JPH10223244A - Fuel cell electricity generating apparatus - Google Patents

Fuel cell electricity generating apparatus

Info

Publication number
JPH10223244A
JPH10223244A JP9020354A JP2035497A JPH10223244A JP H10223244 A JPH10223244 A JP H10223244A JP 9020354 A JP9020354 A JP 9020354A JP 2035497 A JP2035497 A JP 2035497A JP H10223244 A JPH10223244 A JP H10223244A
Authority
JP
Japan
Prior art keywords
fuel gas
fuel cell
steam
raw fuel
raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9020354A
Other languages
Japanese (ja)
Inventor
Atsutomo Ooyama
敦智 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP9020354A priority Critical patent/JPH10223244A/en
Publication of JPH10223244A publication Critical patent/JPH10223244A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably carry out flow rate control for a raw fuel gas to be supplied to a steam reforming apparatus following abrupt electricity output fluctuation, even when the electricity output of a fuel cell is abruptly changed. SOLUTION: In a fuel cell type electricity generating apparatus in which a raw fuel gas is reformed into a hydrogen enriched fuel gas by a desulfurization apparatus 5 and a steam-reforming apparatus 2 and the resultant fuel gas is supplied to a fuel electrode of a fuel cell 1 to generate electricity, an ejector pump 6 is inserted in the rear stage of the desulfurization apparatus in a raw fuel gas supplying route, and a raw fuel gas is sucked, mixed with steam, and supplied to the reforming apparatus, while steam being used as a driving fluid. In this case, the output pressure of the desulfurization apparatus is kept at a set value by connecting a pressure control valve 14 between the raw fuel gas suction inlet of the ejector pump and the output of the desulfurization apparatus, so that excessive suction of the raw fuel gas from the container of the desulfurization apparatus to the elector pump can be prevented at the time, when the output of the fuel cell is abruptly fluctuated and a reverse flow of steam can be avoided. The pressure set value of the pressure control valve is made variable, corresponding to the output fluctuation of the fuel cell.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、天然ガスを原燃料
に用い、原燃料ガスを脱硫器,水蒸気改質器を経て水素
リッチな燃料ガスに改質した上で、該燃料ガスを燃料電
池の燃料極に供給して発電する燃料電池発電装置、特に
その原燃料ガスの供給制御系に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses natural gas as raw fuel, reforms the raw fuel gas into a hydrogen-rich fuel gas through a desulfurizer and a steam reformer, and converts the fuel gas into a fuel cell. The present invention relates to a fuel cell power generation device that supplies power to a fuel electrode and generates power, and more particularly to a supply control system for the raw fuel gas.

【0002】[0002]

【従来の技術】周知のように、都市ガス相当の天然ガス
を原燃料として、原燃料ガスを燃料電池(リン酸型燃料
電池)に供給する水素リッチな燃料ガスに改質するに
は、一般に水蒸気改質法が採用されている。この場合
に、改質触媒を硫黄成分による被毒かから保護するため
に、原燃料供給路に脱硫器を接続し、水蒸気改質工程の
前処理として原燃料ガスに含まれている硫黄成分を脱硫
器で除去するようにしている。また、脱硫された原燃料
ガスを水蒸気と混合して後段の改質器に送り込む手段と
しては、動力が不要で、かつメンテナンスフリーなエゼ
クタポンプが一般に採用されている。
2. Description of the Related Art As is well known, reforming a raw fuel gas into a hydrogen-rich fuel gas to be supplied to a fuel cell (phosphoric acid type fuel cell) using natural gas equivalent to city gas as a raw fuel generally involves the following steps. A steam reforming method is employed. In this case, in order to protect the reforming catalyst from being poisoned by the sulfur component, a desulfurizer is connected to the raw fuel supply passage, and the sulfur component contained in the raw fuel gas is removed as a pretreatment in the steam reforming step. They are removed by a desulfurizer. As a means for mixing the desulfurized raw fuel gas with water vapor and sending it to a reformer at a later stage, an ejector pump which does not require power and is maintenance-free is generally employed.

