JPS6188461A - Method of starting and stopping fuel cell power generation system - Google Patents

Method of starting and stopping fuel cell power generation system

Info

Publication number
JPS6188461A
JPS6188461A JP59209210A JP20921084A JPS6188461A JP S6188461 A JPS6188461 A JP S6188461A JP 59209210 A JP59209210 A JP 59209210A JP 20921084 A JP20921084 A JP 20921084A JP S6188461 A JPS6188461 A JP S6188461A
Authority
JP
Japan
Prior art keywords
fuel cell
fuel
stack
steam
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59209210A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tajima
田島 博之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP59209210A priority Critical patent/JPS6188461A/en
Publication of JPS6188461A publication Critical patent/JPS6188461A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To facilitate the handling of starting and stopping by substituting a supplying system of fuel with steam in replacement of protective gas such as nitrogen gas etc. CONSTITUTION:For example, in order to start a power generation system, a methanol reformer 7 is raised to given temperature by burning methanol. After heating a stack 12, water from a water pump 5 is supplied to a reacting pipe 9. The water is changed to steam since the reacting pipe 9 is heated, and the steam is supplied into the stack 12 and passages for the fuel are substituted with the steam. Whereby, fuel remaining in the system is eliminated. And thereafter, a methanol pump 4 is started to carry out reforming reaction, and the steam is supplied to the stack 12, and the temperature of the reformer 7 and the stack 12 is raised up to given temperature while initiating starting reaction. Whereby, it is possible to facilitate the handling of starting and stopping.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

この発明は有機燃料を水蒸気改質に水素を燃料とする燃
料電池発電装置の起動、停止方法に関する。
The present invention relates to a method for starting and stopping a fuel cell power generation device that uses hydrogen as fuel by steam reforming organic fuel.

【従来技術とその問題点】[Prior art and its problems]

従来の燃料電池発′rg、装置では、その起動時および
停止時に燃料の供給系統に窒素などの不活性ガスを供給
し、系統内に残留している燃料を一掃した後に改質反応
を起こして起動させ、また燃料を一掃した後に停止させ
ていた。これはもしも系統内に残留している燃料に何ル
らかの原因で空気が混入して爆鳴気を生じた場合、この
爆鳴気が改質器のバーナに到達したり、反応管より漏れ
たりすると爆発をおこす虞れがあるので、まえもって窒
素で残留ガスを一掃した後にバーナを点火したり運転を
休止する方法がとられている。 4′ しへしながら、このような装置では保護ガスa貯蔵器と
その供給系統を新たに設ける必要があり、発電装置を特
に移動用、携帯用電源に利用する場合には、装置が大形
化する問題があった。
In conventional fuel cell generators, an inert gas such as nitrogen is supplied to the fuel supply system at startup and shutdown, and the reforming reaction occurs after cleaning out any remaining fuel in the system. It was started and then shut down after purging out the fuel. This means that if air is mixed into the fuel remaining in the system for some reason and generates explosion air, this explosion air may reach the reformer burner or escape from the reaction tube. Since there is a risk of an explosion if the burner leaks, a method is used in which the residual gas is wiped out with nitrogen before the burner is ignited or the operation is stopped. 4' However, such equipment requires the installation of a new protective gas storage and its supply system, and when the generator is used as a mobile or portable power source, the equipment becomes large. There was a problem of

【発明の目的】[Purpose of the invention]

この発明は上記に鑑みなされたもので、構成を小形化、
軽量化して取り扱いの容易な燃料電池発電装置装置の起
動、停止法を提供することを目的とする。
This invention was made in view of the above, and the structure is miniaturized.
The object of the present invention is to provide a method for starting and stopping a fuel cell power generation device that is lightweight and easy to handle.

