JP2008262727A - Phosphoric acid type fuel cell power-generating device - Google Patents

Phosphoric acid type fuel cell power-generating device Download PDF

Info

Publication number
JP2008262727A
JP2008262727A JP2007102592A JP2007102592A JP2008262727A JP 2008262727 A JP2008262727 A JP 2008262727A JP 2007102592 A JP2007102592 A JP 2007102592A JP 2007102592 A JP2007102592 A JP 2007102592A JP 2008262727 A JP2008262727 A JP 2008262727A
Authority
JP
Japan
Prior art keywords
fuel cell
power
fuel
phosphoric acid
standby operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007102592A
Other languages
Japanese (ja)
Inventor
Toru Kiyota
透 清田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2007102592A priority Critical patent/JP2008262727A/en
Publication of JP2008262727A publication Critical patent/JP2008262727A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phosphoric acid type fuel cell power-generating device capable of continuing an operation above a minimum load where the fuel cell power-generating device can be thermally self-supported at a midnight power rate time zone offered at a power rate cheaper than a power-generating cost of the fuel cell power-generating device. <P>SOLUTION: When a commercial power rate is cheaper than the power-generating cost of the fuel cell power-generating device per unit electric power at night, the power generation of the fuel cell body is stopped, a fuel reforming device continues its operation at a load where the fuel reforming device is thermally self-supported, and a standby operation in which electric power necessary for the power of auxiliary accessories during operation, the generation of steam used for reforming a reaction, and retaining the heat retention of a fuel cell is supplied from commercial electric power is carried out. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、日中と夜間などで電力需要の変動があるサイトに設置される燃料電池発電装置に関するものであり、特に、深夜電力など安価な外部電力を用いて電力需要の少ない時間帯に安価で効率的な待機運転を行うと共に短時間で発電を再開できるりん酸形燃料電池発電装置を提供するものである。   The present invention relates to a fuel cell power generator installed in a site where power demand fluctuates between daytime and nighttime, and in particular, it is inexpensive at times when power demand is low using inexpensive external power such as midnight power. The present invention provides a phosphoric acid fuel cell power generator capable of performing efficient standby operation and restarting power generation in a short time.

燃料電池発電装置は、都市ガスなどの炭化水素系原燃料を脱硫する脱硫器、脱硫後のガスを水蒸気と反応させて水素に富む改質ガスを生成する改質器、改質ガス中の一酸化炭素濃度を低減する一酸化炭素変成器などを備えて原燃料から燃料電池での発電に用いる燃料ガスを生成する燃料改質装置と、燃料ガスと空気とを供給して発電反応を行う燃料電池本体とから構成されている。   A fuel cell power generator includes a desulfurizer that desulfurizes a hydrocarbon-based raw fuel such as city gas, a reformer that reacts the desulfurized gas with water vapor to produce a reformed gas rich in hydrogen, and one of the reformed gases. A fuel reformer for generating a fuel gas used for power generation in a fuel cell from a raw fuel with a carbon monoxide transformer that reduces the carbon oxide concentration, and a fuel that performs a power generation reaction by supplying the fuel gas and air It consists of a battery body.

燃料改質装置にはバーナーが備えられ、燃料電池で使用されずに燃料極から排出された燃料ガスをバーナーに供給してその燃焼熱により改質器を700℃程度に加熱して改質ガスを生成する反応を促進している。
燃料電池本体は、燃料電池の種類によって運転温度が異なり、りん酸形燃料電池の運転温度は200℃程度である。
The fuel reformer is provided with a burner, and the fuel gas discharged from the fuel electrode without being used in the fuel cell is supplied to the burner, and the reformer is heated to about 700 ° C. by the combustion heat to reform gas. Promotes the reaction to produce.
The operating temperature of the fuel cell body varies depending on the type of fuel cell, and the operating temperature of the phosphoric acid fuel cell is about 200 ° C.

オンサイト型発電システムとして運用される燃料電池発電装置は、ビルや商業施設などに設置された場合、日中は電力需要が多く高負荷で運転されるが、夜間は電力需要が極めて少ないか全くなくなるという状態に置かれる。
これに対して、燃料電池発電装置を電力需要の多い昼間のみ運転し、夜間は運転を停止するいわゆるDDS(Daily Startup Shutdown)運転を行いたいとの要望が高まっていた。
When installed in buildings or commercial facilities, fuel cell power generators that operate as on-site power generation systems operate at high loads during the day with high power demand, but there is very little or no power demand at night. It is put in a state of disappearing.
On the other hand, there is a growing demand for a so-called DDS (Daily Startup Shutdown) operation in which the fuel cell power generator is operated only during the daytime when there is a great demand for electric power and is stopped at night.

燃料改質装置については、上記のように高温で運転されるため、運転を停止すると再起動時の昇温に時間とエネルギーを要すること、また、起動停止に伴う温度変化によりクリープ変形が進行し寿命が著しく短くなることから、燃料電池の発電停止後次の発電開始までの間も、燃料改質装置を所定温度以上に保温することが行われている。
例えば、特許文献1には、燃料電池発電装置をDSSモードで運転し、燃料電池の発電運転停止時間帯に深夜電力を用いて改質器に設けたシースヒーターを稼動させて改質器の構造部材のクリープ遷移温度以上に加熱保持することが記載されている。
Since the fuel reformer is operated at a high temperature as described above, if the operation is stopped, it takes time and energy to raise the temperature at the time of restart, and the creep deformation proceeds due to the temperature change accompanying the start and stop. Since the life is remarkably shortened, the fuel reforming apparatus is kept at a predetermined temperature or more after the power generation of the fuel cell is stopped until the next power generation is started.
For example, in Patent Document 1, a fuel cell power generator is operated in the DSS mode, and a sheath heater provided in the reformer is operated using power at midnight during a power generation operation stop time of the fuel cell. It is described that the material is heated and held above the creep transition temperature of the member.

