化剤通路に酸
化剤ガス金給排して発電運転を行う燃料電池において、
発電運転中の単位電池の電位を前記燃料ガスおよび酸化
剤ガスの入[」側および出1コ側に近い位置で検出ム両
検IB電位の差電圧が所定レベルに達したとき、前記燃
料通路および酸化剤通路にそれぞれ供給する燃料ガスお
よび酸化剤ガスのうち少くとも一方のガスの通流方向を
反転することとする。
In order to solve all of the above problems, according to the present invention,
Consisting of a stack of unit cells in which a fuel electrode and an oxidizer electrode are arranged across the entire 14-layer, and a fuel passage and an oxidizer passage that supply fuel gas and oxidant gas to both electrodes, respectively, are formed in directions orthogonal to each other. In a fuel cell that performs power generation operation by supplying and discharging fuel gas to the fuel passage and oxidant gas to and from the oxidizer passage through a fuel manifold and an R-wave converter manifold that are airtightly connected to the side surface of the stacked body,
The potential of the unit cell during power generation operation is detected at a position close to the inlet side and outlet side of the fuel gas and oxidizing gas. When the voltage difference between the two detection IB potentials reaches a predetermined level, The flow direction of at least one of the fuel gas and the oxidant gas supplied to the oxidizer passages is reversed.

〔作用〕[Effect]

上記手段において、単位電池の反応ガスの出入口に近い
位1にの電圧差に基づいて、反応ガス通路への燃料ガス
および酸化剤ガスの両方、または方の通流方向全反転す
るようにしたことにより、反応ガス濃度の分布が切換操
作ごとに反転し、これによって出力電流密度が低く高電
位になる部分の位置も反転することにより、電圧差の設
定の仕方によって高電位の発生を回避できるとともに、
電圧差によって生ずる電池構成材料としてのカーボン系
電極基材の腐食や741極触媒の劣化が等価的に均等化
され、したがって反応ガスの出口側部分の劣化が局部的
に進行することによって燃#F電池全体としての寿命が
短かくなること全回避できる。
In the above means, the direction of flow of both or one of the fuel gas and oxidizing gas to the reaction gas passage is completely reversed based on a voltage difference at a point near the entrance and exit of the reaction gas of the unit cell. As a result, the distribution of the reactant gas concentration is reversed with each switching operation, and the position of the portion where the output current density is low and the potential is high is also reversed, making it possible to avoid the occurrence of a high potential depending on how the voltage difference is set. ,
The corrosion of the carbon-based electrode base material as a battery constituent material and the deterioration of the 741 electrode catalyst caused by the voltage difference are equivalently equalized, and therefore the deterioration of the outlet side of the reaction gas progresses locally, resulting in the fuel #F It is possible to completely avoid shortening the life of the battery as a whole.

〔実施例〕〔Example〕

以下この発明全実施例に基ついて説明する。 All embodiments of this invention will be explained below.

−5〜 第7図はこの発明の実施例方法を示すガス70−図であ
り、単位電池の積層体(以下セルスタックと呼ぶ)1の
側面には、各単位電池の燃料通路に連通ずる一対の燃料
マニホールド2A、2Bが設けられ、これと直交する側
面には各単位電池の酸化剤通路に連通ずる一対の酸化剤
マニホールド3A、3Bがそれぞれ気密に結合される。
-5~ Figure 7 is a gas 70 diagram showing an embodiment method of the present invention, in which a stack of unit cells (hereinafter referred to as a cell stack) 1 has a pair of gas passages connected to the fuel passages of each unit cell on the side surface. Fuel manifolds 2A and 2B are provided, and a pair of oxidizer manifolds 3A and 3B, which communicate with the oxidizer passages of each unit cell, are hermetically coupled to side surfaces perpendicular to these, respectively.