【発明の要点】[Key points of the invention]

この目的を達成するため本願発明者は種々検討した結果
、水蒸気が改質用触媒と燃料電池スタックに性能的に悪
影響を与えることがなく、窒素などの保護ガスに代わっ
て使用しうろことに着目した。しかも水蒸気は改質器の
温度を利用して容易に発生させることができ、既存の装
置をそのまま使用することができる。 すなわち、燃料電池用の燃料改質装置は一触に水蒸気改
質方法がとられており、例えば燃料が天然ガス(CHI
)やメタノールの場合には次式に示す改質反応が改1を
装置内で進行する。 メタンの場合; CHa + 28zO−CL + 4 L (吸熱反応
)(1)メタノールの場合: C)+30)1 + H!0→CJ + 3 )+! 
(@熱反応)(2)(1)式の場合にはニッケル系触媒
を使った約800℃の高温改質(CL + 2 HlO
−Co、 + 381)とCu−Zn系の触媒を使った
シフト反応(CO+HsO= Cot+H8)などの組
合わせで反応が進行する。(2)式の場合にはCu −
Zn系の触媒を使った約250℃の温度で進行する。し
たがって、この改質器の温度を利用し、水蒸気を発生せ
しめ、その水蒸気を窒素などの保護ガスに代わって使う
ようにすれば、窒素などの不活性ガス供給系統を新たに
設ける必要がなく、既存の装置をそのまま用いることが
できるため、所期の目的を達成することができる。
In order to achieve this objective, the inventor of the present application conducted various studies and found that water vapor does not have an adverse effect on the performance of the reforming catalyst and fuel cell stack and can be used in place of a protective gas such as nitrogen. did. Furthermore, steam can be easily generated using the temperature of the reformer, and existing equipment can be used as is. In other words, fuel reformers for fuel cells generally use a steam reforming method, and for example, the fuel is natural gas (CHI).
) or methanol, the reforming reaction shown in the following formula proceeds in the apparatus. In the case of methane; CHa + 28zO-CL + 4 L (endothermic reaction) (1) In the case of methanol: C) + 30) 1 + H! 0→CJ+3)+!
(@Thermal reaction) (2) In the case of formula (1), high-temperature reforming at about 800°C using a nickel catalyst (CL + 2 HlO
-Co, +381) and a shift reaction using a Cu-Zn catalyst (CO+HsO=Cot+H8). In the case of formula (2), Cu −
The process proceeds at a temperature of about 250°C using a Zn-based catalyst. Therefore, if the temperature of this reformer is used to generate water vapor and that water vapor is used in place of a protective gas such as nitrogen, there is no need to newly install an inert gas supply system such as nitrogen. Since existing equipment can be used as is, the intended purpose can be achieved.

【発明の実施例】[Embodiments of the invention]

