JPS6282660A - Stopping method for phosphoric acid type fuel cell - Google Patents

Stopping method for phosphoric acid type fuel cell

Info

Publication number
JPS6282660A
JPS6282660A JP60223045A JP22304585A JPS6282660A JP S6282660 A JPS6282660 A JP S6282660A JP 60223045 A JP60223045 A JP 60223045A JP 22304585 A JP22304585 A JP 22304585A JP S6282660 A JPS6282660 A JP S6282660A
Authority
JP
Japan
Prior art keywords
fuel
fuel cell
fuel gas
reformer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60223045A
Other languages
Japanese (ja)
Inventor
Shunsuke Oga
俊輔 大賀
Toshihiro Sugiyama
杉山 智弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP60223045A priority Critical patent/JPS6282660A/en
Publication of JPS6282660A publication Critical patent/JPS6282660A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To decrease the potential difference between a fuel electrode and an oxidation electrode to prevent the deterioration in electrode performance by closing a fuel gas exhaust valve before discharging fuel cell, and consuming hydrogen in a fuel gas chamber, then filling carbon dioxide in the chamber. CONSTITUTION:When a power generating system is stopped, a switch 6 is closed and current flows through a load resistance 14. At the same time, when a valve 12 is closed and a valve 25 is opened, fuel gas generated in a reformer 15 is supplied to a fuel cell stack 1 through valves 25, 13. Since the stack 1 and the reformer 15 is only connected through the valve 13, fuel gas equivalent to the consumption of hydrogen in discharge reaction is supplemented to the reformer by natural diffusion. Since oxidizing gas line valves 11, 4 stay open, air supply to and exhaust from an oxidizing gas chamber 2 is continued. Therefore, with the lapse of time, hydrogen concentration in fuel gas is decreased and the fuel gas chamber 3 is filled with carbon dioxide gas, and potential difference between a fuel electrode and an oxidizing electrode is gradually decreased.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は有機燃料の水蒸気改質@置を有するりん酸型
燃料電池の停止方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a method for shutting down a phosphoric acid fuel cell having a steam reforming system for organic fuel.

〔従来技術とその問題点〕[Prior art and its problems]

従来の燃料′電池発電装置ではその停止時に桑科及び、
または酸化ガスの供給系統に窒素などの不活性ガスを供
給し、系統内に残留している燃料を一掃した後に停止さ
せていた。これは、燃料電池スタックの燃料カス室に燃
料が、酸化カス室に・酸化ガスが光てんされている場合
には、燃料極、酸化極の間に約1VO)SL位差が生じ
これが!極に担持されている触媒に悪影竹を及ぼすこと
が知られているためである。しかしながら、この方法で
は不活性ガスの貯M、器とその供給系統を新たに設ける
必要があり、ゲ々造が複Julとなるという問題があっ
た0 〔発明の目的〕 この発明は上記にルみなされたもので、燃料電池の特性
を低下させることのない、!III成が極めて簡単なり
ん酸型燃料電池の停止方法を提供することを目的とする
In conventional fuel cell power generation equipment, when it is stopped, Kuwashina and
Alternatively, an inert gas such as nitrogen was supplied to the oxidizing gas supply system, and the system was shut down after cleaning out any fuel remaining in the system. This is because when fuel is injected into the fuel scum chamber of a fuel cell stack and oxidizing gas is injected into the oxidation scum chamber, a level difference of approximately 1 VO) SL occurs between the fuel electrode and the oxidation electrode. This is because bamboo is known to have an adverse effect on the catalyst supported on the electrode. However, in this method, it is necessary to newly install an inert gas storage M, a container, and its supply system, and there is a problem that the gas structure becomes multiple. It is considered as a material that does not deteriorate the characteristics of the fuel cell! It is an object of the present invention to provide a method for shutting down a phosphoric acid fuel cell, which is extremely simple to construct.