また、特許文献2には、圧力スイング吸着装置(PSA)での精製に供する改質ガスを製造する水素発生装置の運転方法において、PSAの停止中に水素発生装置で発生する水素リッチなガスを改質器のバーナーで燃焼させることにより、改質器の待機運転を行うことが記載されている。
ところで、燃料電池は、負荷が高い状態では、低電圧、高電流であり、負荷が低い状態では、高電圧、低電流という特徴がある。電流が高い状態(高負荷状態)ではそれだけ多くの水素が反応しており、反応の増加に伴って抵抗分極(電気抵抗に起因するロス)、活性分極(反応活性に起因するロス)、濃度分極(反応物或いは生成物の移動が不十分になって起こるロス)が増え、燃料電池での発電反応のロスとなるエネルギーの割合が多くなる。そして、このエネルギーロスは熱エネルギーの形となって現れる。
Further, in Patent Document 2, in a method for operating a hydrogen generator for producing a reformed gas for use in purification by a pressure swing adsorption device (PSA), a hydrogen-rich gas generated in the hydrogen generator during the stoppage of the PSA is disclosed. It is described that the standby operation of the reformer is performed by burning with the burner of the reformer.
By the way, the fuel cell is characterized by low voltage and high current when the load is high, and high voltage and low current when the load is low. In a state where the current is high (high load state), so much hydrogen reacts, and as the reaction increases, resistance polarization (loss due to electrical resistance), active polarization (loss due to reaction activity), concentration polarization (Loss caused by insufficient movement of reactant or product) increases, and the proportion of energy that causes loss of power generation reaction in the fuel cell increases. And this energy loss appears in the form of thermal energy.

つまり、負荷が高い状態では、改質器バーナーの燃焼熱(A)+燃料電池での発電反応に伴う反応熱(B) ≧燃料改質装置において反応に要する熱(C)+改質用水蒸気生成に要する熱(D)+放熱(E)であり、高負荷条件ほど反応熱(B)が大きい。従って、燃料電池の運転温度を一定に制御しようとした場合、負荷の高い条件では燃料電池から回収される熱エネルギーの割合は多くなり、システム上必要とされる改質用蒸気を製造するのに要する熱(D)だけでなく、コージェネレーションシステムとして燃料電池発電装置外に取り出して利用できる排熱回収量が増加する。   That is, under a high load state, the heat of combustion of the reformer burner (A) + the heat of reaction accompanying the power generation reaction in the fuel cell (B) ≧ the heat required for the reaction in the fuel reformer (C) + the steam for reforming Heat required for generation (D) + heat radiation (E). The higher the load condition, the greater the reaction heat (B). Therefore, when the operating temperature of the fuel cell is controlled to be constant, the ratio of heat energy recovered from the fuel cell increases under high load conditions, and the reforming steam required for the system is produced. Not only the required heat (D), but also the amount of exhaust heat recovery that can be taken out of the fuel cell power generator as a cogeneration system and used.

一方、負荷が小さいほど燃料電池での発電反応のロスとなるエネルギーの割合、すなわち反応熱(B)が減少し、負荷低減に伴い回収される熱エネルギーの割合が減少する。そして、燃料電池の運転温度を反応に適した所定温度(りん酸形燃料電池では約200℃)に維持し、改質用蒸気を製造する熱エネルギーを除くと、排熱回収量がゼロとなる負荷が存在し、それ以下では燃料電池を加熱しなければ運転温度が維持出来ない(熱自立できない)ということになる。即ち、燃料電池発電装置には燃料電池が熱自立できる(上式のA+B≧C+D+Eが維持できる)最低負荷というものが存在する。   On the other hand, the smaller the load, the lower the ratio of energy that causes a loss of power generation reaction in the fuel cell, that is, the reaction heat (B), and the lower the ratio of thermal energy that is recovered as the load is reduced. If the operating temperature of the fuel cell is maintained at a predetermined temperature suitable for the reaction (about 200 ° C. for a phosphoric acid fuel cell) and the heat energy for producing the reforming steam is removed, the exhaust heat recovery amount becomes zero. If there is a load and the temperature is less than that, the operating temperature cannot be maintained unless the fuel cell is heated (thermal independence is not possible). That is, there is a minimum load in the fuel cell power generation device that allows the fuel cell to be thermally independent (maintaining A + B ≧ C + D + E in the above equation).

この最低負荷を下回る条件で運転しようとすると、燃料電池発電装置外からエネルギーを供給して燃料電池を加熱して運転温度を維持する必要があり、発電効率は著しく低下する。そこで、通常は、この最低負荷(システム構成によって異なるがおよそ25〜40%程度)以下の条件では運転しない。
さらに、りん酸形燃料電池のように運転温度が比較的高温の燃料電池では、起動時の昇温に時間がかかり、また、停止時には不活性ガスによる系統内のパージが電気事業法により義務付けられていることから、夜間、電力需要が少ない場合でも停止せず、熱自立できる最低負荷で発電を行い、不足する電力のみ夜間の安価な商用系統から買電するという運用を行っている。また、りん酸形燃料電池の導入に際しては、燃料電池発電装置が熱自立できる最低負荷での運転が継続できる電力需要を少なくとも有するサイトを選定し、設置を行っているので、最低負荷で余剰電力が生じるようなサイトは、現在のところ存在しない。
If it is attempted to operate under a condition below this minimum load, it is necessary to supply energy from outside the fuel cell power generator to heat the fuel cell to maintain the operating temperature, and the power generation efficiency is significantly reduced. Therefore, normally, the system is not operated under the condition of the minimum load (approximately 25 to 40% although it varies depending on the system configuration).
Furthermore, in fuel cells with a relatively high operating temperature, such as phosphoric acid fuel cells, it takes time to increase the temperature at startup, and purging the system with an inert gas is required by the Electricity Business Law at the time of shutdown. Therefore, even if there is little demand for power at night, power is generated at the lowest load that can stand by heat, and only insufficient power is purchased from an inexpensive commercial system at night. In addition, when introducing a phosphoric acid fuel cell, a site that has at least a power demand that allows the fuel cell power generator to continue operating at the lowest load that can stand by heat is selected and installed. There are currently no sites where this occurs.

