JPH02244559A - Method of stopping operation of fuel cell - Google Patents

Method of stopping operation of fuel cell

Info

Publication number
JPH02244559A
JPH02244559A JP1065543A JP6554389A JPH02244559A JP H02244559 A JPH02244559 A JP H02244559A JP 1065543 A JP1065543 A JP 1065543A JP 6554389 A JP6554389 A JP 6554389A JP H02244559 A JPH02244559 A JP H02244559A
Authority
JP
Japan
Prior art keywords
fuel
fuel cell
gas
flow path
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1065543A
Other languages
Japanese (ja)
Inventor
Tadashi Komatsu
正 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1065543A priority Critical patent/JPH02244559A/en
Publication of JPH02244559A publication Critical patent/JPH02244559A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To prevent drop of the output power by blocking the inlet and outlet of a fuel path after stopping supply of the electric power, supplying an inert gas to this blocked fuel path while its pressure is controlled by a pressure adjusting valve, and by supplying oxidation gas to an oxidating agent path. CONSTITUTION:When power generation of a fuel cell 1 is to be stopped, switches 22, 23 are closed to turn on load resistance circuits 24, 25, and an inlet valve 10 and outlet valve 11 for the fuel gas are shut. Further a nitrogen supply valve 13 is opened to supply nitrogen to a blocked fuel path 5 via a nitrogen supply line 12. The residual hydrogen encapsulated by the valve 10, 11 reacts with air to generate power, and the current flows through resistances 20, 21. At this time, hydrogen is consumed to cause drop of the pressure in the fuel path 5, that is however compensated with the nitrogen flowing through the line 12, and a pressure adjusting valve 14 make control so that the pressure in the fuel path 5 gets a specified value. This the generated voltage sinks with reduction of the hydrogen concentration in the fuel path 5. This should preclude drop of the output power associate with start and stop of the fuel cell.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、燃料電池、特にりん酸型燃料電池の発!電力
の外部負荷への供給を停止して燃料電池を停止する停止
方法に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to the production of fuel cells, especially phosphoric acid fuel cells! The present invention relates to a method of stopping a fuel cell by stopping the supply of electric power to an external load.

〔従来の技術〕[Conventional technology]

燃料電池、例えばりん酸型燃料電池は燃料電池内の燃料
流路と酸化剤流路を経て供給される燃料ガスと酸化剤ガ
スとにより電池反応を起こさせて発電する。この場合燃
料ガスは水素に冨む改質ガスが、また酸化剤ガスは空気
が使用される。りん酸型燃料電池における発電は運転温
度が150℃〜230℃、単電池当りの出力電圧がO,
5V〜0.8Vにて行なわれ、燃料電池は通常単電池を
複数積層したセルスタックを備え、このセルスタックに
て生じる電力を外部負荷に供給している。
A fuel cell, such as a phosphoric acid fuel cell, generates electricity by causing a cell reaction with a fuel gas and an oxidant gas supplied through a fuel flow path and an oxidant flow path within the fuel cell. In this case, a reformed gas rich in hydrogen is used as the fuel gas, and air is used as the oxidizing gas. For power generation in phosphoric acid fuel cells, the operating temperature is 150°C to 230°C, and the output voltage per cell is O,
The voltage is 5V to 0.8V, and a fuel cell usually includes a cell stack in which a plurality of single cells are stacked, and the power generated in this cell stack is supplied to an external load.