〔発明の要点〕[Key points of the invention]

この発明は、改質装置にて生成される燃料ガスが自然拡
散により燃料電池へ供給されるようにした状態で、燃料
ガスの排出パルプを閉じ、燃料電池を放′イさせること
により、スタック内燃料ガス室の燃料ガス甲1こ含まれ
る水素を消費させることにより、スタック内燃料ガス室
及び酸化ガス室を大気圧に保ったままで、燃料ガス室内
を不活性な炭酸ガスで満たすようにしたものである。こ
れによって燃料極と酸化極との間の電位は低下して。
This invention allows the fuel gas generated in the reformer to be supplied to the fuel cell by natural diffusion, and then closes the fuel gas discharge pulp and leaves the fuel cell alone. By consuming the hydrogen contained in the fuel gas chamber, the fuel gas chamber is filled with inert carbon dioxide while the fuel gas chamber and oxidizing gas chamber in the stack are maintained at atmospheric pressure. It is. As a result, the potential between the fuel electrode and the oxidation electrode decreases.

I★期保存においても電極特性の低下を防ぐことができ
る。
Deterioration of electrode properties can be prevented even during I★ stage storage.

〔発明の実施例〕 燃料電池用の燃料改質装置は一般に水蒸気改質法がとら
れており、例えば燃料が天然ガス(CH4)やメタノー
ルの場合には次式に示す改質反応が改質装置内で進行す
る。メタンの場合: CH4+ 2H20→CU2+4H2(吸熱反応)(1
)メタノールの場合: CH3UH+H20→CO2+3H2(吸熱反応)(2
)したがって、燃料ガス中にはm〜30%の炭酸ガスが
含まれる。なお炭酸ガスはりん酸型燃料電池にとっては
反応に寄与しない不活性なガスである。
[Embodiments of the Invention] A fuel reformer for a fuel cell generally uses a steam reforming method. For example, when the fuel is natural gas (CH4) or methanol, the reforming reaction shown in the following equation is used for reforming. progress within the device. In the case of methane: CH4+ 2H20→CU2+4H2 (endothermic reaction) (1
) In the case of methanol: CH3UH + H20 → CO2 + 3H2 (endothermic reaction) (2
) Therefore, the fuel gas contains m~30% carbon dioxide gas. Note that carbon dioxide gas is an inert gas that does not contribute to reactions in phosphoric acid fuel cells.

第1図は、りん酸型燃料電池スタック1とメタノール改
質器15を組み合わせた本発明の実施列を示したもので
ある。上記の(2)式で示した改頁に必要なメタノール
と水が、それぞれメタノールタンク16.水タンク17
から、メタノールポンプ18と水ポンプ19によりパル
プ」を経てメタノール改質器15を貫通する反応g21
へ供給される。反応管21はメタノールと水の混合物の
蒸発管と改JX管を直列に接続して構成され、改質管内
にはメタノールの改質触媒(Cn−Zn系)が元項され
ている。改質管内の温度は約250’Cに保持され、上
記の(2)式の反応に従ってC(J2とH2に改質され
た燃料がパルプ12を経て燃料電池スタ、りlへ供給さ
れる。燃料電池スタ、りでは供給された水系の約80%
を起電反応で消費した後、残分の水素を含むガスをパル
プ13を経てバーナnに供給し、ここで空気ブロアー羽
より供給された空気と燃焼反応を起こさせ、改質に必要
な熱を改質器15に与える。また、燃料電池スタ、りl
の燃料ガス入口と出口とを接続するバイパス管ムを設け
る。このバイパス管冴にはバルブ5が設けられており、
発電装置運転時にはこのパルプδは閉となっている。
FIG. 1 shows an embodiment of the present invention in which a phosphoric acid fuel cell stack 1 and a methanol reformer 15 are combined. The methanol and water required for the page break shown in equation (2) above are stored in the methanol tank 16. water tank 17
From there, the reaction g21 passes through the methanol reformer 15 through the pulp by the methanol pump 18 and water pump 19.
supplied to The reaction tube 21 is constructed by connecting an evaporation tube for a mixture of methanol and water and a modified JX tube in series, and a methanol reforming catalyst (Cn--Zn type) is installed in the reforming tube. The temperature inside the reforming tube is maintained at about 250'C, and the fuel reformed into C (J2 and H2) according to the reaction of equation (2) above is supplied to the fuel cell star 1 via the pulp 12. Approximately 80% of the water supplied to the fuel cell station
After being consumed in an electromotive reaction, the residual hydrogen-containing gas is supplied to burner n via pulp 13, where it undergoes a combustion reaction with air supplied from an air blower blade to generate the heat necessary for reforming. is given to the reformer 15. In addition, the fuel cell star,
A bypass pipe is provided to connect the fuel gas inlet and outlet of the fuel gas. This bypass pipe is provided with a valve 5,
This pulp δ is closed when the power generator is in operation.