【0003】図3は原燃料ガス供給系に前記の脱硫器,
エゼクタポンプを組み込んだ燃料電池装置のシステムフ
ロー図である。図において、1は燃料電池、2は水蒸気
改質器、3は原燃料ガス供給源(都市ガス)、4は水蒸
気供給源(水蒸気発生器)、5は脱硫器、6は水蒸気を
駆動流体として原燃料ガスを吸引,水蒸気と混合して後
段の改質器2に送り込むエゼクタポンプ、7,8は原燃
料ガス供給路,水蒸気供給路に接続した流量制御弁であ
り、これらで燃料ガス改質系を構成している。一方、燃
料電池1の直流出力はインバータ9で交流電力に変換
し、電力系統10を介して負荷11に給電するようにし
ている。
[0003] FIG. 3 shows a desulfurizer,
FIG. 2 is a system flow diagram of a fuel cell device incorporating an ejector pump. In the figure, 1 is a fuel cell, 2 is a steam reformer, 3 is a raw fuel gas supply source (city gas), 4 is a steam supply source (steam generator), 5 is a desulfurizer, and 6 is steam as a driving fluid. Ejector pumps for sucking the raw fuel gas, mixing it with steam, and sending it to the reformer 2 at the subsequent stage. Numerals 7 and 8 are flow rate control valves connected to the raw fuel gas supply passage and the steam supply passage. Make up the system. On the other hand, the DC output of the fuel cell 1 is converted into AC power by the inverter 9 and supplied to the load 11 via the power system 10.

【0004】また、燃料電池1における燃料ガスの消費
量は電気出力に比例することから、所定の水蒸気比(原
燃料ガスと水蒸気との混合比率であり、水蒸気改質での
熱力学的平衡,触媒の性質などの条件から2〜5の範囲
に定められている)を保持しつつ、燃料電池1の出力変
動に相応して原燃料ガスの供給量を増減制御するため
に、インバータ9の出力側にCT(出力電流検出器)1
2を接続し、CT12で得た出力信号を基に、調節計1
3により原燃料ガス,および水蒸気の供給路に接続した
流量制御弁7,8を制御するようにしている。ここで、
調節計13はCT12の検出値を基にその時の電池出力
に相応した原燃料ガスの流量設定値を演算し、流量制御
弁7,8に付設した流量計の検出値が前記の流量設定値
と一致するように弁開度を制御する。
Further, since the consumption of fuel gas in the fuel cell 1 is proportional to the electric output, a predetermined steam ratio (a mixing ratio of raw fuel gas and steam, and a thermodynamic equilibrium in steam reforming, The output of the inverter 9 is controlled to increase or decrease the supply amount of the raw fuel gas in accordance with the output fluctuation of the fuel cell 1 while maintaining the range of 2 to 5 from conditions such as the properties of the catalyst. (Output current detector) 1 on the side
2 and controller 1 based on the output signal obtained at CT12.
3 controls the flow control valves 7 and 8 connected to the raw fuel gas and steam supply paths. here,
The controller 13 calculates a set value of the flow rate of the raw fuel gas corresponding to the battery output at that time based on the detected value of the CT 12, and the detected value of the flow meter attached to the flow control valves 7, 8 is the same as the flow set value. The valve opening is controlled so as to match.

【0005】かかる構成で、燃料電池1の運転時に、水
蒸気を駆動流体としてエゼクタポンプ6のノズルに水蒸
気供給源4(水蒸気発生器の水蒸気元圧は一定)から流
量制御弁8を通じて水蒸気を供給すると、原燃料ガス供
給源3から流量制御弁7,脱硫器5を経て供給される原
燃料ガスがエゼクタポンプ6に吸い込まれ、ポンプ内で
水蒸気と混合した上で後段の改質器2に送り込まれ、こ
こで水素リッチなガスに改質された燃料ガスが燃料電池
1の燃料極に供給されて発電する。
With this configuration, when the fuel cell 1 is operated, steam is supplied from the steam supply source 4 (the steam source pressure of the steam generator is constant) to the nozzle of the ejector pump 6 through the flow control valve 8 using steam as a driving fluid. The raw fuel gas supplied from the raw fuel gas supply source 3 via the flow control valve 7 and the desulfurizer 5 is sucked into the ejector pump 6, mixed with steam in the pump, and sent to the reformer 2 at the subsequent stage. Here, the fuel gas reformed into a hydrogen-rich gas is supplied to the fuel electrode of the fuel cell 1 to generate power.