図中実線で示す燃料配管2oはその入口側2OA、出口
側20Bとマニホールド2Aとは一対の弁2122を介
して連結され、マニホールド2Bとは一対の弁23.2
4を介して連結される。また一対の弁21.22は芹2
1が開くとき弁22が閉じ。
The fuel pipe 2o shown by the solid line in the figure is connected to its inlet side 2OA, outlet side 20B, and manifold 2A via a pair of valves 2122, and the manifold 2B is connected to a pair of valves 23.2.
Connected via 4. Also, the pair of valves 21 and 22 are 2
When valve 1 opens, valve 22 closes.

弁22が開いたとき弁21が閉じる互いに相反動作する
切換弁であり、他の一対の弁23.24についても同様
である。また、図中破線で示す酸化剤配管301−14
.二対の弁31.32および63゜64を介してマニホ
ールド3Aおよび3Bにそれぞれ連通ずる。
They are switching valves that operate in opposition to each other in that when valve 22 opens, valve 21 closes, and the same applies to the other pair of valves 23 and 24. In addition, oxidizer piping 301-14 indicated by a broken line in the figure
.. It communicates with manifolds 3A and 3B via two pairs of valves 31, 32 and 63.64, respectively.

41および42は電圧センサであシ、例えば単位電池と
これを挟持するセパレータとの間に介装一 された一対の白金線で構成される。電圧センサ41と4
2は方形の単位電池の対角線上になるべく距離を大きく
とって設けられ、電圧センサ41ばある時点で反応ガス
の入口(11!l Kなるマニホールド2A、3Aに近
接して位置して入1コ側電位全検出し、電圧センサ42
は上記時点で出口側となるマニホールド2Bおよび6B
に近接して位置して出口側電位全検出する。両電圧セン
サ41および42の検出電位は電圧差検出器46に導か
れ、単位電池の出入口電圧差が検出され、この電圧差が
所定レベル、例えば単位電池の定格出力電圧の10%か
ら20%程度に達した時点で切換指令信号を制御器44
に向けて出力する。制御器44は例えば電磁弁で構成さ
れる各部の切換弁(21,22)、(23,24)、(
31,32)  (33゜34)の励磁電流ケ切換えf
iilJ御する。
Reference numerals 41 and 42 designate voltage sensors, for example, a pair of platinum wires interposed between a unit battery and a separator sandwiching the unit battery. Voltage sensors 41 and 4
2 are provided on the diagonal of a rectangular unit cell with a distance as large as possible, and at a certain point the voltage sensor 41 is located close to the reactant gas inlet (11!lK) of the manifolds 2A and 3A. The voltage sensor 42 detects the entire side potential.
are manifolds 2B and 6B on the outlet side at the above point.
It is located close to the terminal and detects the entire potential on the exit side. The detected potentials of both voltage sensors 41 and 42 are led to a voltage difference detector 46, which detects the voltage difference between the inlet and outlet of the unit battery, and this voltage difference is set to a predetermined level, for example, about 10% to 20% of the rated output voltage of the unit battery. When the switching command signal is reached, the controller 44
output towards. The controller 44 controls switching valves (21, 22), (23, 24), (21, 22), (23, 24), (
31, 32) (33°34) excitation current switching f
IlJ controls.

このように構成された燃f4電池において、先ず弁21
および24を開き1升22.23を閉じると入口2OA
から供給される水素リッチな燃料ガス27はセルスタッ
ク1の燃料通路を実線矢印27A万同に流れて出口20
Bから排出され、またブf’31.34全開、32.3
3を閉とすると入口30Aから流入するを気等の酸化剤
37U破線矢印37A万同に流れて出口30Bから排出
されて発電運転が行われる。運転時間の経過とともに、
反応ガスの人口側に配された電圧センサ41の検出電位
は低く、出口側′電圧センサ42の検出電位は高くなシ
、両者の電圧差が増大する。この電圧差が前記所定レベ
ルに達すると電圧差検出器46からの指令信号に基づい
て制御器44が弁22゜26および弁32.33全開き
、弁21.24および弁31および64を閉じる励磁電
流の切換操作全行うので、反応ガス通路の燃料ガス27
の流通方向は実線矢印27B方向に反転し、酸化剤37
の流通方向は破線矢印37B方向に反転する。
In the fuel F4 battery configured in this way, first, the valve 21
Open 24 and close 22.23 to enter 2OA
The hydrogen-rich fuel gas 27 supplied from the cell stack 1 flows in the direction of the solid line arrow 27A through the fuel passage of the cell stack 1 and reaches the outlet 20.
Ejected from B, and again f'31.34 fully open, 32.3
3 is closed, the oxidizing agent 37U such as air flows in the same direction as the broken line arrow 37A from the inlet 30A, and is discharged from the outlet 30B to perform power generation operation. As the driving time passes,
The detection potential of the voltage sensor 41 disposed on the inlet side of the reactant gas is low, and the detection potential of the outlet side voltage sensor 42 is low, so that the voltage difference between the two increases. When this voltage difference reaches the predetermined level, the controller 44 is energized to fully open the valves 22, 26 and 32, 33, and close the valves 21, 24, and 31 and 64 based on the command signal from the voltage difference detector 46. Since all current switching operations are performed, the fuel gas 27 in the reaction gas passage
The flow direction of the oxidizing agent 37 is reversed to the direction of the solid arrow 27B.
The flow direction of is reversed to the direction of the broken line arrow 37B.

