JPS59105272A - Fuel cell power generating system - Google Patents

Fuel cell power generating system

Info

Publication number
JPS59105272A
JPS59105272A JP57214245A JP21424582A JPS59105272A JP S59105272 A JPS59105272 A JP S59105272A JP 57214245 A JP57214245 A JP 57214245A JP 21424582 A JP21424582 A JP 21424582A JP S59105272 A JPS59105272 A JP S59105272A
Authority
JP
Japan
Prior art keywords
fuel
pressure
fuel cell
electrode
oxidizing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57214245A
Other languages
Japanese (ja)
Inventor
Masatsugu Yoshimori
吉森 正嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57214245A priority Critical patent/JPS59105272A/en
Publication of JPS59105272A publication Critical patent/JPS59105272A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04104Regulation of differential pressures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To control differential pressure between an oxidizing agent electrode and a fuel electrode by inserting a pressure absorber between a fuel supply passage or discharge passage and an oxidizing agent supply passage or discharge passage and absorbing pressure difference between both passages. CONSTITUTION:A fuel cell 1 is accommodated in a container 5 filled with inactive gas. Oxidizing agent gas and fuel gas are supplied from supply passage 9 and 10 to a oxidizing agent chamber 4a and a fuel chamber 4b and they are discharged from discharge passages 10 and 12. Pressure in each chamber is measured with differential pressure controllers 13 and 14, and controlled with adjust valves 15 and 16 so as to keep specified pressure difference. Moreover, a pressure absorber 17 formed by setting pressure adjusting chambers on both sides of a diaphragm is arranged between the oxidizing agent supply passage 9 and the fuel supply passage 11. Abnormal increase of differential pressure between an oxidizing agent electrode and a fuel electrode is suppressed and generation of crossover in sudden load change at starting is prevented.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は酸化剤極と燃料極との間の極間差圧を安定に
制御することのできる燃料′電池発電システムに関する
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a fuel cell power generation system that can stably control the differential pressure between an oxidizer electrode and a fuel electrode.

〔発明の技術的背景〕[Technical background of the invention]

燃料電池の基本構造を第1図に示す。 Figure 1 shows the basic structure of a fuel cell.

電解液マトリックス1はフェノール系繊維の不織布また
は炭化けい素の微粒子から成る層にリン酸電解質を保持
させて形成される。この電解液マトリックス1を両側か
らはさむ形で酸化剤極2aと燃料極2bとが配置される
。この2つの電極2a、2bはカーボンベーパ等を基材
とし、その電解液マトリックス1と接する面にはプラチ
ナ等の触媒が付着されておシ、裏面には抗水処理を施し
た構造となっている。この電解液マトリックスlと酸化
剤極2aおよび燃料極2bとから構成されたものは、単
電池とよばれ、一体化して製造されるのが普通である。
The electrolyte matrix 1 is formed by holding a phosphoric acid electrolyte in a layer made of a nonwoven fabric of phenolic fibers or fine particles of silicon carbide. An oxidizer electrode 2a and a fuel electrode 2b are arranged to sandwich the electrolyte matrix 1 from both sides. These two electrodes 2a and 2b are made of carbon vapor or the like as a base material, and have a structure in which a catalyst such as platinum is adhered to the surface in contact with the electrolyte matrix 1, and a waterproof treatment is applied to the back surface. There is. A cell composed of the electrolyte matrix 1, oxidizer electrode 2a, and fuel electrode 2b is called a single cell, and is usually manufactured in an integrated manner.

この単電池を積層して燃料電池積層体を形成するために
、カーボン板3a、3bが単電池をはさみこむような形
で配置されている。このカーボン板3a、3bにはそれ
ぞれr伎化剤極2a、燃料極2bへそれぞれ酸化剤およ
び燃料を供給するだめの酸化剤供給流路4a、燃料供給
流路4bが形成されている。
In order to form a fuel cell stack by stacking these single cells, carbon plates 3a and 3b are arranged so as to sandwich the single cells. The carbon plates 3a and 3b are formed with an oxidizing agent supply passage 4a and a fuel supply passage 4b for supplying an oxidizing agent and fuel to the oxidizing agent electrode 2a and fuel electrode 2b, respectively.

