WO2008001656A1 - Method for starting fuel cell system - Google Patents

Method for starting fuel cell system Download PDF

Info

Publication number
WO2008001656A1
WO2008001656A1 PCT/JP2007/062374 JP2007062374W WO2008001656A1 WO 2008001656 A1 WO2008001656 A1 WO 2008001656A1 JP 2007062374 W JP2007062374 W JP 2007062374W WO 2008001656 A1 WO2008001656 A1 WO 2008001656A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
water vapor
line
hydrocarbon
gas
Prior art date
Application number
PCT/JP2007/062374
Other languages
French (fr)
Japanese (ja)
Inventor
Susumu Hatada
Original Assignee
Nippon Oil Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corporation filed Critical Nippon Oil Corporation
Publication of WO2008001656A1 publication Critical patent/WO2008001656A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a method for starting a fuel cell system that generates power using a reformed gas obtained by reforming a hydrocarbon fuel such as kerosene.
  • a hydrocarbon-based fuel such as kerosene or city gas is usually reformed to produce a reformed gas containing hydrogen, and the resulting reformed gas and air are supplied to the fuel cell. And generate electricity by electrochemical reaction.
  • the hydrocarbon-based fuel when using a hydrocarbon-based fuel, particularly when using a hydrocarbon-based fuel having a high carbon composition ratio in the molecule such as kerosene, the hydrocarbon-based fuel is used in a high-temperature atmosphere of, for example, about 400 ° C or higher. Force Carbon may be deposited. Carbon deposition causes channel blockage in piping and reformers. In particular, when a reforming catalyst is used in the reformer, carbon deposition is likely to occur on the reforming catalyst.
  • Patent Document 1 Patent Publication 2005-213057
  • An object of the present invention is to provide a start-up method capable of suppressing the deposition of hydrocarbon-based fuel-powered carbon in a fuel cell system using a hydrocarbon-based fuel.
  • the present invention provides the following method.
  • a method for starting a fuel cell system comprising: supplying water vapor to the line before supplying hydrocarbon fuel gas to the line.
  • step b after step a, supplying water vapor to the line while monitoring the voltage of the fuel cell while continuing the oxygen supply and hydrogen supply; and c) After step b, after detecting a drop in the voltage of the fuel cell, supplying hydrocarbon fuel gas to the line
  • step b the supply flow rate of water vapor is set to a desired flow rate of water vapor at the completion of the start-up operation
  • step c the supply flow rate of the hydrocarbon-based fuel gas is set to a desired flow rate of the hydrocarbon-based fuel gas when the start-up operation is completed.
  • the supply flow rate of water vapor is a part of the desired flow rate of water vapor when the start-up operation is completed
  • step c the supply flow rate of the hydrocarbon fuel gas is a part of the desired flow rate of the hydrocarbon fuel gas at the completion of the start-up operation
  • step d After detecting a decrease in the voltage of the fuel cell, increasing the flow rate of hydrocarbon fuel gas supplied to the line
  • the method according to (4), wherein the flow rate of the gas is set to a desired flow rate of the hydrocarbon-based fuel gas at the completion of the startup operation.
  • a fuel cell system having a predetermined time interval between a time point at which an operation for supplying water vapor to the line and a time point at which an operation for supplying a hydrocarbon-based fuel gas to the line is performed.
  • the predetermined time interval is set in advance by a preliminary start operation for starting the fuel cell system in advance
  • step i after step i, performing the operation of supplying water vapor to the line while monitoring the voltage of the fuel cell while continuing the oxygen supply and hydrogen supply;
  • step iii After step ii, a step of detecting a decrease in the voltage of the fuel cell
  • Step ii the time from when the operation of supplying water vapor is performed until the time when the voltage drop is detected in Step iii is measured, and this measured time is defined as the predetermined time interval.
  • a start-up method capable of suppressing the deposition of hydrocarbon-based fuel power carbon is provided.
  • FIG. 1 is a flowchart showing an outline of an embodiment of a fuel cell system capable of implementing the present invention.
  • FIG. 2 is a flow chart for explaining an embodiment of a starting method of the fuel cell system of the present invention.
  • FIG. 3 is a flowchart partially showing the periphery of a pump in another embodiment of a fuel cell system in which the present invention can be implemented.
  • the present invention includes a line for flowing a mixed gas of a hydrocarbon-based fuel gas and water vapor (hereinafter referred to as a fuel's water vapor mixed gas line) and a fuel cell connected downstream of this line.