第1図はメタノール改質器7とリン酸燃料電池スタンク
】2を組合わせた本発明の実施例を示したものである。 前項の (2)式で示した改質に必要なメタノールと水
が、それぞれメタノールタンク1、水タンク2からメタ
ノールポンプ4と水ポンプ5によりパルプ6を経て、メ
タノール改質器7を貫通する反応管9へ供給される0反
応管9はメタノールと水の混合物の蒸発管と改質管をシ
リーズに直結して構成され、改質管内にはメタノールの
改質触媒(Cu −Zn系)が充填されている。改質管
内の温度は約250℃に保持され、前項の (2)式の
反応にしたがって008とH8に改質された燃料がパル
プ11を経て燃料電池スタック12へ供給される。 燃料電池スタックは温度が約190℃に保持されており
、これには空気ブロアー14より反応空気が供給されて
いるので、既知の起電反応にしたがって直流出力が出力
端子】5より得られる。燃料電池スタックは直流出力の
他に反応抵抗(分極)とその内部電気抵抗に起因する発
熱が生ずるので、図示しない方法にしたがって温度を約
190℃に維持するための冷却系統(空冷または水冷)
が組み込まれている。燃料電池スタック12では、供給
された水素の約80%を起電反応で消費した後、残分の
水素を含むガスをパルプ13を経てバーナ8に供給し、
このような燃料電池発電装置を起動させるには、先ずバ
ーナ8にメタノールと空気をそれぞれメタノールポンプ
3と空気ブロアー10で供給してメタノールを燃焼させ
ることにより、メタノール改質器7を所定の温度(25
0℃)に高める。同時に改質器7の廃熱を燃料電池スタ
ック12に加熱配管17とパルプ18を経由して改質器
の廃熱を供給してスタック12を所定の温度(約190
℃)に高める。この時、スタック12の温度は、水茎気
が燃料の供給系統内の圧力において41縮しない温度以
上とすることが肝要である。スタック12を加熱した後
に、水ポンプ5より水をパルプ6を経由させ反応管9に
供給する0反応管9はバーナ8で100℃以上の温度に
加熱されているため水蒸気となり、これがパルプ11を
経て燃料電池スタック12内に供給され、燃料電池スタ
ック12内の燃料の通路を水蒸気で置換する。燃料電池
スタック12を出た水蒸気はパルプ16を通して外へ排
出される。このように水茂気で燃料の供給系統内を置換
することにより、系統内に残留している燃料を除去する
ことができる。 この後、メタノールポンプ4を始動して改質器7にてメ
タノールの改質反応を行い、改質燃料を燃料電池スタッ
クに供給し、起電反応を開始させながらメタノール改質
器7と燃料電池スタック12の温度を所定の温度まで高
める。この際、すなわち改質反応を開始してからはバル
ブ16は閉じられており、またバルブ13は開いている
ので、燃料電池スタック12の排ガスはバルブ13を経
由してバーナ8で燃焼される。改質器7の温度はバーナ
に供給される燃料と空気ブロアー10の空気量で調整し
、バルブ13より供給する排燃料が不足の場合にはポン
プ3よりメタノールを補給する。また燃料電池スタック
の温度が所定の温度より低いときにはメタノール改質器
7の排ガスを利用して昇温させることも必要であるが、
一般に燃料電池スタックは発熱を伴うので所定の温度に
達すれば公知の冷却装置により冷却する。 次に発電装置の停止時においては、メタノールポンプ4
を停止させメタノール改質器7に水のみを供給すること
により水蒸気を発生させ、メタノール改質器7と燃料電
池スタック12内の燃料通路内を水蒸気で置換する。メ
タノール改質器7と燃料電池スタック12の温度を約1
50℃以下に下げたのち、ポンプ類を全て停止させると
ともに弁6.11.13を閉じる。これにより、メタノ
ール改質器内の反応管9は密閉状態となり、管内への空
気の混入が防止される。もっとも改′!を器の温度が下
がると反応管内は減圧状態になり、もし弁などにリーク
があると反応管内に空気が混入することになるがそのリ
ーク量がわずかなときには改質性能を害することはない
、再起動の場合には反応管内に残留する水が加熱により
再び気化し、起動時の水蒸気置換開始時には元の圧力状
態近くに戻るため圧力バランス上の問題はない、一方燃
料電池スタック12は温度が低下するにしたがって水蒸
気が体積減少し、100℃以下になると凝縮するので燃
料通路の圧力が減圧する。このため、バルブ16を開い
て、減圧分だけスタック内に空気を導入する。 スタック内の燃料は既に水蒸気で置換されているので、
空気が導入されてもスタック内の燃料電極がそこなわれ
ることはない、更に、スタック内に導入された水蒸気が
リン酸電解質に吸収されて電解質の体積膨張、あるいは
電極の濡れを促進しスタック12の性能低下につながる
虞れもあるが、この場合にはスタック12の温度が10
0℃以上のときにブロアー14で反応空気をスタック1
2に導入し、;解質に溶は込む水蒸気を反応空気側に蒸
発させることによりその防止を図ることで対処できる。 を設ける必要がないという特長を有する。
FIG. 1 shows an embodiment of the present invention in which a methanol reformer 7 and a phosphoric acid fuel cell tank 2 are combined. A reaction occurs in which methanol and water necessary for the reforming shown in equation (2) in the previous section are passed through the methanol reformer 7 through the pulp 6 from the methanol tank 1 and water tank 2 by the methanol pump 4 and water pump 5, respectively. The reaction tube 9 supplied to the tube 9 is constructed by directly connecting an evaporation tube for a mixture of methanol and water and a reforming tube in series, and the reforming tube is filled with a methanol reforming catalyst (Cu-Zn system). has been done. The temperature inside the reforming tube is maintained at about 250° C., and the fuel reformed into 008 and H8 according to the reaction of equation (2) in the previous section is supplied to the fuel cell stack 12 via the pulp 11. The temperature of the fuel cell stack is maintained at approximately 190° C., and reaction air is supplied to it from an air blower 14, so that a DC output is obtained from the output terminal 5 in accordance with a known electromotive reaction. In addition to direct current output, a fuel cell stack generates heat due to reaction resistance (polarization) and its internal electrical resistance, so a cooling system (air cooling or water cooling) is required to maintain the temperature at approximately 190°C according to a method not shown.
is included. In the fuel cell stack 12, after approximately 80% of the supplied hydrogen is consumed by an electromotive reaction, the remaining hydrogen-containing gas is supplied to the burner 8 via the pulp 13.
To start up such a fuel cell power generation device, first, methanol and air are supplied to the burner 8 using the methanol pump 3 and the air blower 10, respectively, and the methanol is combusted, so that the methanol reformer 7 is heated to a predetermined temperature ( 25