【0006】次に、前記したエゼクタポンプ6の構造を
図2に示す。すなわち、エゼクタポンプ6は駆動流体と
しての水蒸気を噴出するノズル6aと、該ノズル6aを
取り囲む吸引室6bと、該吸引室6bに開口した原燃料
ガス吸込口6cと、吸引室6bの後部に続くスロート部
6d,ディフューザ部6eから構成されている。かかる
構造になるエゼクタポンプ6の動作特性は周知であっ
て、ノズル6aより噴出する駆動流体の仕事量は噴出速
度の二乗に比例する。そして、ノズル6aの入口圧力
(水蒸気圧力)を一定とすれば、エゼクタポンプ6へ供
給する水蒸気流量が増すほどノズル6aからの噴出速度
が大きくなり、ノズル前方の吸引室6bの圧力,つまり
原燃料ガス吸込口6cの圧力は低くなって、原燃料ガス
をポンプ内に吸引する能力が高まる。逆に水蒸気供給量
が減少すると、ノズル6aからの水蒸気噴出速度が下が
って原燃料ガス吸込口6cの圧力低下が小さくなり、原
燃料ガスの吸引能力が低くなる。
Next, the structure of the ejector pump 6 is shown in FIG. That is, the ejector pump 6 is connected to a nozzle 6a for ejecting water vapor as a driving fluid, a suction chamber 6b surrounding the nozzle 6a, a raw fuel gas suction port 6c opened to the suction chamber 6b, and a rear portion of the suction chamber 6b. It is composed of a throat section 6d and a diffuser section 6e. The operating characteristics of the ejector pump 6 having such a structure are well known, and the work amount of the driving fluid ejected from the nozzle 6a is proportional to the square of the ejection speed. If the inlet pressure (steam pressure) of the nozzle 6a is constant, the ejection speed from the nozzle 6a increases as the steam flow rate supplied to the ejector pump 6 increases, and the pressure of the suction chamber 6b in front of the nozzle, that is, the raw fuel The pressure at the gas inlet 6c decreases, and the ability to suck the raw fuel gas into the pump increases. Conversely, when the supply amount of water vapor is reduced, the speed of jetting water vapor from the nozzle 6a is reduced, so that the pressure drop of the raw fuel gas suction port 6c is reduced, and the raw fuel gas suction capability is reduced.

【0007】そこで、上記したエゼクタポンプ6の動作
特性と併せて、図3で述べたように燃料電池1の出力変
動に相応して流量制御弁7,8を制御すれば、燃料電池
1の出力,つまり電池で消費する燃料ガス量に見合った
量の原燃料ガスを、エゼクタポンプ6により水蒸気と混
合して改質器2へ供給することができる。
Therefore, by controlling the flow control valves 7 and 8 in accordance with the output fluctuation of the fuel cell 1 as described with reference to FIG. 3 in addition to the operating characteristics of the ejector pump 6, the output of the fuel cell 1 That is, the amount of raw fuel gas corresponding to the amount of fuel gas consumed by the battery can be mixed with steam by the ejector pump 6 and supplied to the reformer 2.

【0008】[0008]

【発明が解決しようとする課題】ところで、前記した従
来構成のままでは、燃料電池の電気出力が急激に変動し
た場合に、原燃料ガスの供給制御の面で次記のような問
題点が派生する。すなわち、給電系統10に接続する電
力負荷11の増減に伴って燃料電池1の電気出力が急激
に変動すると、この出力変動を基に調節計13からの指
令で流量制御弁7,8が殆ど応答遅れなしに応動動作す
る。これにより、エゼクタポンプ6ではノズル6aから
噴出する水蒸気の流量,速度が大きく変化し、これに伴
ってエゼクタポンプ6の原燃料ガス吸込口の圧力も変化
する。しかして、図3で示すように原燃料ガス供給路に
は内容積の大きな脱硫器5が介挿されており、この脱硫
器5の容器がバッファタンクとして作用するために、こ
れが外乱要因となって原燃料ガス供給の制御系に応答遅
れが生じ、これが原因で過渡的に原燃料ガス供給量に過
不足が生じたり、改質器2に供給される原燃料ガスの水
蒸気比が変化して許容範囲から逸脱してしまうほか、状
況によっては水蒸気がエゼクタポンプ6を介して原燃料
ガス供給路側に逆流するおそれもある。
However, with the conventional configuration described above, when the electric output of the fuel cell fluctuates rapidly, the following problems arise in terms of the control of the supply of the raw fuel gas. I do. That is, when the electric output of the fuel cell 1 fluctuates rapidly with the increase or decrease of the power load 11 connected to the power supply system 10, the flow control valves 7, 8 respond almost in response to a command from the controller 13 based on the output fluctuation. Operate without delay. As a result, in the ejector pump 6, the flow rate and the speed of the steam ejected from the nozzle 6a greatly change, and accordingly, the pressure of the raw fuel gas suction port of the ejector pump 6 also changes. As shown in FIG. 3, a desulfurizer 5 having a large internal volume is interposed in the raw fuel gas supply path, and the container of the desulfurizer 5 acts as a buffer tank, which causes disturbance. As a result, a response delay occurs in the control system of the raw fuel gas supply, which causes a transient excess or deficiency in the raw fuel gas supply amount or a change in the steam ratio of the raw fuel gas supplied to the reformer 2. In addition to deviating from the allowable range, depending on the situation, there is a possibility that the steam may flow back to the raw fuel gas supply path side via the ejector pump 6.