このような反応ガスの流通方向の切り換え操作は発電運
転を停止することなく弁の自動的な切シ換え操作だけで
簡単に行うことができるので、低い電圧差で反転保作ヲ
繰シ返し行うことができる。
This kind of switching operation of the flow direction of the reactant gas can be easily performed by simply switching the valve automatically without stopping the power generation operation, so reversal and maintenance can be repeated repeatedly with a low voltage difference. be able to.

その結果、燃料通路および酸化剤通路内の反応ガスa度
の分布および出力電流密度の分布は、第3図および第4
図の、IA細軸上反応ガスの入口、出口位置全交互に入
れ換えたと等1lIliな分布となり、反応ガス通路方
向の分布をほぼ完全に均等化することができるので、出
力電流密度が低下して高電位となることによって生ずる
電極基イオや電極触媒等の劣化も反応ガス通路上の各部
で均等化されて発電特性が安定化し、局部的な劣化の進
行によってセルスタック1全体としての寿命が低下する
事態も回避することができる。また、電圧差を小さくす
ることによって、劣化の原因となる電位上昇そのもの全
抑制できるので、燃料電池の寿命全延長できる利点が得
られる。
As a result, the distribution of reactant gas a degrees and the output current density distribution in the fuel passage and oxidizer passage are as shown in Figures 3 and 4.
As shown in the figure, if the inlet and outlet positions of the reactant gas on the IA thin axis are all alternated, a distribution will be obtained, and the distribution in the direction of the reactant gas passage can be almost completely equalized, so the output current density will decrease. Deterioration of electrode groups, electrode catalysts, etc. caused by high potential is equalized in each part of the reaction gas passage, stabilizing the power generation characteristics, and the progress of local deterioration reduces the life of the cell stack 1 as a whole. This can also be avoided. In addition, by reducing the voltage difference, the increase in potential that causes deterioration can be completely suppressed, which provides the advantage of extending the life of the fuel cell.

第2図はこの発明の異なる実施例方法を示すガス70−
図であり、燃料マニホールドおよび酸化剤マニホールド
それぞれの一方側が4A、4Bまたは5A 、5Bに2
分割され、他方側のマニホルド4Cまたは5(4−中間
マニホールドとして燃料ガス27または酸化剤ガスが折
り返すリターンフロー万代の燃料電池への適用列を示し
たもので 9− ある。この場合、燃料配管20は2対の弁21゜22お
よび23.24に介して一対のマニホールド4A、4B
に連結され、前述の実施例と同様に弁k −!;IJ 
、D換え操作することによりリターンフロー27Uの流
通方向全反転できる。また、酸化剤配管30は2対の弁
31.32および33.34を介して一対のマニホール
ド3A、3Bに連結されておシ、前述の実施例と同様に
弁を切換操作することによ5 リターン70−37Uの
流通方向を反転できる。
FIG. 2 shows a gas 70-
4A, 4B or 5A, 5B on one side of each of the fuel manifold and oxidizer manifold.
It is divided into the manifold 4C or 5 on the other side (4- This shows the application column to the fuel cell of the return flow where the fuel gas 27 or the oxidant gas is turned back as an intermediate manifold. 9- In this case, the fuel pipe 20 is a pair of manifolds 4A, 4B via two pairs of valves 21, 22 and 23, 24.
As in the previous embodiment, the valve k-! ;IJ
, the flow direction of the return flow 27U can be completely reversed by performing the D change operation. Further, the oxidizer pipe 30 is connected to a pair of manifolds 3A and 3B via two pairs of valves 31, 32 and 33, 34, and the oxidizer pipe 30 is connected to a pair of manifolds 3A and 3B through two pairs of valves 31, 32 and 33, 34. The flow direction of the return 70-37U can be reversed.