0°C). At the same time, the waste heat of the reformer 7 is supplied to the fuel cell stack 12 via the heating pipe 17 and the pulp 18 to maintain the stack 12 at a predetermined temperature (approximately 190℃).
℃). At this time, it is important that the temperature of the stack 12 be higher than the temperature at which the water scum does not contract under the pressure within the fuel supply system. After heating the stack 12, water is supplied from the water pump 5 to the reaction tube 9 via the pulp 6.The reaction tube 9 is heated to a temperature of 100°C or more by the burner 8, so it becomes water vapor, which causes the pulp 11 to The water vapor is then supplied into the fuel cell stack 12 and replaces the fuel passage within the fuel cell stack 12 with water vapor. The water vapor leaving the fuel cell stack 12 is discharged to the outside through the pulp 16. By replacing the inside of the fuel supply system with water and air in this way, the fuel remaining in the system can be removed. After that, the methanol pump 4 is started to perform a methanol reforming reaction in the reformer 7, and the reformed fuel is supplied to the fuel cell stack, and while an electromotive reaction is started, the methanol reformer 7 and the fuel cell The temperature of the stack 12 is increased to a predetermined temperature. At this time, since the valve 16 is closed and the valve 13 is open after the reforming reaction is started, the exhaust gas from the fuel cell stack 12 is combusted by the burner 8 via the valve 13. The temperature of the reformer 7 is adjusted by the fuel supplied to the burner and the amount of air from the air blower 10, and if the exhaust fuel supplied from the valve 13 is insufficient, methanol is supplied from the pump 3. Furthermore, when the temperature of the fuel cell stack is lower than a predetermined temperature, it is necessary to raise the temperature using the exhaust gas from the methanol reformer 7.
Since a fuel cell stack generally generates heat, it is cooled down by a known cooling device once it reaches a predetermined temperature. Next, when the power generator is stopped, the methanol pump 4
The methanol reformer 7 is stopped and only water is supplied to the methanol reformer 7 to generate water vapor, and the inside of the fuel passages in the methanol reformer 7 and the fuel cell stack 12 are replaced with water vapor. The temperature of the methanol reformer 7 and the fuel cell stack 12 is set to about 1
After lowering the temperature to below 50°C, stop all pumps and close valves 6.11.13. As a result, the reaction tube 9 in the methanol reformer is in a sealed state, preventing air from entering the tube. Most reformed! When the temperature of the reactor drops, the pressure inside the reaction tube becomes reduced, and if there is a leak in a valve, etc., air will get mixed into the reaction tube, but if the amount of leak is small, it will not harm the reforming performance. In the case of restart, the water remaining in the reaction tube is vaporized again by heating, and the pressure returns to near the original state when steam replacement starts at startup, so there is no problem with pressure balance.On the other hand, the temperature of the fuel cell stack 12 is low. As the temperature decreases, the volume of water vapor decreases, and when the temperature drops below 100°C, it condenses, reducing the pressure in the fuel passage. Therefore, the valve 16 is opened to introduce air into the stack by the amount of reduced pressure. Since the fuel in the stack has already been replaced by water vapor,
Even if air is introduced, the fuel electrode in the stack will not be damaged. Furthermore, the water vapor introduced into the stack will be absorbed by the phosphoric acid electrolyte, promoting volume expansion of the electrolyte or wetting of the electrode, and the stack 12 However, in this case, the temperature of the stack 12 is 10
When the temperature is 0°C or higher, the blower 14 blows the reaction air into the stack 1.
This can be prevented by introducing water vapor into the solute and evaporating it into the reaction air side. It has the advantage that there is no need to provide