【0009】本発明は上記の点に鑑みなされたものであ
り、その目的は前記課題を解決し、燃料電池の電気出力
が急激に変化した場合でも、これに追随して原燃料ガス
の流量制御を安定して行えるようにした燃料電池発電装
置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to solve the above-mentioned problems and to control the flow rate of a raw fuel gas even when the electric output of a fuel cell changes rapidly. To provide a fuel cell power generator that can stably perform the above.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明によれば、原燃料ガスを脱硫器,水蒸気改質
器を経て水素リッチな燃料ガスに改質した上で、該燃料
ガスを燃料電池の燃料極に供給して発電する燃料電池発
電装置で、原燃料ガス供給路における脱硫器の後段にエ
ゼクタポンプを介挿し、水蒸気を駆動流体として原燃料
ガスを吸引,水蒸気と混合して改質器に供給するととも
に、原燃料ガス供給路,水蒸気供給路に流量制御弁を接
続し、燃料電池の出力変動に相応して原燃料ガス,水蒸
気の供給流量を増減制御するようにしたものにおいて、
前記エゼクタポンプの原燃料ガス吸込口と脱硫器の出口
との間に圧力制御弁を接続し、脱硫器の出口圧力を所定
圧に保持させるものとし、さらに前記圧力制御弁の圧力
設定値を燃料電池の出力変動に相応して可変設定するよ
うにする。
According to the present invention, in order to achieve the above object, a raw fuel gas is reformed into a hydrogen-rich fuel gas through a desulfurizer and a steam reformer, and then the fuel gas is reformed. A fuel cell power generator that generates gas by supplying gas to the fuel electrode of the fuel cell. An ejector pump is inserted after the desulfurizer in the raw fuel gas supply path, the raw fuel gas is sucked using steam as the driving fluid, and mixed with the steam. In addition to supplying the raw fuel gas to the reformer, a flow control valve is connected to the raw fuel gas supply path and the water vapor supply path, so that the supply flow rate of the raw fuel gas and water vapor is increased or decreased in accordance with the output fluctuation of the fuel cell. In what
A pressure control valve is connected between the raw fuel gas suction port of the ejector pump and the outlet of the desulfurizer, and the outlet pressure of the desulfurizer is maintained at a predetermined pressure. It is set variably according to the output fluctuation of the battery.