この場合の電圧センサの配置方法としては、単位電池の
四隅に配された電圧センサ51,52゜53.54のい
ずれの2個全使用するかによって異なり、例えばセンサ
51,52を組み合わせれば燃料ガスの入口、出口濃度
差、センサ52,54を組み合わせれば酸化剤ガスの入
口、出口濃度差の影響を最も強く受けた電圧差を検出で
き、また(52.53)の組み合わせや(53、51)
In this case, the method of arranging the voltage sensors differs depending on which two of the voltage sensors 51, 52, 53, and 54 placed at the four corners of the unit battery are used. For example, if the sensors 51 and 52 are combined, the fuel By combining the gas inlet and outlet concentration differences and the sensors 52 and 54, it is possible to detect the voltage difference that is most affected by the oxidizing gas inlet and outlet concentration differences. 51)
.

(53,54)の組み合わせではUターンガス通路のほ
ぼ半分の濃度差に対応する電圧差を検出す10− ることかできる。
With the combination (53, 54), it is possible to detect a voltage difference corresponding to approximately half the concentration difference in the U-turn gas passage.

なお、実施例方法において、流通方向の反転操作は燃料
ガス、酸化剤ガスともに行うことが好址しいが、反応ガ
ス通路が短かいなど、劣化に及ぼす影響が少い場合には
いずれか一方のガス流のみを反転させるよう構成しても
よい。
In addition, in the example method, it is preferable to reverse the flow direction for both the fuel gas and the oxidizing gas, but if the reaction gas passage is short and the influence on deterioration is small, either one of the gases may be reversed. It may also be configured to reverse only the gas flow.