燃料電池のjl(極反応は、燃料ガス(または酸化剤ガ
ス)と触媒および電解液の共存下での反応すなわち気体
、固体、液体の三相共存下における界面反応である。す
なわち正常な動作状態下では、。
Fuel cell jl (polar reaction is a reaction in the coexistence of fuel gas (or oxidant gas), catalyst, and electrolyte, i.e., an interfacial reaction in the coexistence of three phases of gas, solid, and liquid. In other words, under normal operating conditions) Below,.

燃料供給流路4b中を流れる燃料流中のH2が燃料極2
bの氷面でl(1となり、これが電解液マトリックス1
内を酸化剤極2aへと移動し、酸化剤極2aの表面で1
投化剤供給流路4a内を流れる酸化剤流中の02から生
じたO−と反応してH2O(水)が生成される。この際
、外部回路を通してエレクトロン(e−)が燃料極2b
から酸化剤極2aへと流れ、このような燃料電池の性能
を最大限に引き出すためには、三相界面の維持およびそ
の制御が精密におこなわれなければならず、したがって
酸化剤極2aと燃料極2bとの間の極間差圧の制御が極
めて重要な問題となる。しかも、一般に単′(5)池を
構成している酸化剤極2aや燃料Vi!、2bは、力−
ヂンベーA等の極めてもろく破損しやすい材質でできて
おり、また電極反応に際して三相界面を維持し、制御す
る必要があるため、酸化剤極2aと燃料極2bとの間の
極間差圧の制御は、極めて慎重におこなわなければなら
ない。
H2 in the fuel flow flowing through the fuel supply channel 4b is transferred to the fuel electrode 2.
The ice surface of b becomes l(1, which is the electrolyte matrix 1
1 at the surface of the oxidizer electrode 2a.
H2O (water) is generated by reacting with O- produced from 02 in the oxidizing agent flow flowing through the injection agent supply channel 4a. At this time, electrons (e-) are transferred to the fuel electrode 2b through the external circuit.
to the oxidizer electrode 2a, and in order to maximize the performance of such a fuel cell, the three-phase interface must be maintained and controlled precisely. Controlling the differential pressure between the electrodes and the electrode 2b becomes an extremely important issue. Furthermore, the oxidizer electrode 2a and the fuel Vi, which generally constitute a single pond (5)! , 2b is the force −
Since the electrode is made of extremely brittle and easily damaged material such as Zimbe A, and it is necessary to maintain and control the three-phase interface during the electrode reaction, the pressure difference between the electrodes between the oxidizer electrode 2a and the fuel electrode 2b is Control must be carried out extremely carefully.

丑だ両極間の極間差圧が増大すると、燃料あるいは酸化
剤が他の流路へもれ出し、電極の表面で燃焼して燃料や
酸化剤を消費してしまうクロスオーバが発生する。この
クロスオーバが激しくおこると、電極自体が燃焼してし
まう可能性もあるので、電池性能維持の観点からもクロ
スオーバの発生は極力防止しなければならない。少量の
クロスオーバであっても、電池反応に害与しない反応ガ
スが存在するわけであるから、その分だけ燃料の利用効
率、酸化剤の利用効率が低下することになり、燃料電池
の総合効率も低下する。したがって燃料電池においては
、このクロスオーバを極力防止して燃料の利用効率、酸
化剤の利用効率を高めることにより総合効率の向上を計
ることが必要である。
When the differential pressure between the two electrodes increases, fuel or oxidant leaks into other flow paths and burns on the surface of the electrode, resulting in crossover, in which the fuel or oxidant is consumed. If this crossover occurs violently, there is a possibility that the electrode itself will burn, so from the viewpoint of maintaining battery performance, the occurrence of crossover must be prevented as much as possible. Even if there is a small amount of crossover, there is a reactant gas that does not harm the cell reaction, so the fuel usage efficiency and oxidant usage efficiency will decrease accordingly, which will reduce the overall efficiency of the fuel cell. also decreases. Therefore, in fuel cells, it is necessary to improve the overall efficiency by preventing this crossover as much as possible and increasing the efficiency of fuel use and oxidizer use.