【0011】上記において、圧力制御弁はエゼクタポン
プにおける吸引室の圧力が急激に変動した場合でも、エ
ゼクタポンプに接続した脱硫器の出口圧力を設定圧に保
つように機能する圧力制御弁である。これにより、燃料
電池の急激な出力変動に伴ってエゼクタポンプの駆動流
体である水蒸気供給量が急激に変化した場合でも、脱硫
器がバッファタンクとして振る舞うことがなく、脱硫器
の容器内に溜まっている原燃料ガスが必要以上にエゼク
タポンプへ流出したり、逆にエゼクタポンプ側から水蒸
気が脱硫器側に逆流するといったトラブルを未然に防ぐ
ことができるとともに、原燃料ガス,水蒸気の流量制御
弁と同様に、圧力制御弁の圧力設定値を燃料電池の出力
変動に相応して可変設定することで、フィードホワード
制御により原燃料ガスの供給に対する迅速な制御が可能
となり、改質器に供給する原燃料ガスの水蒸気比を維持
しつつ、出力変動に即応して過不足なく原燃料ガスを供
給制御することができる。
In the above, the pressure control valve is a pressure control valve that functions to keep the outlet pressure of the desulfurizer connected to the ejector pump at a set pressure even when the pressure in the suction chamber of the ejector pump fluctuates rapidly. Thus, even when the supply amount of steam, which is the driving fluid for the ejector pump, changes rapidly due to the rapid output fluctuation of the fuel cell, the desulfurizer does not act as a buffer tank, but remains in the container of the desulfurizer. In addition to preventing the raw fuel gas from flowing out to the ejector pump more than necessary, and conversely, the steam from flowing back from the ejector pump to the desulfurizer side, it is possible to prevent troubles. Similarly, by variably setting the pressure set value of the pressure control valve in accordance with the output fluctuation of the fuel cell, it becomes possible to quickly control the supply of the raw fuel gas by feedforward control, and to control the supply of the raw fuel gas to the reformer. While maintaining the water vapor ratio of the fuel gas, the supply of the raw fuel gas can be controlled without excess or shortage in response to the output fluctuation.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施例を図1に基
づいて説明する。なお、実施例の図中で図3に対応する
同一部材には同じ符号が付してある。すなわち、図1は
基本的に図3の構成と同様であるが、本発明により、水
蒸気を駆動流体とする原燃料ガス供給用のエゼクタポン
プ6の原燃料ガス吸込口と、これに接続する原燃料ガス
の脱硫器5との間には新たに圧力制御弁14が追加装備
されている。この圧力制御弁14は、弁の一次側(脱硫
器の出口側)圧力を一定(圧力設定値)に保つよう動作
する機能を有し、その圧力設定値は流量制御弁7,8と
同様に調節計13で演算し、燃料電池1の電気出力に相
応して可変設定するようにしている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. In the drawings of the embodiment, the same members corresponding to FIG. 3 are denoted by the same reference numerals. That is, although FIG. 1 is basically the same as the configuration of FIG. 3, according to the present invention, a raw fuel gas suction port of an ejector pump 6 for supplying raw fuel gas using steam as a driving fluid, and a raw fuel gas connected thereto. A pressure control valve 14 is additionally provided between the fuel gas desulfurizer 5 and the fuel gas desulfurizer 5. The pressure control valve 14 has a function of operating to maintain the pressure on the primary side (outlet side of the desulfurizer) of the valve at a constant value (a pressure set value). The pressure set value is the same as that of the flow control valves 7 and 8. The calculation is performed by the controller 13 and variably set in accordance with the electric output of the fuel cell 1.

【0013】[0013]

【発明の効果】以上述べたように、本発明によれば、原
燃料ガス供給経路に脱硫器,および水蒸気を駆動流体と
して原燃料ガスを吸引,水蒸気と混合して後段の改質器
へ供給するエゼクタポンプを装備した燃料電池発電装置
において、エゼクタポンプと脱硫器との間に圧力制御弁
を接続して脱硫器の出口側圧力を設定値に保つようにし
たことにより、燃料電池の急激な出力変動に伴って原燃
料ガス供給用のエゼクタポンプにおける原燃料ガス吸込
口の圧力が急激に変化した場合でも、原燃料ガスの流量
制御を安定よく行うことができる。
As described above, according to the present invention, the desulfurizer is provided in the raw fuel gas supply path, and the raw fuel gas is sucked using steam as a driving fluid, mixed with the steam and supplied to the reformer in the subsequent stage. In a fuel cell power plant equipped with an ejector pump that performs a rapid change in the fuel cell by connecting a pressure control valve between the ejector pump and the desulfurizer to maintain the outlet pressure of the desulfurizer at a set value. Even when the pressure of the raw fuel gas suction port in the raw fuel gas supply ejector pump changes rapidly due to the output fluctuation, the flow rate control of the raw fuel gas can be performed stably.