〔発明の効果〕〔Effect of the invention〕

この発明は前述のように、反応ガス通路の入口側、出口
側の電位をそれぞれ検出し、その電圧差が所定レベルに
達したとき、反応ガス通路の反応ガスの流通方向を反転
するよう構成した。その結果、電圧差の決め方によって
単位電池出口側の電位があまp高くならないうちに反応
ガスの通流方向を反転できるので、反応ガスの流通方向
を一定方向に保って発電運転を行う従来方法で問題とな
った、反応ガス濃度および出力電流密度が反応ガスの出
口側に向けて低下し、反応ガスの出1」側部分の電池電
位が高電位となって電極基イオの腐食や電極触媒の劣化
が促進されるという問題点がv1除され、したがって電
極の局部的劣化が低減かつ均等化をれて発電性能全安定
化できるとともに、長寿命化できる燃料電池の運転方法
を提供することができる。また、反応ガスの流通方向の
反転操作は、燃料電池の発電運転全停止することなく自
動的な弁操作によって実施できる40点が得られる。
As described above, this invention is configured to detect the potentials on the inlet side and the outlet side of the reaction gas passage, respectively, and to reverse the flow direction of the reaction gas in the reaction gas passage when the voltage difference reaches a predetermined level. . As a result, depending on how the voltage difference is determined, the flow direction of the reactant gas can be reversed before the potential at the outlet side of the unit cell becomes too high. The problem was that the concentration of the reactant gas and the output current density decreased toward the outlet side of the reactant gas, and the battery potential at the outlet side of the reactant gas became high, causing corrosion of the electrode group ions and the electrode catalyst. The problem of accelerated deterioration is eliminated by v1, and therefore local deterioration of the electrodes is reduced and equalized, making it possible to fully stabilize power generation performance and to provide a method of operating a fuel cell that can extend its life. . Furthermore, a score of 40 can be obtained in that the reversal operation of the flow direction of the reaction gas can be performed by automatic valve operation without completely stopping the power generation operation of the fuel cell.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例方法を示すガス70−図、第
2図は異なる実施例方法を示すガスフロー図、第6図は
従来の反応ガス濃度の分布を示す特性線図、第4図は従
来の出力電流密度の分布を示す特性線図である。 1・・・単位電池の積層体(セルスタック)、2A。 2B、4A、4B・・・燃料マニホールド、6A、3B
、5A、5B・・・酸化剤マニホールド、4C15C・
・・中間マニホールド、20・・・燃料ガス配管、21
.22,23.24・・・弁(燃料ガス側)、27・・
・燃料ガス、60・・・酸化剤配管、31,32,36
.34・・・弁(酸化剤側)、37・・・酸化剤ガス、
27A、27B、37A、37B・・・反応ガスの流通
方向、27U、37U・・・リターン70−41゜42
.51.52,53.54・・・電圧センサ、43・・
・電圧差検出器、44・・・tlilJ御器。
Fig. 1 is a gas 70-diagram showing an embodiment method of the present invention, Fig. 2 is a gas flow diagram showing a different embodiment method, Fig. 6 is a characteristic diagram showing the conventional reaction gas concentration distribution, and Fig. 4 The figure is a characteristic diagram showing the distribution of conventional output current density. 1... Laminated body of unit batteries (cell stack), 2A. 2B, 4A, 4B...Fuel manifold, 6A, 3B
, 5A, 5B... Oxidizer manifold, 4C15C・
...Intermediate manifold, 20...Fuel gas piping, 21
.. 22, 23, 24... Valve (fuel gas side), 27...
・Fuel gas, 60... Oxidizer piping, 31, 32, 36
.. 34... Valve (oxidizer side), 37... Oxidizer gas,
27A, 27B, 37A, 37B...Flow direction of reaction gas, 27U, 37U...Return 70-41°42
.. 51.52, 53.54... Voltage sensor, 43...
・Voltage difference detector, 44...tlilJ controller.

Claims (1)

【特許請求の範囲】[Claims] 1)電解質層を挟んで燃料電極および酸化剤電極が配さ
れ両電極に燃料ガス及び酸化剤ガスをそれぞれ供給する
燃料通路および酸化剤通路が互いに直交する方向に形成
された単位電池の積層体からなり、この積層体の側面に
気密に結合された燃料マニホールド及び酸化剤マニホー
ルドを介して前記燃料通路に燃料ガスを、酸化剤通路に
酸化剤ガスを給排して発電運転を行う燃料電池において
、発電運転中の単位電池の電位を前記燃料ガスおよび酸
化剤ガスの入口側および出口側に近い位置で検出し、両
検出電位の差電圧が所定レベルに達したとき、前記燃料
通路および酸化剤通路にそれぞれ供給する燃料ガスおよ
び酸化剤ガスのうち少くとも一方のガスの通流方向を反
転することを特徴とする燃料電池の運転方法。
1) From a stack of unit cells in which a fuel electrode and an oxidizer electrode are arranged with an electrolyte layer in between, and a fuel passage and an oxidizer passage that supply fuel gas and oxidant gas to both electrodes, respectively, are formed in directions orthogonal to each other. In a fuel cell that performs power generation operation by supplying and discharging fuel gas to the fuel passage and oxidant gas to and from the oxidizer passage through a fuel manifold and an oxidizer manifold that are airtightly connected to the side surface of the stacked body, The potential of the unit cell during power generation operation is detected at a position close to the inlet side and outlet side of the fuel gas and oxidant gas, and when the voltage difference between the two detected potentials reaches a predetermined level, the potential of the unit cell is detected in the fuel passage and the oxidant passage. 1. A method of operating a fuel cell, comprising reversing the flow direction of at least one of a fuel gas and an oxidant gas respectively supplied to the fuel cell.
JP1147287A 1989-06-08 1989-06-08 Operating method of fuel battery Pending JPH0311559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1147287A JPH0311559A (en) 1989-06-08 1989-06-08 Operating method of fuel battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1147287A JPH0311559A (en) 1989-06-08 1989-06-08 Operating method of fuel battery