第2図は極間差圧制御装置を備えた従来の燃料電池発電
システムの概略を示す構成図である。
FIG. 2 is a block diagram schematically showing a conventional fuel cell power generation system equipped with an interelectrode differential pressure control device.

燃料電池収納容器5内には、第1図で説明したような積
層479造を有する燃料電池が収納されてお9、囲シに
は不活性ガス8が充填されている。酸化剤供給流路4a
へは酸化剤供給路9がら酸化剤ガスが供給され、酸化剤
排出路1oへ排出される。
A fuel cell 9 having a laminated structure 479 as described in FIG. 1 is housed in the fuel cell container 5, and the enclosure is filled with an inert gas 8. Oxidizing agent supply channel 4a
Oxidizing gas is supplied to the oxidizing agent supply passage 9 and is discharged to the oxidizing agent discharge passage 1o.

燃料供給流路4bへは燃料供給路11がら燃料ガスが供
給され、燃料排出路12へ排出される。燃料電池収納容
器5内の不活性ガス8は不活性ガス供給流路6から供給
されており、通常アルゴンやチッ素等の不活性ガスが使
用されている。酸化剤供給流路4a内を!Aじれる酸化
剤ガスの圧力は、不活性ガス8の圧力を基準として差圧
制御器13により測定される。同様に燃料供給流路4b
内の圧力も、不活性ガス8を基準として差圧制御器14
により61す定される。差圧制御器13 、14はあら
がじめ設定された圧力差と力るようにそれぞれ酸化剤排
出路1o。
Fuel gas is supplied to the fuel supply passage 4b from the fuel supply passage 11 and is discharged to the fuel discharge passage 12. The inert gas 8 in the fuel cell storage container 5 is supplied from the inert gas supply channel 6, and normally an inert gas such as argon or nitrogen is used. Inside the oxidant supply channel 4a! The pressure of the oxidizing gas to be agitated is measured by the differential pressure controller 13 based on the pressure of the inert gas 8. Similarly, fuel supply channel 4b
The internal pressure is also determined by the differential pressure controller 14 with reference to the inert gas 8.
61 is determined by Differential pressure controllers 13 and 14 control the oxidant discharge path 1o to control a preset pressure difference.

燃料供給路11中に設けられた圧力調整弁15 、16
を制御している。
Pressure regulating valves 15 and 16 provided in the fuel supply path 11
is under control.

燃料電池の圧力制御の基本は、前述したように三相界面
の維持、制御をいかに軸度よくおこなうかということに
つきるが、マクロ的にみれば燃料ガスあるいは酸化剤ガ
スが電極や電解質マトリックス中を突き抜けて他の流路
へもれ出すのを防ぐことにある。
As mentioned above, the basics of pressure control in fuel cells is how to maintain and control the three-phase interface in a precise manner, but from a macroscopic perspective, fuel gas or oxidant gas is The goal is to prevent the water from penetrating through the water and leaking into other channels.

〔背景技術の問題点〕 第2図に示したような極間差圧制御装置を備えた燃料電
池発電システムでは、システムが定常的に運転されてい
る場合には非常に良好な制御性が得られる。しかし、シ
ステムを起動する場合や負荷を急変させる場合および停
止する場合、特に負荷を急変させる場合や緊急に停止さ
せる場合のように変化速度が速い場合には極間差圧制御
が追いつかず、最大許容差圧値を超える差圧が極間に生
ずることがある。したがってこのような最大許容差圧値
以上の差圧を発生させないような運転操作を行なおうと
すれば、必然的に制御性が保持できる範囲内に変化速度
を制限しなくてはならない。
[Problems in the Background Art] In a fuel cell power generation system equipped with an interelectrode pressure differential control device as shown in Fig. 2, very good controllability can be obtained when the system is operated steadily. It will be done. However, when starting up the system, suddenly changing the load, or stopping the system, especially when the speed of change is fast, such as when suddenly changing the load or stopping the system suddenly, interelectrode differential pressure control cannot keep up and the maximum A pressure difference exceeding the permissible pressure difference value may occur between the poles. Therefore, in order to perform an operation that does not generate a pressure difference exceeding the maximum allowable pressure difference value, it is necessary to limit the rate of change within a range in which controllability can be maintained.