【0014】また、圧力制御弁の圧力設定値を燃料電池
の出力変動に相応して可変設定するようにしたことによ
り、フィードホワード制御により原燃料ガスの供給に対
する迅速な制御が可能となるなど、改質器に供給する原
燃料ガスの水蒸気比を維持しつつ、燃料電池の出力変動
に即応して過不足なく原燃料ガスを供給制御することが
できて信頼性の向上が図れる。
Further, the pressure set value of the pressure control valve is variably set in accordance with the output fluctuation of the fuel cell, so that the feedforward control enables quick control of the supply of the raw fuel gas. While maintaining the steam ratio of the raw fuel gas supplied to the reformer, the raw fuel gas can be supplied and controlled without excess or shortage in response to the output fluctuation of the fuel cell, and the reliability can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例による原燃料ガス供給系,およ
びその制御系を示す燃料電池発電装置のシステムフロー
FIG. 1 is a system flow diagram of a fuel cell power generator showing a raw fuel gas supply system and a control system according to an embodiment of the present invention.

【図2】図1におけるエゼクタポンプの構成断面図FIG. 2 is a sectional view showing the configuration of the ejector pump shown in FIG.

【図3】従来における燃料電池発電装置のシステムフロ
ー図
FIG. 3 is a system flow diagram of a conventional fuel cell power generator.

【符号の説明】[Explanation of symbols]

1 燃料電池 2 水蒸気改質器 5 脱硫器 6 エゼクタポンプ 7,8 流量制御弁 12 CT(燃料電池の出力電流検出器) 13 調節計 14 圧力制御弁 Reference Signs List 1 fuel cell 2 steam reformer 5 desulfurizer 6 ejector pump 7, 8 flow control valve 12 CT (output current detector of fuel cell) 13 controller 14 pressure control valve

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】原燃料ガスを脱硫器,水蒸気改質器を経て
水素リッチな燃料ガスに改質した上で、該燃料ガスを燃
料電池の燃料極に供給して発電する燃料電池発電装置で
あり、原燃料ガス供給路における脱硫器の後段にエゼク
タポンプを介挿し、水蒸気を駆動流体として原燃料ガス
を吸引,水蒸気と混合して改質器に供給するとともに、
原燃料ガス供給路,水蒸気供給路に流量制御弁を接続
し、燃料電池の出力変動に相応して原燃料ガス,水蒸気
の供給流量を増減制御するようにしたものにおいて、前
記エゼクタポンプの原燃料ガス吸込口と脱硫器の出口と
の間に圧力制御弁を接続し、脱硫器の出口圧力を所定圧
に保持させることを特徴とする燃料電池発電装置。
1. A fuel cell power generator which reforms a raw fuel gas into a hydrogen-rich fuel gas through a desulfurizer and a steam reformer, and supplies the fuel gas to a fuel electrode of a fuel cell to generate power. Yes, an ejector pump is inserted after the desulfurizer in the raw fuel gas supply path, the raw fuel gas is sucked using steam as the driving fluid, mixed with the steam, and supplied to the reformer.
A flow control valve is connected to a raw fuel gas supply passage and a water vapor supply passage to control the supply flow rate of the raw fuel gas and water vapor in accordance with the output fluctuation of the fuel cell. A fuel cell power generator, wherein a pressure control valve is connected between a gas inlet and an outlet of a desulfurizer, and an outlet pressure of the desulfurizer is maintained at a predetermined pressure.
【請求項2】請求項1記載の燃料電池発電装置におい
て、圧力制御弁の圧力設定値を燃料電池の出力変動に相
応して可変設定するようにしたことを特徴とする燃料電
池発電装置。
2. The fuel cell power generator according to claim 1, wherein the pressure set value of the pressure control valve is variably set in accordance with the output fluctuation of the fuel cell.
JP9020354A 1997-02-03 1997-02-03 Fuel cell electricity generating apparatus Pending JPH10223244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9020354A JPH10223244A (en) 1997-02-03 1997-02-03 Fuel cell electricity generating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9020354A JPH10223244A (en) 1997-02-03 1997-02-03 Fuel cell electricity generating apparatus

Publications (1)

Publication Number Publication Date
JPH10223244A true JPH10223244A (en) 1998-08-21

Family

ID=12024786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9020354A Pending JPH10223244A (en) 1997-02-03 1997-02-03 Fuel cell electricity generating apparatus

Country Status (1)