特許文献3には、このように電力が余剰となる夜間等に、電池を作動温度に維持した状態で外部の負荷への送電を実質的に停止し、燃料電池本体に少量の反応ガスを供給して発電状態を維持して得られた電力を電池保温のための加熱ヒーターに用いることが記載されている。
特開2003−288929号公報 特開2003−128401号公報 特公平8−28230号公報
In Patent Document 3, the power transmission to an external load is substantially stopped and the fuel cell main body is supplied with a small amount of reaction gas at night when the power is excessive as described above while maintaining the battery at the operating temperature. Thus, it is described that the electric power obtained by maintaining the power generation state is used for a heater for keeping the battery warm.
JP 2003-288929 A JP 2003-128401 A Japanese Patent Publication No. 8-28230

上述のように、従来、りん酸形燃料電池発電装置は、夜間でも燃料電池発電装置が熱自立できる最低負荷以上で運転できる電力需要のあるサイトを選定して設置し、夜間も運転を継続していた。りん酸形燃料電池発電装置を導入したユーザーにとっては、燃料電池発電装置での発電コストよりも安価な料金で提供される商用電力の深夜電力時間帯も、燃料電池発電装置が熱自立可能となる最低負荷以上で発電を継続しなければならず、その分を深夜電力で賄うのに比べ高コストとなっていた。    As described above, conventional phosphoric acid fuel cell power generators have been selected and installed at sites with power demand that can be operated at a minimum load that allows the fuel cell power generators to stand by heat even at night, and continue to operate at night. It was. For users who have introduced a phosphoric acid fuel cell power generation system, the fuel cell power generation system can be self-sustaining even during the midnight power hours of commercial power provided at a lower price than the power generation cost of the fuel cell power generation system. Power generation had to be continued at the minimum load or higher, which was more expensive than supplying midnight power.

そこで、本提案では、りん酸形燃料電池発電装置のDSS運転を可能にし、りん酸形燃料電池発電装置を導入したユーザーにおいても、夜間、商用系統からの安価な電力買電を可能にし、熱自立できる最低負荷で燃料電池発電装置の運転を継続するよりも経済性に優れた運用が行えるりん酸形燃料電池発電装置を提供することを目的とする。   Therefore, in this proposal, a phosphoric acid fuel cell power generator can be operated in DSS, and even a user who has introduced a phosphoric acid fuel cell power generator can purchase power from a commercial system at night, An object of the present invention is to provide a phosphoric acid fuel cell power generator that can be operated more economically than the operation of the fuel cell power generator is continued at the lowest load that can stand by itself.

上記の課題を解決するために、本発明においては、
炭化水素系原燃料ガスを水素を主成分とする燃料ガスに改質する燃料改質装置と、前記燃料ガスを用いて発電する燃料電池本体とを備えたりん酸形燃料電池発電装置において、 単位電力量当りの前記りん酸形燃料電池発電装置の発電コスト(発電装置の原価償却費は含まない)よりも商用電力料金の方が安価となる時に、前記燃料電池本体の発電を停止し、前記燃料改質装置は熱自立する負荷で運転を継続すると共に、当該運転中の補機動力、改質反応用水蒸気の生成および燃料電池本体の保温に要する電力を商用電力から供給する待機運転を行うよう制御する制御手段を備える。
In order to solve the above problems, in the present invention,
A phosphoric acid fuel cell power generator comprising a fuel reformer that reforms a hydrocarbon-based raw fuel gas into a fuel gas containing hydrogen as a main component and a fuel cell body that generates power using the fuel gas. When the commercial power charge is cheaper than the power generation cost of the phosphoric acid fuel cell power generator per unit of electric power (not including the depreciation cost of the power generator), the power generation of the fuel cell main body is stopped, The fuel reformer continues to operate with a heat self-supporting load, and performs standby operation for supplying from the commercial power the power required for auxiliary machinery during the operation, generation of steam for reforming reaction, and heat retention of the fuel cell body. The control means for controlling is provided.

このような待機運転を行なわせることにより、りん酸形燃料電池発電装置を導入したユーザーは、より経済性に優れた運用が行えると共に、夜間、りん酸形燃料電池発電装置が熱自立可能な負荷以上で運転が継続できるだけの電力需要が無いサイトに対しても、りん酸形燃料電池発電装置を導入することができることとなった。
また、前記待機運転中に前記燃料改質装置で生成される燃料ガスは、前記燃料電池本体の燃料極を通流した後、前記燃料改質装置に備えられたバーナーで燃焼されることとすれば、夜間の待機運転中も燃料極をパージする必要が無く、窒素消費量を抑えながら、燃料電池スタックの温度を高温状態に保ち、起動時間を短縮することができる。
By performing such a standby operation, a user who has introduced a phosphoric acid fuel cell power generator can operate more economically, and at night, the load that allows the phosphoric acid fuel cell power generator to be thermally independent. As described above, the phosphoric acid fuel cell power generation apparatus can be introduced even to a site where there is no power demand enough to continue operation.
The fuel gas generated in the fuel reformer during the standby operation is assumed to be burned by a burner provided in the fuel reformer after flowing through the fuel electrode of the fuel cell body. For example, it is not necessary to purge the fuel electrode during the standby operation at night, and the temperature of the fuel cell stack can be kept at a high temperature and the startup time can be shortened while suppressing nitrogen consumption.