特にこの制御速度を制限しているものは、圧力J1整弁
15 、16の応答性の遅れである。したがって供給流
路や排出流路を流れるば化剤や燃料の流速に例らかの原
因で速い変化が生じた時には、従来の極間差圧制御装置
は十分にその機能を発揮することができず、前述したク
ロスオーバが発生してし−まうという欠点を有していた
What particularly limits this control speed is the delay in the response of the pressure J1 regulating valves 15 and 16. Therefore, when there is a rapid change in the flow rate of the oxidizing agent or fuel flowing through the supply channel or the discharge channel for some reason, the conventional interelectrode differential pressure control device cannot fully perform its function. First, it has the disadvantage that the aforementioned crossover occurs.

〔発明の目的〕[Purpose of the invention]

この発明の目的は、供給流路または排出流路を流れるば
化剤捷たは燃料の流量に急激な変化が生じた場合でも、
燃料極と酸化剤極との間に圧力差がつくことを防止し、
クロスオー・々の発生を極力防止することのできる燃料
電池発電システムを提供するにある。
The purpose of the present invention is to prevent the occurrence of sudden changes in the flow rate of the oxidizing agent or fuel flowing through the supply flow path or the discharge flow path.
Prevents pressure difference between fuel electrode and oxidizer electrode,
An object of the present invention is to provide a fuel cell power generation system that can prevent the occurrence of cross-overs as much as possible.

この発明では上記目的を達成するために、燃料電池の燃
料極と酸化剤極とにそれぞれ燃料および酸化剤を供給す
る供給流路と、前記燃料電池から燃料および酸化剤を排
出する排出流路とを具備してなる燃料電池発電システム
において、前記燃料の供給流路または排出流路と前記酸
化剤の供給流路または排出流路との間に介挿され、両流
路内の圧力差を吸収する圧力緩衝器を設けたことを特徴
とする。
In order to achieve the above object, the present invention includes a supply channel that supplies fuel and an oxidant to the fuel electrode and oxidizer electrode of a fuel cell, respectively, and a discharge channel that discharges the fuel and oxidizer from the fuel cell. In a fuel cell power generation system comprising: a fuel cell that is inserted between the fuel supply channel or discharge channel and the oxidizer supply channel or discharge channel, and absorbs the pressure difference between the two channels; It is characterized by being equipped with a pressure buffer.

〔発明の実施例〕[Embodiments of the invention]

以下この発明を実施例に基づいて詳細に説明する。第3
図(A) 、 (B) 、 (C) 、 (D)はそれ
ぞれこの発明の実施例を示した構成図である。なお以下
の図面においては第1図および第2図に示したと同一部
分には同一符号を付してその説明を省略する。
The present invention will be described in detail below based on examples. Third
Figures (A), (B), (C), and (D) are configuration diagrams showing embodiments of the present invention, respectively. In the following drawings, the same parts as shown in FIGS. 1 and 2 are designated by the same reference numerals, and their explanations will be omitted.

第3図(A)の場合には、酸化剤供給流路9と燃料供給
流路11との間に両流路間の圧力差を吸収するだめの圧
力緩衝器17が介挿されている。圧力緩衝器17の具体
的構成については後述するが、酸化剤・供給流路9およ
び燃料供給流路11を流れる1讃化剤と燃料とが圧力緩
衝器17内で混合されることなく、シかも両者の間に圧
力差が生じた場合これを吸収するように圧力緩衝器17
は動作する。
In the case of FIG. 3(A), a pressure buffer 17 is inserted between the oxidizer supply channel 9 and the fuel supply channel 11 to absorb the pressure difference between the two channels. Although the specific configuration of the pressure buffer 17 will be described later, the oxidizing agent and fuel flowing through the oxidizing agent/supply channel 9 and the fuel supply channel 11 are not mixed in the pressure buffer 17, and the system A pressure buffer 17 is installed to absorb the pressure difference that occurs between the two.
works.