Publications (1)

Publication Number Publication Date
JPH0311559A true JPH0311559A (en) 1991-01-18

Family

ID=15426791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1147287A Pending JPH0311559A (en) 1989-06-08 1989-06-08 Operating method of fuel battery

Country Status (1)

Country Link
JP (1) JPH0311559A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004102707A3 (en) * 2003-05-17 2005-10-27 Intelligent Energy Ltd Improvements in fuel utilisation in electrochemical fuel cells
JP2007509468A (en) * 2003-10-15 2007-04-12 ユーティーシー フューエル セルズ,エルエルシー Inflow and containment of fuel cell stack gas with a single valve
EP2224531A1 (en) * 2009-02-06 2010-09-01 Samsung SDI Co., Ltd. Fuel cell system and driving method thereof
EP3252858B1 (en) * 2016-05-30 2019-11-13 LG Electronics Inc. Fuel cell and method for operating the same
JP2020166927A (en) * 2019-03-28 2020-10-08 株式会社Soken Fuel cell system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004102707A3 (en) * 2003-05-17 2005-10-27 Intelligent Energy Ltd Improvements in fuel utilisation in electrochemical fuel cells
US8431280B2 (en) 2003-05-17 2013-04-30 Intelligent Energy Limited Fuel utilisation in electrochemical fuel cells
JP2007509468A (en) * 2003-10-15 2007-04-12 ユーティーシー フューエル セルズ,エルエルシー Inflow and containment of fuel cell stack gas with a single valve
EP2224531A1 (en) * 2009-02-06 2010-09-01 Samsung SDI Co., Ltd. Fuel cell system and driving method thereof
EP3252858B1 (en) * 2016-05-30 2019-11-13 LG Electronics Inc. Fuel cell and method for operating the same
US10483570B2 (en) 2016-05-30 2019-11-19 Lg Electronics Inc. Fuel cell and method for operating the same
JP2020166927A (en) * 2019-03-28 2020-10-08 株式会社Soken Fuel cell system

Similar Documents

Publication Publication Date Title
US11152627B2 (en) Bipolar plate which has reactant gas channels with variable cross-sectional areas, fuel cell stack, and vehicle comprising such a fuel cell stack
US6096448A (en) Method and apparatus for operating an electrochemical fuel cell with periodic fuel starvation at the anode
US6280865B1 (en) Fuel cell system with hydrogen purification subsystem
US6838199B2 (en) Start up system and method for a fuel cell power plant using a cathode electrode fuel purge
JPH041469B2 (en)
JPH06203863A (en) Fuel cell equipment and its inert-gas discharging and adjusting method
JP2006520069A (en) Method of operating a fuel cell having a closed reactant supply system
US9761896B2 (en) Method for stopping fuel cell system and fuel cell system
US6589678B1 (en) Fuel cell method of operation
US7527882B2 (en) Method for detecting undersupply of fuel gas and method for controlling fuel cell
JPH0311559A (en) Operating method of fuel battery
JP2007048517A (en) Fuel cell system
JP2005063724A (en) Fuel cell system
JP2009054290A (en) Fuel cell system
JP2005166515A (en) Fuel cell and fuel cell system
JP2004134199A (en) Starting method of fuel cell
JP2006092793A (en) Fuel cell system
JPH0714595A (en) Operating method of power generating device of fuel cell type
JPH0650639B2 (en) Fuel cell
JPS5887770A (en) Interelectrode differential pressure control device of fuel cell
JP2006179389A (en) Fuel cell power generating device, stopping method and stopped-state keeping method of the same
EP2124279A1 (en) Fuel cell system
JP2006140065A (en) Fuel cell system
JP2001176530A (en) Solid high molecular film-type fuel cell system
JP5154043B2 (en) Fuel cell system