ところで、燃料電池が発電する電力の外部負荷への供給
を停止し、外部負荷から切離した燃料電池の停止状態で
は130℃以下の温度で、燃料電池内部に残留する水素
を不活性ガスとしての窒素ガスで置換した状態にしてい
る。これは、温度が高く、単電池の電圧が0.8 V以
上に放置しておくと、燃料電池の出力特性がしだいに低
下するためである。このため燃料電池を外部負荷から切
離して停止状態に移行する時には、上記の停止状態に早
くなるようにつぎのような運転モードが実施されている
。すなわち、燃料電池から外部負荷に供給する出力を次
第に低下させ、運転温度を低く制御して150℃〜14
0℃になったら出力を遮断して外部負荷から切離し、燃
料流路と酸化剤流路に不活性ガスとしての窒素ガスを供
給して燃料ガスと空気とをパージする。この場合、燃料
電池の出力端に負荷抵抗を接続して負荷抵抗回路を形成
し、この負荷抵抗に、残留する燃料ガスと酸化剤ガスと
による電池反応により生じる電気を流し、電圧を早く低
下させている。
By the way, in a stopped state where the fuel cell is disconnected from the external load and the supply of electricity generated by the fuel cell to the external load is stopped, the hydrogen remaining inside the fuel cell is replaced by nitrogen as an inert gas at a temperature of 130°C or less. It is in a state where it is replaced with gas. This is because if the temperature is high and the voltage of the unit cell is left at 0.8 V or higher, the output characteristics of the fuel cell will gradually decrease. For this reason, when disconnecting the fuel cell from the external load and transitioning to the stopped state, the following operation mode is implemented so that the above-mentioned stopped state can be reached quickly. In other words, the output supplied from the fuel cell to the external load is gradually reduced, and the operating temperature is controlled to a low level of 150°C to 14°C.
When the temperature reaches 0° C., the output is cut off and disconnected from the external load, and nitrogen gas as an inert gas is supplied to the fuel flow path and the oxidizer flow path to purge the fuel gas and air. In this case, a load resistor is connected to the output end of the fuel cell to form a load resistor circuit, and electricity generated by the cell reaction between the remaining fuel gas and oxidant gas is passed through the load resistor to quickly reduce the voltage. ing.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のような停止状態にする運転モードにおいても起動
9停止を繰り返すと燃料電池の出力特性がしだいに低下
するという問題がある。これは。
Even in the above-mentioned operation mode in which the fuel cell is in a stopped state, there is a problem in that the output characteristics of the fuel cell gradually decrease when starting and stopping are repeated. this is.

燃料電池に供給する窒素ガスが過剰で、かつ乾燥してい
るため、燃料電池内の電解液が蒸発、飛散し、体積変化
による電解液の移動によって正常な発電反応が妨げられ
るからである。
This is because the nitrogen gas supplied to the fuel cell is excessive and dry, causing the electrolyte in the fuel cell to evaporate and scatter, and the movement of the electrolyte due to volume changes to prevent normal power generation reactions.

本発明の目的は、燃料電池を外部負荷から切離した後の
燃料電池内に残留する燃料ガスを不活性ガスと置換する
とき、電解液の蒸発、飛散を少なくすることのできる燃
料電池の停止方法を提供rることである。
An object of the present invention is to provide a method for stopping a fuel cell that can reduce evaporation and scattering of electrolyte when replacing the fuel gas remaining in the fuel cell with inert gas after disconnecting the fuel cell from an external load. It is to provide the following.

〔課題を解決するための手段〕[Means to solve the problem]

上記!iBを解決するために、本発明によれば燃料流路
と酸化剤流路とを有する燃料電池が発電する電力の外部
負荷への供給を停止した後、前記燃料電池内に残留する
燃料ガスを酸化剤ガスにより電池反応させて生じる電気
を負荷抵抗回路に流して発it圧を低下させる燃料電池
の停止方法において、前記電力供給停止後、前記燃料ガ
スの人口と出口とを閉鎖し、不活性ガスを圧力調整弁に
より所定圧力に制御して前記閉鎖された燃料流路に供給
し、一方酸化剤流路に酸化剤ガスを供給するものとする
the above! In order to solve iB, according to the present invention, after stopping the supply of electric power generated by a fuel cell having a fuel flow path and an oxidizer flow path to an external load, the fuel gas remaining in the fuel cell is removed. In a method for stopping a fuel cell in which electricity generated by a cell reaction with an oxidizing gas is passed through a load resistance circuit to lower the starting pressure, after the power supply is stopped, the fuel gas population and outlet are closed and the fuel gas is inactivated. The gas is controlled to a predetermined pressure by a pressure regulating valve and is supplied to the closed fuel flow path, while the oxidant gas is supplied to the oxidizer flow path.