第3図(B)に示す実施例では、燃料供給流路11と酸
化剤排出流路10との間に圧力緩衝器17が介挿されて
いる。
In the embodiment shown in FIG. 3(B), a pressure buffer 17 is inserted between the fuel supply channel 11 and the oxidant discharge channel 10.

また第3図(C)の場合には、酸化剤供給流路9と燃料
排出流路12との間に圧力緩衝器17が介挿され、第3
図(D)の場合には、酸化剤排出流路10と燃料排出流
路12との間に圧力緩衝器17が介挿されている。
Further, in the case of FIG. 3(C), a pressure buffer 17 is inserted between the oxidizer supply channel 9 and the fuel discharge channel 12, and the third
In the case of Figure (D), a pressure buffer 17 is interposed between the oxidant discharge channel 10 and the fuel discharge channel 12.

このように圧力緩衝器17は燃料の供給流路まメヒは排
出流路と酸化剤の供給流路または排出流路との間に介挿
される。
In this way, the pressure buffer 17 is inserted between the fuel supply channel or discharge channel and the oxidizer supply channel or discharge channel.

第4図(A)、(B)、(C)、(D)はそれぞれ圧力
緩衝器17の具体的構成を示す図である。第4図(A)
の場合には、燃料および酸化剤の両流路の間を隔てる隔
壁を、ゴムやプラスチックまたは金属等で作ったダイヤ
フラム18とし、このダイヤフラム18をはさんで両τ
(りに圧力調整室が11に成された(゛構造となってい
る。この圧力調整室に燃料および酸化剤がそれぞれ流入
または排出される。
4(A), (B), (C), and (D) are diagrams each showing a specific configuration of the pressure buffer 17. FIG. Figure 4 (A)
In this case, the partition between the fuel and oxidant flow paths is a diaphragm 18 made of rubber, plastic, metal, etc., and the diaphragm 18 is sandwiched between the two τ
(In addition, a pressure adjustment chamber 11 is constructed. Fuel and oxidizer are respectively inflowed into or discharged from this pressure adjustment chamber.

第4図(B)の場合には、隔壁を2つ設け、ダイヤスラ
ム18 、19の離間空洞部内に不活性ガス供給口22
から不活性ガスを導入し、不活性ガス排出口おから排出
するようにして、不活性ガス層別を有するような構造と
なっている。
In the case of FIG. 4(B), two partition walls are provided, and an inert gas supply port 22 is provided in the spaced apart cavity of the diaphragms 18 and 19.
The inert gas is introduced from the inert gas outlet and discharged from the inert gas outlet, so that the inert gas is stratified.

第4図(C)の場合には、隔壁としてベローズ加を用い
ている。このベローズ加の材料もダイヤフラムと同様、
ゴムやプラスチックまたは金属等が用いられる。
In the case of FIG. 4(C), bellows is used as the partition wall. The material of this bellows is similar to the diaphragm.
Rubber, plastic, metal, etc. are used.

第4図(D)は、ベローズ加および21の間に離間空洞
部が設けられた構造を有するもので、第4図(B)に示
したとほぼ同様の構造を有している。
FIG. 4(D) has a structure in which a spaced cavity is provided between the bellows and 21, and has almost the same structure as shown in FIG. 4(B).

このようにダイヤフラムまたはベローズを隔壁とし、そ
の両側に設けられた圧力調整室からなる圧力緩衝器を、
酸化剤および燃料の供給流路または排出流路の間に介挿
することにょシ、もし両流路間で流量の急変等により圧
力差が生じた場合でも、両調整室を隔てる隔壁が圧力の
高い方から圧力の低い方に向って湾曲することにより、
両流路間の圧力差を吸収してしまうため、燃料電池の酸
化剤極と燃料極との間には許容値を超える圧力差が加わ
ることは無くなる。
In this way, a pressure buffer consisting of a diaphragm or bellows as a partition and pressure adjustment chambers provided on both sides of the partition,
When inserted between the oxidizer and fuel supply flow path or discharge flow path, even if a pressure difference occurs between the two flow paths due to a sudden change in flow rate, the partition wall that separates both adjustment chambers will prevent the pressure from changing. By curving from the higher side to the lower pressure side,
Since the pressure difference between both flow paths is absorbed, a pressure difference exceeding an allowable value will not be applied between the oxidizer electrode and the fuel electrode of the fuel cell.