【発明の効果】【Effect of the invention】

以上の説明から明らかなように、この発明によれば、燃
料の改質装置を含む燃料電池発電装置の起動および停止
操作において、燃料の供給系統を窒素ガスなどの保護ガ
スに代わって水蒸気でNWAするようにしたので、保護
ガスの貯蔵および供給系統が不要になったばかりでな(
、発電装置が小型、軽量化できるため、特に発電装置を
移動用、携帯用電源に利用する場合に好適である。
As is clear from the above description, according to the present invention, in starting and stopping operations of a fuel cell power generation device including a fuel reformer, the fuel supply system is NWA-enabled using water vapor instead of a protective gas such as nitrogen gas. This not only eliminates the need for protective gas storage and supply systems (
Since the power generating device can be made smaller and lighter, it is particularly suitable when the power generating device is used as a mobile or portable power source.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す燃料電池発電装置の概略
構成図である。 1;メタノールタンク、2:水タンク、7:メタノール
改質器、8:バーナ、10.14:空気ブロアー12:
P、料電池スタック。
FIG. 1 is a schematic diagram of a fuel cell power generation device showing an embodiment of the present invention. 1; Methanol tank, 2: Water tank, 7: Methanol reformer, 8: Burner, 10.14: Air blower 12:
P, charge battery stack.

Claims (1)

【特許請求の範囲】 1)有機燃料の水蒸気改質装置を有する燃料電池発電装
置において、該発電装置の起動および運転停止時に該水
蒸気改質装置および燃料電池スタックを含む燃料供給系
統を水蒸気で置換するようにしたことを特徴とする燃料
電池発電装置の起動、停止方法。 2)特許請求の範囲第1項記載の起動、停止方法におい
て、置換用水蒸気を水蒸気改質装置で発生せしめること
を特徴とする燃料電池発電装置の起動、停止方法。 3)特許請求の範囲第1項記載の起動、停止方法におい
て、水蒸気改質装置がメタノール改質装置であることを
特徴とする燃料電池発電装置の起動、停止方法。 4)特許請求の範囲第1項記載の起動、停止方法におい
て、燃料電池スタックがリン酸燃料電池であることを特
徴とする燃料電池発電装置の起動、停止方法。
[Claims] 1) In a fuel cell power generation device having a steam reformer for organic fuel, the fuel supply system including the steam reformer and the fuel cell stack is replaced with steam when the power generation device is started and stopped. A method for starting and stopping a fuel cell power generation device, characterized in that: 2) A method for starting and stopping a fuel cell power generator according to claim 1, characterized in that the replacement steam is generated in a steam reformer. 3) A method for starting and stopping a fuel cell power generation apparatus according to claim 1, wherein the steam reformer is a methanol reformer. 4) A method for starting and stopping a fuel cell power generation apparatus according to claim 1, wherein the fuel cell stack is a phosphoric acid fuel cell.
JP59209210A 1984-10-05 1984-10-05 Method of starting and stopping fuel cell power generation system Pending JPS6188461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59209210A JPS6188461A (en) 1984-10-05 1984-10-05 Method of starting and stopping fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59209210A JPS6188461A (en) 1984-10-05 1984-10-05 Method of starting and stopping fuel cell power generation system