このような構成において、発電装置停止時には主系統5
を開き、これと並行に設けられているエイ−2チロを閉
じ抵抗負荷14に電流を流す。同時にバルブ12を閉じ
、バルブδを開けれは、改質器15で生成される燃料ガ
スはパルプ2.’) 、 13を経て燃料′ααススタ
ックへと供給され、余剰分は再び改質器へ戻り、バーナ
一部で燃焼反応に寄与する。ここで燃料電池スタックと
改質器とはバルブJ3を介してのみ接続されているため
、放電に伴なう水素の消費に対し、それに相当する燃料
ガスが自然拡散により改質器に補充される。一方、電池
の停止時においても酸化剤ガス系統のバルブ11 、1
4は開のままであるため、酸化剤ガス室2への空気の給
排は持続される。したがって、時間の経過とともに燃料
ガス中の水素濃度は減少し、燃料′電池スタ、りの燃料
ガス室は負圧になることなく炭酸ガスで満たされ、燃料
極と酸化極との間の電位差は徐々に低下することになる
In such a configuration, when the power generator is stopped, the main system 5
is opened, and E-2 Ciro provided in parallel with this is closed to allow current to flow through the resistive load 14. At the same time, close the valve 12 and open the valve δ, so that the fuel gas generated in the reformer 15 is converted into pulp 2. '), 13, the fuel 'αα is supplied to the stack, and the surplus is returned to the reformer and contributes to the combustion reaction in a part of the burner. Here, the fuel cell stack and the reformer are connected only through valve J3, so as hydrogen is consumed due to discharge, the reformer is replenished with fuel gas equivalent to that amount through natural diffusion. . On the other hand, even when the battery is stopped, the oxidizing gas system valves 11, 1
4 remains open, the supply and exhaust of air to and from the oxidant gas chamber 2 continues. Therefore, as time passes, the hydrogen concentration in the fuel gas decreases, the fuel gas chamber of the fuel cell star is filled with carbon dioxide gas without becoming negative pressure, and the potential difference between the fuel electrode and the oxidation electrode decreases. It will gradually decline.

なお、上記実施例では停止時に燃料ガス系批のバルブ1
2を閉じバルブ13を関くようにしたが、バイパスg冴
が設けられていれば、パルプ12を開いてパルプ13を
閉じてもよい。また、酸化剤ガス系統ζこおいても、上
記実施例では停止時に排出側バルブ4を開いて空気の給
排を持続するようにしたが、供給バルブ11を開き排出
バルブ4を閉じて、自然拡散により空気を酸化剤ガス室
に供給するようにしてもよい。
In addition, in the above embodiment, when the fuel gas system is stopped, valve 1 is closed.
2 is closed and the valve 13 is closed, but if a bypass valve is provided, the pulp 12 may be opened and the pulp 13 closed. In addition, in the oxidizing gas system ζ, in the above embodiment, the exhaust side valve 4 is opened when the system is stopped to continue supplying and discharging air, but the supply valve 11 is opened and the exhaust valve 4 is closed, and the air is continuously supplied and discharged. Air may be supplied to the oxidant gas chamber by diffusion.