(作用〕 燃料電池を外部負荷から切離した後燃料電池の燃料流路
の入口と出口とを閉鎖し、この閉鎖された燃料流路に圧
力制御された不活性ガスを供給するとともに酸化剤流路
に酸化剤ガスを供給して電池反応を起こさせて電気を発
生させ、この電気を町t     カ 燃料流−婚の出口端に接続された負荷抵抗回路に流し、
残留する燃料ガス中の水素を消費してなくす。
(Operation) After disconnecting the fuel cell from the external load, the inlet and outlet of the fuel flow path of the fuel cell are closed, and pressure-controlled inert gas is supplied to the closed fuel flow path, and the oxidizer flow path is closed. oxidant gas is supplied to cause a battery reaction to generate electricity, and this electricity is passed through a load resistance circuit connected to the outlet end of the fuel flow.
Consumes and eliminates hydrogen in remaining fuel gas.

この場合、燃料流路は入口と出口とが閉鎖されているの
で、水素の消費により燃料流路内の圧力が低下する。し
たがって不活性ガスを水素の消費分を補うように圧力調
整弁により燃料流路内の圧力が所定圧力になるように制
御して供給する。一方酸化剤流路には燃料波路内の残存
水素との反応が璧続するように酸化剤ガスを供給する。
In this case, since the inlet and outlet of the fuel flow path are closed, the pressure within the fuel flow path decreases due to consumption of hydrogen. Therefore, the inert gas is supplied while being controlled by the pressure regulating valve so that the pressure in the fuel flow path becomes a predetermined pressure so as to compensate for the consumption of hydrogen. On the other hand, the oxidant gas is supplied to the oxidant flow path so that the reaction with the residual hydrogen in the fuel wave path continues.

この酸化剤ガスの供給量は、負荷抵抗に流れる電流から
計算される理&2量の2〜3倍でよい。
The supply amount of this oxidant gas may be 2 to 3 times the amount calculated from the current flowing through the load resistor.

このようにして燃料電池の発電反応を継続しつつ、燃料
電池の閉鎖された燃料流路を不活性ガスに置換すること
により、乾燥した不活性ガスを過剰に供給することがな
いので、電解液の蒸発、飛散を防止し、また発電反応に
伴う生成水の発生により電解液の濃度を制御できる。
In this way, while continuing the power generation reaction of the fuel cell, by replacing the closed fuel flow path of the fuel cell with inert gas, there is no need to supply an excessive amount of dry inert gas. This prevents evaporation and scattering of the electrolyte, and also controls the concentration of the electrolyte by generating water generated during the power generation reaction.

〔実施例〕〔Example〕

以下図面に基づいて本発明の実施例について説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の実施例による燃料電池の停止方法を通
用するときの燃料電池の系統間である。第1図において
1はりん酸型燃料電池であり、模式的に示されているが
、りん酸を電解液とする電解液室2と、この両側に配さ
れた燃料極3と酸化剤極4と、さらにこの両側に配され
、燃料極3に燃料ガスを供給する燃料流路5と酸化剤極
4に酸化剤ガスとしての空気を供給する酸化剤流路6と
で構成されている。7は燃料ガス供給系であり、燃料電
池1の燃料流路5に燃料ガスを供給する燃料ガス供給管
8と、燃料流路5から燃料ガスを排出する燃料ガス排出
管9とを備えている。
FIG. 1 shows the connections between fuel cell systems when the fuel cell stopping method according to the embodiment of the present invention is applied. In FIG. 1, 1 is a phosphoric acid fuel cell, which is shown schematically, and includes an electrolyte chamber 2 containing phosphoric acid as an electrolyte, and a fuel electrode 3 and an oxidizer electrode 4 arranged on both sides of the electrolyte chamber 2. Further, the fuel passage 5 is disposed on both sides of the fuel passage 5 and includes a fuel passage 5 that supplies fuel gas to the fuel electrode 3 and an oxidizer passage 6 that supplies air as an oxidant gas to the oxidizer electrode 4. Reference numeral 7 denotes a fuel gas supply system, which includes a fuel gas supply pipe 8 that supplies fuel gas to the fuel flow path 5 of the fuel cell 1, and a fuel gas discharge pipe 9 that discharges fuel gas from the fuel flow path 5. .