さらに、このとき、前記待機運転開始時に前記燃料電池本体の空気極を不活性ガスでパージすると共に、前記待機運転中は前記燃料電池のセル電圧を0.1V以下に維持するように不活性ガスを空気極に供給すれば、燃料電池本体が発電を行わない状態で燃料極へ燃料ガスを導入しても、開回路状態となり空気極が高電位状態に曝され寿命低下を招くのを防止することができる。   Further, at this time, the air electrode of the fuel cell main body is purged with an inert gas at the start of the standby operation, and the inert gas is maintained so that the cell voltage of the fuel cell is maintained at 0.1 V or less during the standby operation. Is supplied to the air electrode, even if fuel gas is introduced into the fuel electrode while the fuel cell main body is not generating power, the open circuit state is prevented and the air electrode is exposed to a high potential state, thereby preventing a decrease in life. be able to.

上記空気極の不活性ガスパージは、待機運転開始時には、前記空気極の空気流路に不活性ガスを5mm/s以上の流速で2分間以上供給し、その後待機運転中は空気流路に0.05mm/s以上の流速で継続的に通流することとすれば良い。
また、前記待機運転中の前記燃料改質装置の負荷を4〜8%とすれば、燃料改質装置に供給された原燃料から生成された燃料ガスを燃料改質装置のバーナーで燃焼させた熱で、燃料改質装置の運転に必要最低限の熱が得られ、待機運転中に消費する原燃料ガスが最小限に抑えられると共に、燃料極を通過する燃料ガス流量を少なくできるので、セル内のりん酸飛散も少なく抑えられる。
In the inert gas purge of the air electrode, at the start of the standby operation, an inert gas is supplied to the air flow path of the air electrode at a flow rate of 5 mm / s or more for 2 minutes or more, and thereafter, 0. What is necessary is just to let it flow continuously with the flow velocity of 05 mm / s or more.
Further, if the load of the fuel reformer during the standby operation is 4 to 8%, the fuel gas generated from the raw fuel supplied to the fuel reformer is burned by the burner of the fuel reformer. The heat provides the minimum heat necessary for the operation of the fuel reformer, the raw fuel gas consumed during the standby operation is minimized, and the flow rate of the fuel gas passing through the fuel electrode can be reduced. The amount of phosphoric acid scattered inside is also reduced.

本発明により、りん酸形燃料電池発電装置を導入したユーザーにおいても、夜間、商用系統からの安価な電力買電を可能とし、かつ、夜間も熱自立できる最低負荷でりん酸形燃料電池の発電を継続するよりも、経済性に優れた燃料電池発電装置を得ることができた。   According to the present invention, even for a user who has introduced a phosphoric acid fuel cell power generator, it is possible to purchase low-cost power from a commercial system at night, and to generate power from a phosphoric fuel cell at the lowest load that can be heat independent at night. As a result, it was possible to obtain a fuel cell power generation device that was more economical than the continuous operation.

図1は本発明を実施するりん酸形燃料電池発電装置を模式的に表した概略構成図である。
図1に示す燃料電池発電システムは、脱硫器1、改質器2および一酸化炭素変成器3からなる燃料改質装置10と、りん酸形の燃料電池本体20とを備えている。原燃料としての都市ガスは、まず脱硫器1で硫黄分を除去された後、気水分離器8から改質用蒸気供給配管7を通して供給される水蒸気と共に改質器2、一酸化炭素変成器3へと送られて化学反応により水素を主成分とする燃料ガスへと改質される。
FIG. 1 is a schematic configuration diagram schematically showing a phosphoric acid fuel cell power generator embodying the present invention.
The fuel cell power generation system shown in FIG. 1 includes a fuel reformer 10 including a desulfurizer 1, a reformer 2, and a carbon monoxide converter 3, and a phosphoric acid fuel cell body 20. City gas as raw fuel is first desulfurized by the desulfurizer 1, and then reformer 2, carbon monoxide converter along with water vapor supplied from the steam separator 8 through the reforming steam supply pipe 7. 3 is reformed into a fuel gas mainly composed of hydrogen by a chemical reaction.

燃料電池本体20では、運転時、燃料改質装置10から燃料極4に供給される燃料ガスと、反応空気ブロア9により空気極5に供給される空気との反応により発電し、得られる直流電流をインバータ11で交流電流に変換してユーザーに供給している。
燃料電池本体20での反応に使われずに燃料極4から排出された残りの燃料ガスは、燃料オフガス供給配管12を通って改質器2のバーナー6に供給され、燃焼空気ブロア13から供給される燃焼用空気と燃焼して燃焼ガスの熱が改質器6での改質反応に寄与している。また、燃料電池本体20での発電反応により生じる熱は、電池冷却水ポンプ14により燃料電池本体20を経由して電池冷却水循環系配管15を通流される冷却水により徐熱され、一方、燃料電池本体20で加熱されて気液二相流となった冷却水からは、気水分離器8で水蒸気を取り出し、上述の如く原燃料の改質に用いられている。気水分離器8には、燃料電池発電装置の起動時に冷却水を昇温するための起動用ヒーターが備えられている。
In the fuel cell main body 20, during operation, the direct current obtained by generating electricity by the reaction between the fuel gas supplied from the fuel reformer 10 to the fuel electrode 4 and the air supplied to the air electrode 5 by the reaction air blower 9. Is converted into an alternating current by the inverter 11 and supplied to the user.
The remaining fuel gas discharged from the fuel electrode 4 without being used for the reaction in the fuel cell main body 20 is supplied to the burner 6 of the reformer 2 through the fuel off-gas supply pipe 12 and supplied from the combustion air blower 13. Combustion air and the heat of combustion gas contribute to the reforming reaction in the reformer 6. The heat generated by the power generation reaction in the fuel cell main body 20 is gradually heated by the cooling water flowing through the battery cooling water circulation system pipe 15 via the fuel cell main body 20 by the battery cooling water pump 14. Water vapor is extracted from the cooling water heated by the main body 20 into a gas-liquid two-phase flow by the gas-water separator 8 and used for reforming the raw fuel as described above. The steam separator 8 is provided with a starting heater for raising the temperature of the cooling water when starting the fuel cell power generator.