なお第3図に示した実施例では、圧力緩杓器17を1つ
だけ用いた場合を示しているが、必要に応じて複数個を
酸化剤と燃料との供給流路または排出流路との間に介挿
することができるのはいうまでもない。
In the embodiment shown in FIG. 3, only one pressure reliever 17 is used, but if necessary, a plurality of pressure relievers 17 may be used as a supply channel or a discharge channel for the oxidizer and fuel. Needless to say, it can be inserted between the two.

〔発明の効果〕〔Effect of the invention〕

以上実施例に基づいて詳細に説明したように、この発明
は酸化剤と燃料との供給流路または排出流路との間に介
」111されて両流路間の圧力差を吸収する圧力緩衝器
を設けたので、燃料電池のt’iJu化剤極と燃料極と
の間の極間差圧が異常に上昇するという事態を防止する
ことができるため、クロスオーバの発生がなくなシ燃別
電池の性能を長期に渡って維持することができるという
利点がある。
As described above in detail based on the embodiments, the present invention provides a pressure buffer that is interposed between the oxidizer and the fuel supply channel or the discharge channel to absorb the pressure difference between the two channels. The provision of the t'iJu converter electrode makes it possible to prevent the situation in which the differential pressure between the electrodes of the fuel cell and the fuel electrode increases abnormally. This has the advantage that the performance of the separate battery can be maintained over a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は燃料電池の基本構造を示した斜視図、第2図は
極間差圧制御装置を備えた従来の燃料電池発電システム
の構成を示した図、第3図(A)。 (B) 、 (C) 、 (D)はこの発明の実施例を
示した構成図、第4図(A) 、 (B) 、 (C)
 、 CD)はこの発明で用いられる圧力緩衝器の基本
構造を示した図である。 9・・・酸化剤供給流路、IO・・・を役化剤排出流路
、11・・・燃料供給流路、12・・・燃料排出流路、
17・・・圧力緩衝器、18・・・ダイヤフラム、19
・・・ダイヤフラム、肋・・・ベローズ、21・・・ベ
ローズ、冴・・・不活性ガス層。 出願人代理人  猪  股     清栴4 1A) 7 (C1 7 図 (B) 7 (Dl 7
FIG. 1 is a perspective view showing the basic structure of a fuel cell, FIG. 2 is a diagram showing the configuration of a conventional fuel cell power generation system equipped with an interelectrode differential pressure control device, and FIG. 3 (A). (B), (C), and (D) are block diagrams showing embodiments of this invention, and Fig. 4 (A), (B), and (C)
, CD) is a diagram showing the basic structure of a pressure buffer used in the present invention. 9... Oxidizing agent supply flow path, IO... is an auxiliary agent discharge flow path, 11... Fuel supply flow path, 12... Fuel discharge flow path,
17... Pressure buffer, 18... Diaphragm, 19
... diaphragm, ribs... bellows, 21... bellows, sae... inert gas layer. Applicant's agent Kiyosu Inomata 4 1A) 7 (C1 7 Figure (B) 7 (Dl 7)

Claims (1)