なお燃料ガス供給管8には大口弁10が、燃料ガス排出
管9には出目弁11が設けられている。12は燃料ガス
供給管8に人口弁10の出口部で接続される窒素供給系
であり、窒素供給弁13と圧力調整弁14とを備えてい
る。15は燃料電池lの酸化剤流路6に空気を供給、排
出する空気供給系である。
Note that the fuel gas supply pipe 8 is provided with a large opening valve 10, and the fuel gas discharge pipe 9 is provided with an exit valve 11. A nitrogen supply system 12 is connected to the fuel gas supply pipe 8 at the outlet of the artificial valve 10, and includes a nitrogen supply valve 13 and a pressure regulating valve 14. Reference numeral 15 denotes an air supply system that supplies and discharges air to and from the oxidizer channel 6 of the fuel cell I.

燃料電池1の燃料極3と酸化剤極4とには外部負荷に図
示しない電力変換装置を介して接続される負荷回路17
が接続されている。そして負荷回路17には電力変換装
置と並列に負荷抵抗20,21.およびスイッチ22.
23とをそれぞれ有する負荷抵抗回路24.25とが接
読されている。負荷抵抗20は発電停止直後に燃料電池
の燃料ガス用配管及び燃料流路5内のガス流路に残留す
る燃料ガス中の水素を消費する電流容量の大きい負荷で
あり、91.荷抵抗21はこれに続いて残る少量の水素
を消費する負荷である。
A load circuit 17 is connected to the fuel electrode 3 and oxidizer electrode 4 of the fuel cell 1 through an external load via a power converter (not shown).
is connected. The load circuit 17 includes load resistors 20, 21 . and switch 22.
23 and 24, 25 respectively are read out. The load resistor 20 is a load with a large current capacity that consumes hydrogen in the fuel gas remaining in the fuel gas piping of the fuel cell and the gas flow path in the fuel flow path 5 immediately after power generation is stopped. The load resistor 21 is a load that subsequently consumes the small amount of hydrogen that remains.

このような構成により、燃料電池1の発電を停止すると
きには、電力変換装置Iへの送電電力を遮断し、スイッ
チ22.23を閉にして負荷抵抗回路24.25を活か
し、燃料ガスの人口弁10.出口弁11とを閉にし、さ
らに窒素供給弁13を間にして窒素を窒素供給系12を
経て閉鎖された燃料流路5に供轟、 給する。一方、空気は空気供給管15を経て酸化剤流路
6に通流させる。この状態において人口弁10と出口弁
11とで閉ざされた燃料流路等の残留水素は空気と電池
反応して発電し、この発電した電気は負荷抵抗2O,2
1とを流れる。この除波れる電流に相当する水素が消費
され、燃料流路5内の圧力は低下するが、この圧力低下
は、窒素供給系12を経て流れる窒素により補われ、圧
力調整弁14により燃料流路5の圧力が所定圧力になる
ように制御される。このように燃料流路5の圧力が所定
圧力に保持されながら残留した燃料ガス中の水素は空気
と電池反応をして消費され、燃$4流路5の水素濃度が
薄くなるにつれて発電電圧は低下する。なお、この際燃
料電池内部の水素濃度が均一に薄くなるように、負荷抵
抗20は単電池電圧で0.8〜0.5vになるようにス
イッチ22によりON、OFFを繰り返す、T!1圧が
低下して負荷抵抗20のONの時間が数秒に短くなった
時点で負荷抵抗20を0ドFの状態にして、負荷抵抗2
1のスイッチ23によるON、OFFによって残存する
水素を消費する。
With this configuration, when power generation by the fuel cell 1 is stopped, the power transmitted to the power converter I is cut off, the switch 22.23 is closed, the load resistance circuit 24.25 is utilized, and the fuel gas artificial valve is closed. 10. The outlet valve 11 is closed, and nitrogen is supplied to the closed fuel passage 5 via the nitrogen supply system 12 with the nitrogen supply valve 13 in between. On the other hand, air is made to flow through the oxidizer channel 6 via the air supply pipe 15. In this state, the residual hydrogen in the fuel flow path, etc., which is closed by the artificial valve 10 and the outlet valve 11, reacts with the air and generates electricity, and this generated electricity is generated by the load resistance 2O, 2
Flows through 1. Hydrogen corresponding to this removed current is consumed, and the pressure in the fuel flow path 5 decreases, but this pressure drop is compensated for by nitrogen flowing through the nitrogen supply system 12, and the pressure regulating valve 14 The pressure of No. 5 is controlled to be a predetermined pressure. In this way, while the pressure in the fuel flow path 5 is maintained at a predetermined pressure, the hydrogen in the remaining fuel gas undergoes a cell reaction with the air and is consumed, and as the hydrogen concentration in the fuel flow path 5 becomes thinner, the generated voltage decreases. descend. At this time, in order to uniformly reduce the hydrogen concentration inside the fuel cell, the load resistor 20 is repeatedly turned on and off by the switch 22 so that the cell voltage becomes 0.8 to 0.5 V.T! 1 When the voltage decreases and the ON time of the load resistor 20 is shortened to several seconds, the load resistor 20 is set to 0 F, and the load resistor 2 is turned on.
The remaining hydrogen is consumed by turning the switch 23 of No. 1 on and off.