Publications (1)

Publication Number Publication Date
JPS6188461A true JPS6188461A (en) 1986-05-06

Family

ID=16569173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59209210A Pending JPS6188461A (en) 1984-10-05 1984-10-05 Method of starting and stopping fuel cell power generation system

Country Status (1)

Country Link
JP (1) JPS6188461A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552954U (en) * 1991-12-16 1993-07-13 富士通テン株式会社 Collection / delivery collation device
WO2001097312A1 (en) * 2000-06-14 2001-12-20 Matsushita Electric Industrial Co., Ltd. Fuel cell power generation system, and fuel cell power generation interrupting method
JP2002093451A (en) * 2000-09-13 2002-03-29 Corona Corp Vaporization method for water-insoluble liquid fuel used for fuel cell system
JP2002179401A (en) * 2000-12-11 2002-06-26 Toyota Motor Corp Method of stopping operation of gaseous hydrogen production system
WO2002061870A1 (en) * 2001-01-31 2002-08-08 Kabushiki Kaisha Toshiba Fuel battery system and purging method therefor
EP1270510A2 (en) * 2001-06-20 2003-01-02 Ballard Power Systems AG Process for improving the cold start behaviour of selective CO-oxidation catalysts
EP1182723A3 (en) * 2000-08-23 2004-03-24 Buderus Heiztechnik GmbH Method of controlling a fuel cell system with reformer
KR100523148B1 (en) * 2001-11-30 2005-10-20 마쯔시다덴기산교 가부시키가이샤 System and method of fuel cell power generation
JP2005535072A (en) * 2002-07-31 2005-11-17 フューエル セル テクノロジーズ リミテッド Fuel cell system with degradation protected anode
JP2007053093A (en) * 2005-08-13 2007-03-01 Samsung Sdi Co Ltd Starting method of fuel cell system
JP2007194098A (en) * 2006-01-20 2007-08-02 Fuji Electric Holdings Co Ltd Fuel cell power generation system
WO2008001656A1 (en) * 2006-06-28 2008-01-03 Nippon Oil Corporation Method for starting fuel cell system
JP2009035480A (en) * 2008-09-22 2009-02-19 Toyota Motor Corp Shutdown method of hydrogen producing system operation
JP2009227479A (en) * 2008-03-19 2009-10-08 Nippon Oil Corp Method for stopping hydrogen production apparatus and fuel cell system
JP2009283188A (en) * 2008-05-20 2009-12-03 Ngk Spark Plug Co Ltd Solid oxide fuel cell and its starting method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552954U (en) * 1991-12-16 1993-07-13 富士通テン株式会社 Collection / delivery collation device
US7432004B2 (en) 2000-06-14 2008-10-07 Matsushita Electric Industrial Co., Ltd. Fuel cell electric power generating system and method of stopping fuel cell electric power generation
WO2001097312A1 (en) * 2000-06-14 2001-12-20 Matsushita Electric Industrial Co., Ltd. Fuel cell power generation system, and fuel cell power generation interrupting method
EP1182723A3 (en) * 2000-08-23 2004-03-24 Buderus Heiztechnik GmbH Method of controlling a fuel cell system with reformer
JP2002093451A (en) * 2000-09-13 2002-03-29 Corona Corp Vaporization method for water-insoluble liquid fuel used for fuel cell system
JP4649028B2 (en) * 2000-09-13 2011-03-09 株式会社コロナ Method for vaporizing water-insoluble liquid fuel used in fuel cell system
JP2002179401A (en) * 2000-12-11 2002-06-26 Toyota Motor Corp Method of stopping operation of gaseous hydrogen production system
WO2002061870A1 (en) * 2001-01-31 2002-08-08 Kabushiki Kaisha Toshiba Fuel battery system and purging method therefor
US7687162B2 (en) 2001-01-31 2010-03-30 Kabushiki Kaisha Toshiba Purging method of fuel cell system
EP1270510A2 (en) * 2001-06-20 2003-01-02 Ballard Power Systems AG Process for improving the cold start behaviour of selective CO-oxidation catalysts
EP1270510A3 (en) * 2001-06-20 2005-11-09 Ballard Power Systems AG Process for improving the cold start behaviour of selective CO-oxidation catalysts
US7192669B2 (en) * 2001-11-30 2007-03-20 Matsushita Electric Industrial Co., Ltd. System and method of fuel cell power generation
CN1322618C (en) * 2001-11-30 2007-06-20 松下电器产业株式会社 Fuel battery generating system and method thereof
US8486572B2 (en) * 2001-11-30 2013-07-16 Panasonic Corporation System and method of fuel cell power generation
KR100523148B1 (en) * 2001-11-30 2005-10-20 마쯔시다덴기산교 가부시키가이샤 System and method of fuel cell power generation
JP2005535072A (en) * 2002-07-31 2005-11-17 フューエル セル テクノロジーズ リミテッド Fuel cell system with degradation protected anode
JP2007053093A (en) * 2005-08-13 2007-03-01 Samsung Sdi Co Ltd Starting method of fuel cell system
JP4676934B2 (en) * 2005-08-13 2011-04-27 三星エスディアイ株式会社 Starting method of fuel cell system
JP2007194098A (en) * 2006-01-20 2007-08-02 Fuji Electric Holdings Co Ltd Fuel cell power generation system
WO2008001656A1 (en) * 2006-06-28 2008-01-03 Nippon Oil Corporation Method for starting fuel cell system
JP2009227479A (en) * 2008-03-19 2009-10-08 Nippon Oil Corp Method for stopping hydrogen production apparatus and fuel cell system
JP2009283188A (en) * 2008-05-20 2009-12-03 Ngk Spark Plug Co Ltd Solid oxide fuel cell and its starting method
JP2009035480A (en) * 2008-09-22 2009-02-19 Toyota Motor Corp Shutdown method of hydrogen producing system operation