〔発明の効果〕〔Effect of the invention〕

以上の1明から明らかなように、この発明によれば燃料
の改yi装置を含む燃料電池発電装置の停止操作におい
て、燃料電池スタックと改質装置との間を改質装置にて
生成される燃料ガス2])自然拡散により燃料電池スタ
、りへと供給されるようにW:絖した状態で、発電装置
を放電させ、燃料電池スタックの燃料ガス室内を燃料ガ
ス中に含まれる炭酸ガスで満たすようにしたので、不活
性ガスの貯蔵および供給系統を別個に設けることなく、
燃料極と酸化極との間の電位差を低下させることができ
、停止時に電極触媒に悪影響を及ぼすことなく電池を保
管することができるという効果が得られる。
As is clear from the above description, according to the present invention, during the shutdown operation of the fuel cell power generation device including the fuel reforming device, the fuel is generated in the reformer between the fuel cell stack and the reformer. Fuel gas 2]) So that the fuel gas is supplied to the fuel cell stack by natural diffusion W: With the power generator in the connected state, the power generator is discharged, and the carbon dioxide contained in the fuel gas is supplied to the fuel gas chamber of the fuel cell stack. This eliminates the need for a separate inert gas storage and supply system.
The potential difference between the fuel electrode and the oxidizing electrode can be lowered, and the battery can be stored without adversely affecting the electrode catalyst when stopped.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す燃料電池発電装置の概略
構成図である。 l:燃料電池スタ、り、2:酸化剤ガス室。 3:燃料ガス室、4.13:排出パルプ、11.12:
供給バルブ、15:改質器、24=バイパス管、25=
バイパスバルブ。
FIG. 1 is a schematic diagram of a fuel cell power generation device showing an embodiment of the present invention. 1: Fuel cell star, 2: Oxidizer gas chamber. 3: Fuel gas chamber, 4.13: Exhaust pulp, 11.12:
Supply valve, 15: Reformer, 24=Bypass pipe, 25=
bypass valve.

Claims (1)

【特許請求の範囲】 1)酸化剤区画室へ空気を供給し、燃料ガス区画室へ有
機燃料を水蒸気改質して生成した燃料ガスを供給して発
電を行なう燃料電池の停止の際に、前記電池の外部負荷
回路を開き、燃料ガスを自然拡散により供給しながら、
前記外部負荷回路と並列に設けられた外部短絡回路を接
続して前記電池を放電させ、前記燃料ガス区画室内の水
素を消費して二酸化炭素で充満させることを特徴とする
りん酸型燃料電池の停止方法。 2)特許請求の範囲第1項記載の方法において、電池の
運転停止の際も燃料電池スタックの酸化ガス室への空気
の給排を持続させることを特徴とするりん酸型燃料電池
の停止方法。 3)特許請求の範囲第1項記載の方法において、電池の
運転停止時に改質装置より燃料電池に供給される燃料ガ
スの一部を、直接当該改質装置のバーナーにバイパスす
ることを特徴とするりん酸型燃料電池の停止方法。
[Claims] 1) When stopping a fuel cell that generates electricity by supplying air to the oxidizer compartment and supplying fuel gas produced by steam reforming organic fuel to the fuel gas compartment, While opening the external load circuit of the battery and supplying fuel gas by natural diffusion,
A phosphoric acid fuel cell characterized in that an external short circuit provided in parallel with the external load circuit is connected to discharge the cell, consuming hydrogen in the fuel gas compartment and filling it with carbon dioxide. How to stop. 2) A method for stopping a phosphoric acid fuel cell according to claim 1, characterized in that the supply and exhaust of air to the oxidizing gas chamber of the fuel cell stack is continued even when the cell is stopped. . 3) The method according to claim 1, characterized in that a part of the fuel gas supplied from the reformer to the fuel cell when the battery is stopped is directly bypassed to the burner of the reformer. How to stop a phosphoric acid fuel cell.
JP60223045A 1985-10-07 1985-10-07 Stopping method for phosphoric acid type fuel cell Pending JPS6282660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60223045A JPS6282660A (en) 1985-10-07 1985-10-07 Stopping method for phosphoric acid type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60223045A JPS6282660A (en) 1985-10-07 1985-10-07 Stopping method for phosphoric acid type fuel cell

Publications (1)

Publication Number Publication Date
JPS6282660A true JPS6282660A (en) 1987-04-16

Family

ID=16791972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60223045A Pending JPS6282660A (en) 1985-10-07 1985-10-07 Stopping method for phosphoric acid type fuel cell

Country Status (1)