空気の供給は、負荷抵抗20のON、OFF制御の時は
負荷抵抗20.21と電池電圧で計算できる理論量の2
倍の空気を供給する。負荷抵抗21によって制御してい
るときは空気の供給は停止するが、酸化剤流路内に残っ
た酸素が発電反応に使用される。
Air supply is controlled by the load resistance 20.21 and the theoretical amount calculated from the battery voltage when the load resistance 20 is ON and OFF controlled.
Supply twice as much air. When controlled by the load resistor 21, the supply of air is stopped, but the oxygen remaining in the oxidizer flow path is used for the power generation reaction.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば燃料電
池の外部a荷への送電停止後燃料電池内の燃料流路の入
口と出口とを閉鎖し、この閉鎖された燃料流路に窒素を
供給して所定の圧力に制御しながらこの燃料流路に残留
する燃料ガス中の水素を酸化剤流路を流れる空気と電池
反応させて消費し、この除土じる電気を負荷抵抗回路に
流して発電電圧を低下させて燃料電池の停止を行なわせ
ることにより、過剰な乾燥した不活性ガスによる電解液
の蒸発1飛散がなくなり、また電池反応に伴う生成水が
あるので、電解液の濃度も適当に制御され伝曇卒−燃料
電池の起動1停止に伴う出力特性の低下が小さくなると
いう効果がある。なお、燃料ガスを置換する不活性ガス
量も少なくなるので、不活性ガス供給系の設備も小さく
なるという効果もある。
As is clear from the above description, according to the present invention, after the power transmission to the external load of the fuel cell is stopped, the inlet and outlet of the fuel flow path inside the fuel cell are closed, and the closed fuel flow path is filled with nitrogen. While supplying and controlling the pressure to a predetermined pressure, the hydrogen in the fuel gas remaining in this fuel flow path is consumed by a battery reaction with the air flowing through the oxidizer flow path, and the electricity generated by this soil removal is sent to the load resistance circuit. By reducing the power generation voltage and stopping the fuel cell, the electrolyte is prevented from evaporating and scattering due to excessive dry inert gas, and since there is water produced during the cell reaction, the concentration of the electrolyte is reduced. This has the effect that the deterioration in output characteristics accompanying the start and stop of the fuel cell is reduced by being appropriately controlled. In addition, since the amount of inert gas that replaces the fuel gas is also reduced, there is also the effect that the equipment for the inert gas supply system is also reduced in size.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例による燃料電池の停止方法を適
用するときの燃料電池の系統図である。 1:燃料電池、5:燃料流路、6;酸化剤流路、10;
人口弁、11:出口弁、14−圧力調整弁、24゜25
;負荷抵抗回路。 l゛ 代jF人有理士 山 口  I5.(
FIG. 1 is a system diagram of a fuel cell when a method for stopping a fuel cell according to an embodiment of the present invention is applied. 1: fuel cell, 5: fuel flow path, 6; oxidizer flow path, 10;
Population valve, 11: Outlet valve, 14-Pressure adjustment valve, 24°25
;Load resistance circuit. 1st generation rationalist Yamaguchi I5. (