次に、本発明のりん酸形燃料電池発電装置の夜間の待機運転について説明する。
本発明のりん酸形燃料電池発電装置は、商用系統電源からの深夜電力料金が適用される時間になると、外部負荷への接続を遮断して電力の供給を停止する。
これと同時に、反応空気供給ブロア9と電池冷却水ポンプを14停止し、反応空気供給配管17に設けられた弁21を閉じると共に、反応空気供給配管17に接続されたパージ用窒素供給配管18に設けられた弁22を開いて窒素ボンベ19から燃料電池本体20の空気極 へ窒素の供給を開始し、窒素パージを実施する。空気極5に空気流通溝形成面を対向させて多孔質炭素板が積層されているが、この各空気流通溝を流れる窒素の流速が5mm/s以上となるように供給し、これを2分間以上実施する。
Next, the nighttime standby operation of the phosphoric acid fuel cell power generator of the present invention will be described.
The phosphoric acid fuel cell power generator according to the present invention cuts off the connection to the external load and stops the supply of electric power when the midnight power charge from the commercial power supply is applied.
At the same time, the reaction air supply blower 9 and the battery cooling water pump 14 are stopped, the valve 21 provided in the reaction air supply pipe 17 is closed, and the purge nitrogen supply pipe 18 connected to the reaction air supply pipe 17 is connected. The provided valve 22 is opened, supply of nitrogen from the nitrogen cylinder 19 to the air electrode of the fuel cell main body 20 is started, and nitrogen purge is performed. A porous carbon plate is laminated with the air flow groove forming surface facing the air electrode 5, and is supplied so that the flow rate of nitrogen flowing through each air flow groove is 5 mm / s or more, and this is performed for 2 minutes. This is done.

また、次に述べるように、発電を停止する待機運転中も燃料極4へは燃料ガスの供給を継続するので、空気極5に空気が流入して開回路状態となり、高電位に曝されて寿命低下を招くのを防ぐため、セル電圧が0.1V以下を維持するように空気極5への窒素パージを継続して行う。このため、待機運転中、空気極5の空気流通溝を0.05mm/s以上
の流速で通流するよう窒素の供給を継続する。
Further, as will be described below, the fuel gas continues to be supplied to the fuel electrode 4 during the standby operation for stopping the power generation, so that air flows into the air electrode 5 to be in an open circuit state and exposed to a high potential. In order to prevent the lifetime from being reduced, the nitrogen purge to the air electrode 5 is continuously performed so that the cell voltage is maintained at 0.1 V or less. For this reason, during the standby operation, the supply of nitrogen is continued so as to flow through the air circulation groove of the air electrode 5 at a flow rate of 0.05 mm / s or more.

一方、燃料改質装置10は、夜間の待機運転中も燃料ガス生成を継続する。生成した燃料ガスは、発電を停止した燃料電池本体20の燃料極4を通過させて、そのまま全量が改質器2のバーナー6へと供給される。
この時の燃料改質装置10の運転負荷は、燃料改質装置10で原燃料ガスから生成した燃料ガスをバーナー6で燃焼させて得た熱のみで燃料改質装置10での反応が行える(燃料改質装置10が熱自立できる、すなわち、[改質器バーナーの燃焼熱]≧[ 燃料改質装置において反応に要する熱] +[ 燃料改質装置からの放熱]である)運転負荷以上を維持するが、燃料電池本体20の燃料極4を通過するガス量が多いほどセル内のりん酸が下流に飛散して寿命低下を招くこと、待機運転コスト低減のため原燃料ガスの使用量は少ない程好ましいことから、燃料改質装置10が熱自立できる最低限まで負荷を低減させることが好ましい。
On the other hand, the fuel reformer 10 continues to generate fuel gas even during the standby operation at night. The generated fuel gas passes through the fuel electrode 4 of the fuel cell main body 20 whose power generation is stopped, and the whole amount is supplied to the burner 6 of the reformer 2 as it is.
The operating load of the fuel reformer 10 at this time is that the reaction in the fuel reformer 10 can be performed only by the heat obtained by burning the fuel gas generated from the raw fuel gas in the fuel reformer 10 by the burner 6 ( The fuel reformer 10 can self-support heat, that is, [combustion heat of the reformer burner] ≧ [heat required for reaction in the fuel reformer] + [heat radiation from the fuel reformer] However, as the amount of gas passing through the fuel electrode 4 of the fuel cell main body 20 increases, phosphoric acid in the cell scatters downstream, leading to a decrease in life, and the amount of raw fuel gas used is reduced for standby operation costs. Since it is preferable that the number is smaller, it is preferable to reduce the load to the minimum at which the fuel reforming apparatus 10 can self-support heat.

この時、燃料電池本体20は発電を停止しているため、発電反応の熱により改質用水蒸気を得ることはできない。そこで、気水分離器8に設けられた起動用ヒーター16に深夜電力を投入して改質用水蒸気を得る。
また同様に、燃料電池本体20に保管や輸送時の保温用に設けられている保温ヒーター23にも深夜電力を供給し、燃料電池本体20を50℃〜60℃に保温する。さらに、待機運転中も作動させる燃焼空気ブロア13等の補機動力にも深夜電力を用いる。
At this time, since the fuel cell main body 20 has stopped power generation, the reforming steam cannot be obtained by the heat of the power generation reaction. Therefore, midnight power is supplied to the starter heater 16 provided in the steam separator 8 to obtain reforming steam.
Similarly, midnight power is supplied to a heat retaining heater 23 provided for heat retention during storage and transportation in the fuel cell main body 20 to keep the fuel cell main body 20 at 50 ° C. to 60 ° C. Furthermore, midnight power is also used for auxiliary machinery power such as the combustion air blower 13 that is activated even during standby operation.