  • the present invention relates to a fuel cell system activation method for activating a fuel cell system having the fuel cell system. More specifically, the fuel cell anode is connected downstream of this line. There is no need to connect a fuel cell directly downstream of this line. When hydrocarbon fuel is modified by a reformer, the fuel cell is connected downstream of the fuel vapor mixed gas line via the reformer.
  • the reformer is connected to the fuel / water vapor mixed gas line
  • the reformed gas line for flowing the reformed gas is connected to the downstream of the reformer
  • the fuel cell is downstream of the reformed gas line.
  • Sarakuko installed a shift reactor (CO + H0 ⁇ H + CO) and a carbon monoxide selective oxidation reactor (2CO + 0 ⁇ 2CO) between the reformer and the fuel cell anode.
  • the fuel cell anode can be directly connected downstream of the fuel-water vapor mixed gas line.
  • SZC steam Z carbon ratio
  • FIG. 1 shows a schematic configuration of one form of a fuel cell system that can implement the starting method of the present invention.
  • kerosene is used as the hydrocarbon fuel
  • the fuel cell is connected downstream of the fuel / steam mixed gas line via a reformer.
  • the equipment that needs to be heated in this case, kerosene vaporizer 2, water vaporizer 4, reformer 10, and fuel cell 20 is heated. If necessary, the piping is also heated. This heating can be appropriately performed by a method employed in a known start-up operation of the fuel cell system.
  • a heat source for the calorie heat combustion heat obtained by burning a combustible material such as a hydrocarbon fuel prepared for use in power generation by a combustion means such as a burner can be used. Alternatively, it can be heated by an electric heater.
  • a reducing gas can be supplied to the reformer and the anode of the fuel cell. Open the valve 8 and start supplying the reducing gas until the anode electrode reaches the temperature range where there is a risk of acidification.
  • the force for supplying the reducing gas (hydrogen) to the reformer 10 via the mixer 5 is not necessarily required.
  • the reducing gas can be supplied separately to the reformer (reforming catalyst layer) and the fuel cell anode, respectively, but when a reformer is present, the reformer (reforming catalyst layer). Then, the fuel cell anode can be supplied.
  • Hydrogen can be used as the reducing gas. Hydrogen may be pure hydrogen, but may be accompanied by another gas that does not impair the reducibility, such as nitrogen. A cylinder can be used as the source of the reducing gas.
  • gas obtained by vaporizing kerosene can be supplied to the reformer.
  • kerosene gas gas obtained by vaporizing kerosene
  • the reaction proceeds at 550 ° C to 750 ° C, so after the reforming catalyst layer in the reformer reaches this temperature range, kerosene gas is added to the reforming catalyst layer.
  • kerosene is boosted by a pump 1 as a boosting means and vaporized by a vaporizer 2.
  • a pump and a vaporizer may be provided as necessary. example For example, when methane gas having a desired pressure is used as a hydrocarbon-based fuel, neither a booster nor a vaporizer is required.
  • water vapor is mixed with kerosene gas in order to suppress carbon deposition.
  • water vapor is supplied to the line through which the mixed gas of kerosene gas and water vapor flows before the kerosene gas is supplied. . This makes it possible to more reliably suppress carbon deposition.
  • valve 7 is opened, the pressure of the water is increased by the pump 3, and the vaporizer 4 vaporizes the water.
  • the obtained water vapor is supplied from the mixer 5 to a line (fuel / water vapor mixed gas line) 101 through which a mixed gas of kerosene gas and water vapor flows.
  • Noreb 7 may be opened before the temperature rises.
  • valve 7 need not be installed. In this case, opening of valve 7 does not occur.
  • a circulation line 103 connecting the upstream of the pump 3 and between the pump 3 and the vaporizer 4 (in this case, a three-way valve 11 between the pump 3 and the vaporizer 4).
  • the three-way valve 11 is switched to the upstream side of the pump 3 in advance before the supply of water vapor is started, the pressure of the water is increased by the pump 3, and the water is circulated through the circulation line to vaporize the three-way valve 11. Switch to vessel side 4 and vaporize water with vaporizer 4.
  • the obtained water vapor is supplied from the mixer 5 to a line (fuel “water vapor mixed gas line) 101 through which a mixed gas of kerosene gas and water vapor flows.
  • valve 6 is opened, the kerosene pressure is increased by the pump 1, the kerosene gas obtained from the air heater 2 is guided to the mixer, and mixed with the water vapor to flow to the line 101.
  • Valve 6 may be opened before the temperature rises. In this case, it is not necessary to install the valve 6. In this case, the operation to open the valve 6 does not occur.