Country Link
JP (1) JPH10223244A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109640A (en) * 2001-09-28 2003-04-11 Matsushita Electric Ind Co Ltd Fuel cell system
JP2003157875A (en) * 2001-11-21 2003-05-30 Nissan Motor Co Ltd Fuel cell system
JP2003536219A (en) * 2000-06-21 2003-12-02 ユーティーシー フューエル セルズ,エルエルシー Fuel gas reformer assembly
US6800390B2 (en) 2001-03-23 2004-10-05 Nissan Motor Co., Ltd. Fuel cell power plant
JP2004319330A (en) * 2003-04-17 2004-11-11 Idemitsu Kosan Co Ltd Vaporization method of kerosene fuel for fuel cell
JP2007077019A (en) * 2006-11-13 2007-03-29 Aisin Seiki Co Ltd Fuel reforming apparatus
JP2007527842A (en) * 2004-03-06 2007-10-04 ヴェーエス リフォーマー ゲーエムベーハー Compact steam reformer
JP2008507828A (en) * 2004-07-28 2008-03-13 セラミック・フューエル・セルズ・リミテッド Fuel cell system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003536219A (en) * 2000-06-21 2003-12-02 ユーティーシー フューエル セルズ,エルエルシー Fuel gas reformer assembly
US6800390B2 (en) 2001-03-23 2004-10-05 Nissan Motor Co., Ltd. Fuel cell power plant
JP2003109640A (en) * 2001-09-28 2003-04-11 Matsushita Electric Ind Co Ltd Fuel cell system
JP2003157875A (en) * 2001-11-21 2003-05-30 Nissan Motor Co Ltd Fuel cell system
JP2004319330A (en) * 2003-04-17 2004-11-11 Idemitsu Kosan Co Ltd Vaporization method of kerosene fuel for fuel cell
JP4634013B2 (en) * 2003-04-17 2011-02-16 出光興産株式会社 Kerosene fuel vaporization method for fuel cells
JP2007527842A (en) * 2004-03-06 2007-10-04 ヴェーエス リフォーマー ゲーエムベーハー Compact steam reformer
EP2070591A3 (en) * 2004-03-06 2009-08-26 WS Reformer GmbH Compact steam reformer
JP4857258B2 (en) * 2004-03-06 2012-01-18 ヴェーエス リフォーマー ゲーエムベーハー Compact steam reformer
JP2008507828A (en) * 2004-07-28 2008-03-13 セラミック・フューエル・セルズ・リミテッド Fuel cell system
JP2013138017A (en) * 2004-07-28 2013-07-11 Ceramic Fuel Cells Ltd Fuel cell system
JP2014239056A (en) * 2004-07-28 2014-12-18 セラミック・フューエル・セルズ・リミテッド Fuel cell system
JP4494391B2 (en) * 2006-11-13 2010-06-30 アイシン精機株式会社 Fuel reformer
JP2007077019A (en) * 2006-11-13 2007-03-29 Aisin Seiki Co Ltd Fuel reforming apparatus

Similar Documents

Publication Publication Date Title
JP4752317B2 (en) Fuel cell system
KR101811107B1 (en) Fuel cell system and method for discharging fluid in the system
WO2012105300A1 (en) Fuel cell system
EP2618416B1 (en) Fuel cell system
JP2007536704A (en) Fuel cell with maximum fuel utilization with minimum fuel recycling
US9843057B2 (en) Fuel cell system and control method of fuel cell system
JP2014239056A (en) Fuel cell system
CN100527508C (en) Fuel cell system and liquid discharging method for the same
JPH10223244A (en) Fuel cell electricity generating apparatus
JP2006032134A (en) Water storage equipment for storing water in fuel cell system and fuel cell system
JP4410526B2 (en) Fuel cell exhaust gas treatment device
KR101544479B1 (en) Fuel cell system and method of managing the same
US20080113252A1 (en) Fuel Cell System
JP2003178779A (en) Fuel circulation equipment of fuel cell system
EP3035427A1 (en) Fuel cell system and fuel cell system control method
JP3738888B2 (en) FUEL CELL POWER GENERATION DEVICE HAVING RAW FUEL SWITCHING FACILITY AND METHOD
JPS6282660A (en) Stopping method for phosphoric acid type fuel cell
JP2001325975A (en) Fuel cell power generation apparatus and its control method
JP2000277134A (en) Fuel cell power generating system
JP2000040519A (en) Operation method of fuel cell system
JP2002124278A (en) Fuel cell system
JP3443164B2 (en) Fuel cell system and control method thereof
JP2010262805A (en) Fuel cell system
JP6227497B2 (en) FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM
JP3622720B2 (en) Fuel cell system