本実施例のりん酸形燃料電池発電装置では、電力会社から安価な深夜電力料金が適用される23:00〜7:00の間、上記待機運転へ自動で切り替えるよう燃料電池発電装置の制御装置にプログラムした。待機運転の実施方法は概ね上述のとおりであるが、待機運転中の空気極パージの量や燃料改質装置の負荷は以下のとおりとした。
待機運転中の空気極5の窒素パージは、待機運転開始時に空気流通溝を流れる窒素の流速が5mm/sとなる流量で2分間実施し、その後の待機運転中は、空気流通溝を流れる窒素の流速が0.05mm/sとなる流量で供給を継続した。
In the phosphoric acid fuel cell power generator according to the present embodiment, the control device for the fuel cell power generator is automatically switched to the standby operation between 23:00 and 7:00 when an inexpensive late-night power charge is applied from the power company. Programmed. The method of performing the standby operation is generally as described above, but the amount of the air electrode purge during the standby operation and the load of the fuel reformer are as follows.
The nitrogen purge of the air electrode 5 during the standby operation is performed at a flow rate at which the flow rate of nitrogen flowing through the air circulation groove is 5 mm / s at the start of the standby operation for 2 minutes, and during the subsequent standby operation, the nitrogen flowing through the air circulation groove The supply was continued at a flow rate of 0.05 mm / s.

燃料改質装置10は、待機運転中の負荷を4〜8%に制御(原燃料供給量を、定格の負荷100%時の流量の4〜8%とする)した。
燃料改質装置10内の熱が余って改質器2の検出温度が900℃以上に上昇した場合は負荷を下げるが、負荷4%未満では制御が困難となるため負荷4%を下限とし、負荷4%に下げても熱が余る場合は、燃焼空気ブロア13よりバーナー6に供給する燃焼用空気の流量を増加させてバーナー6の空燃比を上げることにより断熱火炎温度を下げた。
The fuel reformer 10 controlled the load during standby operation to 4 to 8% (the raw fuel supply amount was set to 4 to 8% of the flow rate at the rated load of 100%).
If the heat inside the fuel reformer 10 is excessive and the detected temperature of the reformer 2 rises to 900 ° C or higher, the load is reduced. However, if the load is less than 4%, control becomes difficult. If the heat remains even when the load is lowered to 4%, the adiabatic flame temperature is lowered by increasing the air-fuel ratio of the burner 6 by increasing the flow rate of the combustion air supplied from the combustion air blower 13 to the burner 6.

また逆に、燃料改質装置10内の熱が不足して改質器2の検出温度が600℃よりも低下した場合は負荷を上昇させるが、負荷8%よりも大きくするとりん酸飛散の問題が生じるため負荷8%を上限としたが、負荷8%を維持すれば改質器2の温度は上記所定の温度まで回復させることができた。
深夜電力時間帯に、本実施例で待機運転を行った場合と、従来の燃料電池発電装置の熱自立可能な最低負荷である負荷40%で発電を継続した場合とのコストの比較は以下のとおりであった。
Conversely, if the heat in the fuel reformer 10 is insufficient and the detected temperature of the reformer 2 falls below 600 ° C., the load is increased, but if the load is greater than 8%, the problem of phosphoric acid scattering occurs. However, if the load of 8% is maintained, the temperature of the reformer 2 can be recovered to the predetermined temperature.
The cost comparison between the case where the standby operation is performed in the present embodiment during the midnight power time period and the case where the power generation is continued with the load of 40% which is the lowest load capable of thermal independence of the conventional fuel cell power generator is as follows. It was as follows.

100KWのりん酸形燃料電池発電装置を昼間は負荷100%、夜間(23:00〜7:00)は負荷40%で連続運転した場合、都市ガス料金は、定額基本料金と流量基本料金を合わせて約65円/Nm程度となる。
負荷40%で夜間(23:00〜7:00)連続運転中に消費する都市ガスの量は約9Nm3/hであるから、定期点検を除くりん酸形燃料電池発電装置の年間運転日数を360日とすると、夜間の連続運転に要していたコストは、
65円/Nm×9Nm3/h×8h/日×360日/年=1,684,800円/年となる。
When a 100KW phosphoric acid fuel cell power generator is continuously operated with a load of 100% during the day and a load of 40% during the night (23:00 to 7:00), the city gas rate is the same as the basic rate and the basic rate of flow. It is about 65 yen / Nm 3 about Te.
The amount of city gas consumed during continuous operation at night (23:00 to 7:00) at 40% load is about 9 Nm 3 / h. Assuming 360 days, the cost of continuous operation at night is
The 65 yen / Nm 3 × 9Nm 3 / h × 8h / day × 360 days / year = 1,684,800 yen / year.

一方、本発明の待機運転に要するコストは以下のとおりである。
夜間(23:00〜7:00)の深夜電力料金の単価は、基本料金と電力量料金を合わせて、約6.3円/kWhであり、商用系統からは、従来の夜間の連続運転中に、りん酸形燃料電池発電装置で発電していた40kW、燃料電池発電装置の補機動力2kW、改質用蒸気発生動力(8%負荷、S/C=3.0相当の蒸気7kg/h)5kWおよび電池保温ヒーター3kWの合計50kWを購入することとなる。
On the other hand, the cost required for the standby operation of the present invention is as follows.
The unit price of the nighttime electricity charge at night (23:00 to 7:00) is approximately 6.3 yen / kWh, including the basic charge and the electricity charge. In addition, 40 kW generated by the phosphoric acid fuel cell power generator, 2 kW auxiliary power of the fuel cell power generator, steam generation power for reforming (8% load, S / C = 3.0 equivalent steam 7 kg / h) ) A total of 50 kW of 5 kW and battery heat insulation heater 3 kW will be purchased.