【特許請求の範囲】 1、燃料電池の燃料極と酸化剤極とにそれぞれ燃料およ
び酸化剤を供給する供給流路と、前記燃料電池から燃料
および酸化剤を排出する排出流路とを具備してなる燃料
電池発電システムにおいて、前記燃料の供給流路または
排出流路と前記酸化剤の供給流路または排出流路との9
41 K介挿され両流路間の圧力差を吸収する圧力緩衝
器を設けたことを特徴とする燃料電池発電システム0 2、特許請求の範囲第1項記載の燃料電池発電システム
において、前記圧力緩衝器はダイヤフラムまたはベロー
ズからなる隔壁と、この隔壁の両側に設けられた圧力調
整室とから成ることを特徴とする燃料電池発電システム
。 3、%許請求の範囲第2項記載の燃料電池発電システム
において、前記隔壁を離間して2つ設け、この離間空洞
部に不活性ガスを尋人したことを特徴とする燃料電池発
電システム。
[Claims] 1. A fuel cell comprising a supply channel for supplying fuel and an oxidant to a fuel electrode and an oxidizer electrode, respectively, and a discharge channel for discharging the fuel and oxidizer from the fuel cell. In the fuel cell power generation system consisting of
2. The fuel cell power generation system according to claim 1, characterized in that a pressure buffer is provided which is inserted into the flow path and absorbs the pressure difference between the two flow paths. A fuel cell power generation system characterized in that the buffer comprises a partition wall made of a diaphragm or a bellows, and pressure adjustment chambers provided on both sides of the partition wall. 3.% Permissible range The fuel cell power generation system according to claim 2, characterized in that two partition walls are provided spaced apart from each other, and an inert gas is filled in the spaced apart cavity.
JP57214245A 1982-12-07 1982-12-07 Fuel cell power generating system Pending JPS59105272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57214245A JPS59105272A (en) 1982-12-07 1982-12-07 Fuel cell power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57214245A JPS59105272A (en) 1982-12-07 1982-12-07 Fuel cell power generating system

Publications (1)

Publication Number Publication Date
JPS59105272A true JPS59105272A (en) 1984-06-18

Family

ID=16652575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57214245A Pending JPS59105272A (en) 1982-12-07 1982-12-07 Fuel cell power generating system

Country Status (1)

Country Link
JP (1) JPS59105272A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59188681U (en) * 1983-06-01 1984-12-14 三菱電機株式会社 Fuel cell gas control device
JPS61116766A (en) * 1984-11-12 1986-06-04 Mitsubishi Electric Corp Stacked type fuel cell
WO2004049486A3 (en) * 2002-11-27 2005-01-27 Hydrogenics Corp Reactant supply for a fuel cell power system
WO2024048100A1 (en) * 2022-09-01 2024-03-07 国立研究開発法人宇宙航空研究開発機構 Fuel cell, fuel cell system, power generation device, and aircraft

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59188681U (en) * 1983-06-01 1984-12-14 三菱電機株式会社 Fuel cell gas control device
JPH031887Y2 (en) * 1983-06-01 1991-01-21
JPS61116766A (en) * 1984-11-12 1986-06-04 Mitsubishi Electric Corp Stacked type fuel cell
WO2004049486A3 (en) * 2002-11-27 2005-01-27 Hydrogenics Corp Reactant supply for a fuel cell power system
WO2024048100A1 (en) * 2022-09-01 2024-03-07 国立研究開発法人宇宙航空研究開発機構 Fuel cell, fuel cell system, power generation device, and aircraft

Similar Documents

Publication Publication Date Title
JP3769958B2 (en) Fuel cell
US8415065B2 (en) Fuel cell system and method of controlling fuel cell system
KR101217645B1 (en) fuel cell system
JP2019515436A (en) Bipolar plate with reactant gas channels of varying cross-sectional area, fuel cell stack, and vehicle with such fuel cell stack
JP2924009B2 (en) How to stop fuel cell power generation
JP2010244937A (en) Fuel cell system
JP2701522B2 (en) Fuel cell generator
WO2002047190A8 (en) Polyelectrolyte type fuel cell, and operation method therefor
KR20110135207A (en) Fuel cell stack
JP2004327089A (en) Fuel cell stack
JP4407879B2 (en) Fuel cell device
JP2774496B2 (en) Fuel cell voltage distribution control method
JP3293309B2 (en) Solid polymer electrolyte fuel cell
JPS59105272A (en) Fuel cell power generating system
JP2005149902A (en) Fuel cell power generating device and fuel cell power generating method
JPH02244559A (en) Method of stopping operation of fuel cell
JPS63119166A (en) Fuel battery
JP2004335154A (en) Cooling device of fuel cell
JPH0326507B2 (en)
JPS60148067A (en) Fuel cell system
JPH01298653A (en) Fuel cell
JPS63116374A (en) Fuel cell
JPH07302603A (en) Fuel cell power generating system and its operating method
JPH05225995A (en) Fuel cell
JPH08255625A (en) Method for stopping power generation of fuel cell