Claims (1)

【特許請求の範囲】[Claims] 1)燃料流路と酸化剤流路とを有する燃料電池が発電す
る電力の外部負荷への供給を停止した後、前記燃料電池
内に残留する燃料ガスを酸化剤ガスにより電池反応させ
て生じる電気を負荷抵抗回路に流して発電電圧を低下さ
せる燃料電池の停止方法において、前記電力供給停止後
、前記燃料流路の入口と出口とを閉鎖し、不活性ガスを
圧力調整弁により所定圧力に制御して前記閉鎖された燃
料流路に供給し、一方酸化剤流路に酸化剤ガスを供給す
ることを特徴とする燃料電池の停止方法。
1) Electricity generated by causing a cell reaction of the fuel gas remaining in the fuel cell with an oxidant gas after the supply of power generated by a fuel cell having a fuel flow path and an oxidizer flow path to an external load is stopped. In the method for stopping a fuel cell in which the generated voltage is reduced by flowing the power through a load resistance circuit, after the power supply is stopped, the inlet and outlet of the fuel flow path are closed, and the inert gas is controlled to a predetermined pressure by a pressure regulating valve. A method for stopping a fuel cell, characterized in that the oxidant gas is supplied to the closed fuel flow path, and the oxidant gas is supplied to the oxidizer flow path.
JP1065543A 1989-03-17 1989-03-17 Method of stopping operation of fuel cell Pending JPH02244559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1065543A JPH02244559A (en) 1989-03-17 1989-03-17 Method of stopping operation of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1065543A JPH02244559A (en) 1989-03-17 1989-03-17 Method of stopping operation of fuel cell

Publications (1)

Publication Number Publication Date
JPH02244559A true JPH02244559A (en) 1990-09-28

Family

ID=13290039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1065543A Pending JPH02244559A (en) 1989-03-17 1989-03-17 Method of stopping operation of fuel cell

Country Status (1)

Country Link
JP (1) JPH02244559A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0343965A (en) * 1989-07-11 1991-02-25 Hitachi Ltd Operation of power generating system in molten carbonate fuel cell
JP2003086215A (en) * 2001-09-11 2003-03-20 Matsushita Electric Ind Co Ltd Fuel cell power generating device
JP2004342406A (en) * 2003-05-14 2004-12-02 Matsushita Electric Ind Co Ltd Fuel cell system
WO2005078844A1 (en) * 2004-02-12 2005-08-25 Toyota Jidosha Kabushiki Kaisha Fuel battery system and method for removing residual fuel gas
JP2005302609A (en) * 2004-04-14 2005-10-27 Honda Motor Co Ltd Fuel cell system
WO2006090685A1 (en) 2005-02-22 2006-08-31 Mitsubishi Materials Corporation Solid oxide type fuel cell and operation method thereof
WO2008026449A1 (en) * 2006-08-29 2008-03-06 Canon Kabushiki Kaisha Method for stopping power generation of fuel cell system and fuel cell system including power generation stopping unit
JP2009238758A (en) * 2009-07-13 2009-10-15 Panasonic Corp Fuel cell power generating device
JP2013030272A (en) * 2011-07-26 2013-02-07 Toshiba Corp Fuel cell system and operation method thereof
JP2013171782A (en) * 2012-02-22 2013-09-02 Mitsubishi Heavy Ind Ltd Operational method of solid oxide fuel battery, operational method of hybrid power generation system, solid oxide fuel battery system and hybrid power generation system