従って、夜間の待機運転に要する年間の電力料金は、
6.3円/kWh×50kW×8h/日×360日/年=907,200円/年となる。
また、本発明の燃料電池発電装置の待機運転中に空気極5に実施する窒素パージには、1日の待機運転当たり500リットル程度の窒素を消費する。窒素の値段は、20MP×47リットルボンベ(9400リットル)当り3,000円程度なので、年間の窒素消費料金は、
500l/日×360日/年×3,000円/9400l=57,500円/年となる。
Therefore, the annual electricity charge required for standby operation at night is
6.3 yen / kWh × 50 kW × 8 h / day × 360 days / year = 907,200 yen / year.
Further, the nitrogen purge performed on the air electrode 5 during the standby operation of the fuel cell power generator of the present invention consumes about 500 liters of nitrogen per standby operation per day. The price of nitrogen is about 3,000 yen per 20MP x 47 liter cylinder (9400 liters), so the annual nitrogen consumption charge is
500 l / day × 360 days / year × 3,000 yen / 9400 l = 57,500 yen / year.

従来の連続運転と比較した本発明の実施例による年間のコストメリットは、
1,684,800円−(907,200円+57,500円)=720,100円
となる。
更に、窒素ボンベを8本程準備しておけば、
360(日/年)/[9400(l/本)×8本/500(l/日)]=2.4/年
となり、年間の窒素ボンベの補充頻度も3回未満であり、実用上問題のないレベルとなる。
The annual cost merit of the embodiment of the present invention compared to the conventional continuous operation is
1,684,800 yen- (907,200 yen + 57,500 yen) = 720,100 yen.
Furthermore, if you prepare about 8 nitrogen cylinders,
360 (day / year) / [9400 (l / tube) × 8/500 (l / day)] = 2.4 / year, and the annual nitrogen cylinder replenishment frequency is less than 3 times. There is no level.

本発明の燃料電池発電装置を模式的に表した概略構成図Schematic configuration diagram schematically showing the fuel cell power generator of the present invention

符号の説明Explanation of symbols

1 脱硫器2
2 改質器
3 一酸化炭素変成器
4 燃料極
5 空気極
6 バーナー
7 改質用蒸気供給配管
8 気水分離器
9 反応空気ブロア
10 燃料改質装置
11 インバータ
12 燃料オフガス供給配管
13 燃焼空気ブロア
14 電池冷却水ポンプ
15 電池冷却水循環系配管
16 起動用ヒーター
17 反応空気供給配管
18 パージ用窒素供給配管
19 窒素ボンベ
20 燃料電池本体
21,22 弁
23 保温ヒーター
1 Desulfurizer 2
2 Reformer 3 Carbon Monoxide Transformer 4 Fuel Electrode 5 Air Electrode 6 Burner 7 Reforming Steam Supply Pipe 8 Air / Water Separator 9 Reaction Air Blower 10 Fuel Reformer 11 Inverter 12 Fuel Off Gas Supply Pipe 13 Combustion Air Blower 14 Battery Cooling Water Pump 15 Battery Cooling Water Circulation System Piping 16 Startup Heater 17 Reaction Air Supply Piping 18 Purge Nitrogen Supply Piping 19 Nitrogen Cylinder 20 Fuel Cell Main Body 21, 22 Valve 23 Insulation Heater

Claims (5)

炭化水素系原燃料ガスを水素を主成分とする燃料ガスに改質する燃料改質装置と、前記燃料ガスを用いて発電する燃料電池本体とを備えたりん酸形燃料電池発電装置において、
単位電力量当りの前記りん酸形燃料電池発電装置の発電コストよりも商用電力料金の方が安価となる時に、前記燃料電池本体の発電を停止し、前記燃料改質装置は熱自立する負荷で運転を継続すると共に、当該運転中の補機動力、改質反応用水蒸気の生成および燃料電池本体の保温に要する電力を商用電力から供給する待機運転を行うよう制御する制御手段を備えたことを特徴とするりん酸形燃料電池発電装置。
In a phosphoric acid fuel cell power generator comprising a fuel reformer that reforms a hydrocarbon-based raw fuel gas into a fuel gas mainly composed of hydrogen, and a fuel cell main body that generates power using the fuel gas,
When the commercial power charge is cheaper than the power generation cost of the phosphoric acid fuel cell power generation device per unit amount of power, the fuel cell main body stops generating power, and the fuel reformer is a heat self-supporting load. A control means is provided for continuing the operation and controlling to perform a standby operation of supplying power required for auxiliary power during the operation, generation of steam for reforming reaction, and heat retention of the fuel cell body from commercial power. A phosphoric acid fuel cell power generator.
前記待機運転中に前記燃料改質装置で生成される燃料ガスは、前記燃料電池本体の燃料極を通流した後、前記燃料改質装置に備えられたバーナーで燃焼されることを特徴とする請求項1に記載のりん酸形燃料電池発電装置。   The fuel gas generated in the fuel reformer during the standby operation flows through the fuel electrode of the fuel cell main body, and is then burned by a burner provided in the fuel reformer. The phosphoric acid fuel cell power generator according to claim 1. 前記待機運転開始時に前記燃料電池本体の空気極を不活性ガスでパージすると共に、前記待機運転中は前記燃料電池のセル電圧を0.1V以下に維持するように不活性ガスを空気極に供給することを特徴とする請求項2に記載のりん酸形燃料電池発電装置。   At the start of the standby operation, the air electrode of the fuel cell main body is purged with an inert gas, and the inert gas is supplied to the air electrode so that the cell voltage of the fuel cell is maintained at 0.1 V or less during the standby operation. The phosphoric acid fuel cell power generator according to claim 2. 前記待機運転開始時の不活性ガスパージは、前記空気極の空気流路に不活性ガスを5mm/s以上の流速で2分間以上供給するものであり、その後待機運転中、不活性ガスを前記空気流路に0.05mm/s以上の流速で継続的に通流することを特徴とする請求項3に記載のりん酸形燃料電池発電装置。   The inert gas purge at the start of the standby operation is to supply the inert gas to the air flow path of the air electrode at a flow rate of 5 mm / s or more for 2 minutes or more, and then during the standby operation, the inert gas is supplied to the air. 4. The phosphoric acid fuel cell power generator according to claim 3, wherein the phosphoric acid fuel cell power generator is continuously passed through the flow path at a flow rate of 0.05 mm / s or more. 前記待機運転中の前記燃料改質装置の負荷を4〜8%とすることを特徴とする請求項1〜5の何れかに記載のりん酸形燃料電池発電装置。   6. The phosphoric acid fuel cell power generator according to claim 1, wherein a load of the fuel reformer during the standby operation is 4 to 8%.
JP2007102592A 2007-04-10 2007-04-10 Phosphoric acid type fuel cell power-generating device Pending JP2008262727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007102592A JP2008262727A (en) 2007-04-10 2007-04-10 Phosphoric acid type fuel cell power-generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007102592A JP2008262727A (en) 2007-04-10 2007-04-10 Phosphoric acid type fuel cell power-generating device