Country Link
JP (1) JPS6282660A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01137067U (en) * 1988-03-14 1989-09-19
JPH02220072A (en) * 1989-02-22 1990-09-03 Ricoh Co Ltd Writing optical device installing device for image forming device
JPH0343965A (en) * 1989-07-11 1991-02-25 Hitachi Ltd Operation of power generating system in molten carbonate fuel cell
US5149599A (en) * 1989-09-20 1992-09-22 Fuji Electric Co., Ltd. Method of stopping the operation of phosphoric acid type fuel cell
WO2002016258A1 (en) * 2000-08-25 2002-02-28 Matsushita Electric Industrial Co., Ltd. Hydrogen generator
KR100471262B1 (en) * 2002-10-15 2005-03-10 현대자동차주식회사 Fuel cell system
JP2006024546A (en) * 2004-06-08 2006-01-26 Mitsubishi Electric Corp Operation method of fuel cell
JP2008140772A (en) * 2006-11-06 2008-06-19 Fuji Electric Holdings Co Ltd Shutdown method of fuel cell power generation device and fuel cell power generation device
JP2008300296A (en) * 2007-06-01 2008-12-11 Toyota Motor Corp Fuel cell system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01137067U (en) * 1988-03-14 1989-09-19
JPH02220072A (en) * 1989-02-22 1990-09-03 Ricoh Co Ltd Writing optical device installing device for image forming device
JPH0343965A (en) * 1989-07-11 1991-02-25 Hitachi Ltd Operation of power generating system in molten carbonate fuel cell
US5149599A (en) * 1989-09-20 1992-09-22 Fuji Electric Co., Ltd. Method of stopping the operation of phosphoric acid type fuel cell
WO2002016258A1 (en) * 2000-08-25 2002-02-28 Matsushita Electric Industrial Co., Ltd. Hydrogen generator
US7135050B2 (en) 2000-08-25 2006-11-14 Matsushita Electric Industrial Co., Ltd. Hydrogen generator
KR100471262B1 (en) * 2002-10-15 2005-03-10 현대자동차주식회사 Fuel cell system
JP2006024546A (en) * 2004-06-08 2006-01-26 Mitsubishi Electric Corp Operation method of fuel cell
JP2008140772A (en) * 2006-11-06 2008-06-19 Fuji Electric Holdings Co Ltd Shutdown method of fuel cell power generation device and fuel cell power generation device
JP2008300296A (en) * 2007-06-01 2008-12-11 Toyota Motor Corp Fuel cell system

Similar Documents

Publication Publication Date Title
CN101241998B (en) Fuel cell system
US6926748B2 (en) Staged lean combustion for rapid start of a fuel processor
JP3874334B2 (en) Fuel cell system
JP2501872B2 (en) Method for converting inert gas of fuel electrode when fuel cell is shut down
JPH09312167A (en) Fuel cell power generator and operation method thereof
CN108832157A (en) One proton exchanging film fuel battery hydrogen gas recovering device
JPH1167254A (en) Fuel cell power generating plant and its start/stop operation method
JPS6282660A (en) Stopping method for phosphoric acid type fuel cell
JP2008262727A (en) Phosphoric acid type fuel cell power-generating device
JPS6188461A (en) Method of starting and stopping fuel cell power generation system
KR100945945B1 (en) Fuel cell system and purging method thereof
JP2541288B2 (en) How to shut down the fuel cell
JP2887346B2 (en) Fuel cell generator
KR101544479B1 (en) Fuel cell system and method of managing the same
JP5002220B2 (en) Fuel cell system
JP2940972B2 (en) Fuel cell power generation system and fuel gas supply method
KR20140047222A (en) Inert gas purging system for fuel cell system of a ship
JPH09298065A (en) Fuel cell generating device
JPH1064571A (en) Fuel cell power generating system
JPS59149664A (en) Fuel-cell system
JP2008258036A (en) Fuel cell power generation device and starting method of fuel cell
KR102548739B1 (en) Fuel cell system having high thermal efficiency
JP2000277138A (en) Fuel cell power generating system
CN102473950A (en) Fuel cell electricity generation system and shut-down method for fuel cell electricity generation system
JP2000123853A (en) Fuel cell system