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0343965A (en) * 1989-07-11 1991-02-25 Hitachi Ltd Operation of power generating system in molten carbonate fuel cell
JP2003086215A (en) * 2001-09-11 2003-03-20 Matsushita Electric Ind Co Ltd Fuel cell power generating device
JP2004342406A (en) * 2003-05-14 2004-12-02 Matsushita Electric Ind Co Ltd Fuel cell system
JP4590829B2 (en) * 2003-05-14 2010-12-01 パナソニック株式会社 Fuel cell system
WO2005078844A1 (en) * 2004-02-12 2005-08-25 Toyota Jidosha Kabushiki Kaisha Fuel battery system and method for removing residual fuel gas
JPWO2005078844A1 (en) * 2004-02-12 2007-08-02 トヨタ自動車株式会社 Fuel cell system and method for removing residual fuel gas
JP2005302609A (en) * 2004-04-14 2005-10-27 Honda Motor Co Ltd Fuel cell system
JP4681250B2 (en) * 2004-04-14 2011-05-11 本田技研工業株式会社 Fuel cell system
EP2101371A2 (en) 2005-02-22 2009-09-16 Mitsubishi Materials Corporation Solid Oxide Type Fuel Cell and Operating Method Thereof
EP2287954A2 (en) 2005-02-22 2011-02-23 Mitsubishi Materials Corporation Solid oxide type fuel cell and operating method thereof
WO2006090685A1 (en) 2005-02-22 2006-08-31 Mitsubishi Materials Corporation Solid oxide type fuel cell and operation method thereof
US7816047B2 (en) 2006-08-29 2010-10-19 Canon Kabushiki Kaisha Method for stopping power generation of fuel cell system and fuel cell system including power generation stopping unit
WO2008026449A1 (en) * 2006-08-29 2008-03-06 Canon Kabushiki Kaisha Method for stopping power generation of fuel cell system and fuel cell system including power generation stopping unit
KR101102198B1 (en) * 2006-08-29 2012-01-02 캐논 가부시끼가이샤 Method for stopping power generation of fuel cell system and fuel cell system including power generation stopping unit
JP2009238758A (en) * 2009-07-13 2009-10-15 Panasonic Corp Fuel cell power generating device
JP2013030272A (en) * 2011-07-26 2013-02-07 Toshiba Corp Fuel cell system and operation method thereof
JP2013171782A (en) * 2012-02-22 2013-09-02 Mitsubishi Heavy Ind Ltd Operational method of solid oxide fuel battery, operational method of hybrid power generation system, solid oxide fuel battery system and hybrid power generation system

Similar Documents

Publication Publication Date Title
US5989739A (en) Method for operating a fuel cell system
JP5140838B2 (en) Fuel cell module and process for shutting off the fuel cell
JP4538190B2 (en) High fuel utilization in the fuel cell
JP2501872B2 (en) Method for converting inert gas of fuel electrode when fuel cell is shut down
JPH10144334A (en) Fuel cell system power plant, and starting and stopping method therefor
JP2007273276A (en) Fuel cell power generation system and its operation method
JPH1167254A (en) Fuel cell power generating plant and its start/stop operation method
US8192876B2 (en) Method for operating a fuel cell system in a mode of reduced power output
JPH02244559A (en) Method of stopping operation of fuel cell
JPS6244387B2 (en)
JP2001015140A (en) Solid polymer type fuel cell
JPH05251102A (en) Phospholic acid type fuel cell power generating plant
JPH0763020B2 (en) Fuel cell start / stop device
JP2005116402A (en) Starting method of fuel cell system
JP2752987B2 (en) Phosphoric acid fuel cell power plant
KR20210072223A (en) Power net system of the fuel cell and control method thereof
JPH08222259A (en) Stopping method of fuel cell power generation plant
JPS6398710A (en) Voltage control circuit for fuel cell
JPS63116373A (en) Fuel cell operating method
JPH10223244A (en) Fuel cell electricity generating apparatus
JP2931372B2 (en) Operating method of fuel cell power generation system
JP6445096B2 (en) Fuel cell system and operation method thereof
JPH07249424A (en) Phosphoric acid fuel cell power generating plant
JPH08190929A (en) Fuel cell power generating plant
JP2019133830A (en) Fuel cell system