Publications (1)

Publication Number Publication Date
JP2008262727A true JP2008262727A (en) 2008-10-30

Family

ID=39985055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007102592A Pending JP2008262727A (en) 2007-04-10 2007-04-10 Phosphoric acid type fuel cell power-generating device

Country Status (1)

Country Link
JP (1) JP2008262727A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011210625A (en) * 2010-03-30 2011-10-20 Jx Nippon Oil & Energy Corp Fuel cell system, and control method of the system
JP2011210643A (en) * 2010-03-30 2011-10-20 Jx Nippon Oil & Energy Corp Fuel cell system, and control method of the fuel cell system
JP2013073858A (en) * 2011-09-28 2013-04-22 Kyocera Corp Energy management system, energy management device, and power management method
WO2014003037A1 (en) * 2012-06-27 2014-01-03 京セラ株式会社 Control device, fuel cell unit, and control method
JP2014010924A (en) * 2012-06-27 2014-01-20 Kyocera Corp Controller, fuel cell unit and control method
WO2014017632A1 (en) * 2012-07-27 2014-01-30 京セラ株式会社 Control device, fuel cell system and control method
JP2014026889A (en) * 2012-07-27 2014-02-06 Kyocera Corp Control device, fuel cell unit, and control method
WO2014021359A1 (en) * 2012-08-02 2014-02-06 京セラ株式会社 Control device, fuel cell system, and control method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011210625A (en) * 2010-03-30 2011-10-20 Jx Nippon Oil & Energy Corp Fuel cell system, and control method of the system
JP2011210643A (en) * 2010-03-30 2011-10-20 Jx Nippon Oil & Energy Corp Fuel cell system, and control method of the fuel cell system
JP2013073858A (en) * 2011-09-28 2013-04-22 Kyocera Corp Energy management system, energy management device, and power management method
WO2014003037A1 (en) * 2012-06-27 2014-01-03 京セラ株式会社 Control device, fuel cell unit, and control method
JP2014010924A (en) * 2012-06-27 2014-01-20 Kyocera Corp Controller, fuel cell unit and control method
EP2869380A4 (en) * 2012-06-27 2016-03-02 Kyocera Corp Control device, fuel cell unit, and control method
US10236525B2 (en) 2012-06-27 2019-03-19 Kyocera Corporation Control apparatus, fuel cell unit and control method
WO2014017632A1 (en) * 2012-07-27 2014-01-30 京セラ株式会社 Control device, fuel cell system and control method
JP2014026891A (en) * 2012-07-27 2014-02-06 Kyocera Corp Control device, fuel cell system, and control method
JP2014026889A (en) * 2012-07-27 2014-02-06 Kyocera Corp Control device, fuel cell unit, and control method
WO2014021359A1 (en) * 2012-08-02 2014-02-06 京セラ株式会社 Control device, fuel cell system, and control method
JP2014032820A (en) * 2012-08-02 2014-02-20 Kyocera Corp Control device, fuel cell system and control method

Similar Documents

Publication Publication Date Title
US8927162B2 (en) Solid oxide fuel cell system performing different restart operations depending on operation temperature
JP5588709B2 (en) Solid oxide fuel cell system and cogeneration system equipped with the same
US8431274B2 (en) Solid oxide fuel cell device
JP2008262727A (en) Phosphoric acid type fuel cell power-generating device
US8795910B2 (en) Solid oxide fuel cell device
US20130183600A1 (en) Fuel cell device
US20190190050A1 (en) Solid oxide fuel cell system
JP2008010178A (en) Fuel cell system
JP2009048854A (en) Fuel cell power generating device and its control method
JP4570904B2 (en) Hot standby method of solid oxide fuel cell system and its system
JP2001313053A (en) Fuel cell system
JP2011076945A (en) Solid oxide fuel cell system
JP2004288603A (en) Cogeneration system
JP2007095561A (en) Operation method of fuel cell system
JP3789706B2 (en) CO conversion unit and polymer electrolyte fuel cell power generation system
JP4590872B2 (en) Operation method of fuel cell power generator
JP5134309B2 (en) Fuel cell power generator and control method thereof
JP2014123576A (en) Solid oxide fuel cell system
JP2002008697A (en) Operation starting method of fuel cell system and its equipment
JP4917791B2 (en) Fuel cell system
JP2005306659A (en) Hydrogen producing apparatus
JP3939333B2 (en) Hot water system
JP2016177919A (en) Fuel battery system
JP4281529B2 (en) Solid polymer fuel cell power generator
JP2001080905A (en) Operation of fuel reformer

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219