Similar Documents

Publication Publication Date Title
JP2006309982A (en) Solid oxide fuel cell system
EP1276163B1 (en) Solid polymer fuel cell
JPS6188461A (en) Method of starting and stopping fuel cell power generation system
JPH06203865A (en) Fuel cell system
JPH07230816A (en) Internally modified solid electrolyte fuel cell system
KR100837394B1 (en) Fuel processor providing improved warming up structure for CO removing unit and managing method thereof
JPH07230819A (en) Internally modified solid electrolyte fuel cell system having self-heat exchange type heat insulating prereformer
JPS6282660A (en) Stopping method for phosphoric acid type fuel cell
JPH1167251A (en) Fuel cell power generating device
JP5305845B2 (en) Fuel cell power generation system and operation method thereof
JP4049526B2 (en) Method for starting reformer for fuel cell
JPS6266578A (en) Air cooling type fuel cell power generating system
JPH0963608A (en) Fuel cell power generating system
KR101269294B1 (en) Fuel cell system having hot water creation function for heating and cooling
JPH1064566A (en) Fuel cell power generator and waste heat recovery method therefor
JPH10223236A (en) Fuel cell electricity-generating apparatus
JP3561706B2 (en) Polymer electrolyte fuel cell power generator
JPH0992319A (en) Carbon monoxide transformer for fuel cell power generating device
JPS6280970A (en) Power generating method of fuel cell
JPH1167252A (en) Fuel cell power generating device
JPH01175174A (en) Fuel cell power generating device
JPS61147471A (en) Fuel cell power generating system
JPH0757755A (en) Starting of fuel cell power generator
JPH0945349A (en) Fuel cell power generation device
JPH11354144A (en) Fuel cell power generating set with methanol cracker