  • Fig. 3 when there is a circulation line 102 connecting the upstream of pump 1 and between pump 1 and vaporizer 2 (in this case, there is a three-way solenoid 9 between pump 1 and vaporizer 2).
  • the fuel cell voltage reacts sensitively to the partial pressure of electrochemically reactive chemical species such as hydrogen and oxygen.
  • the lower the hydrogen partial pressure the lower the voltage.
  • hydrogen a mixed gas containing hydrogen
  • the hydrogen partial pressure is lowered by the addition of water vapor, and the fuel cell The voltage drops immediately. Therefore, by detecting this voltage drop, it is possible to know that water vapor has reached the anode. If the water vapor reaches the anode, the water vapor flows into the fuel-water vapor mixed gas line 101 located upstream of the anode, so that the kerosene gas may be supplied to the line 101.
  • pure hydrogen may be used, but as long as it is not limited to this, a gas containing hydrogen can be appropriately used.
  • a mixed gas of inert gas such as hydrogen and nitrogen can be used.
  • Hydrogen supply to the anode can be performed at an appropriate timing before the hydrocarbon fuel is supplied to the fuel / steam mixed gas line. As described above, if hydrogen (or a mixed gas containing hydrogen) is supplied to the anode as a reducing gas for preventing acidification of the anode electrode or the like, by continuing this supply, in step a Hydrogen supply to the anode It can be carried out.
  • oxygen In order to supply oxygen to the force sword, pure oxygen may be used, but a gas containing oxygen that is not limited thereto may be used as appropriate. For example, if you supply air to a power sword,
  • the oxygen supply to the power sword may be performed at an appropriate timing before the hydrocarbon fuel is supplied to the fuel / steam mixed gas line.
  • the current of the fuel cell power is not extracted. This is because the amount of hydrogen supplied to the anode may be small as long as no current is taken out. At this time, oxygen supply to the power sword is also small. At this time, the voltage is an open circuit voltage.
  • step a steam is supplied to the fuel / steam mixed gas line while monitoring the voltage of the fuel cell while continuing the oxygen supply and hydrogen supply.
  • the oxygen supply and the hydrogen supply it is preferable to keep the oxygen concentration and the hydrogen concentration as constant as possible. This is to eliminate the voltage fluctuation factor as much as possible and to make it easier to observe the voltage drop due to the arrival of water vapor at the anode.
  • a cylinder can be used as a supply source of hydrogen (or a mixed hydrogen gas), and air can be used as an oxygen supply source.
  • the fuel cell may be in the process of being heated. This is because the voltage changes with temperature, but the magnitude and speed of the voltage change due to the change in gas composition is much faster than the voltage change due to temperature rise.
  • the cell voltage of the fuel cell can be estimated using the following Nernst equation.
  • ⁇ , ⁇ G, F, R, and T are cell voltage, Gibbs free energy, Faraday constant, gas constant, and temperature, respectively.
  • ⁇ 2 02 ⁇ 20 are the hydrogen partial pressure, oxygen partial pressure, and water vapor partial pressure at the reaction interface, respectively.
  • Equation 1 The cell voltage drop of the fuel cell due to the arrival of water vapor at the anode can be estimated from the change in partial pressure due to the addition of water vapor using the following equation. — ⁇ ⁇ is the cell voltage drop. “” Represents after the arrival of water vapor.
  • the cell voltage drop of the fuel cell can be estimated using the following formula. In a stack with n cells connected in series, the voltage drop is 1 ⁇ ⁇ ⁇ .
  • step b After step b, after the fuel cell voltage drop is detected, the hydrocarbon fuel gas is supplied to the fuel / steam mixed gas line.
  • a voltage drop means that water vapor has reached the anode. Therefore, supply hydrocarbon fuel gas to the fuel's steam-mixed gas line.
  • FIG. 2 arranges the above steps a to c as a flowchart.
  • step a hydrogen and oxygen are supplied to the fuel cell to generate voltage
  • step b water vapor is supplied to the fuel / steam mixed gas line.
  • the voltage is monitored, and if a voltage drop is detected in step c, supply of hydrocarbon fuel gas to this line is started.
  • step b the amount of water vapor supplied is the desired flow rate of water vapor at the completion of startup operation
  • step c the amount of hydrocarbon fuel gas supplied is the desired flow rate of hydrocarbon fuel gas at the time of completion of startup operation. It can be.
  • This method is a simple method that can supply desired amounts of water vapor and hydrocarbon fuel gas at a time.
  • step b the flow rate of water vapor is a part of the desired flow rate of water vapor at the completion of start-up operation
  • step c the flow rate of hydrocarbon-based fuel gas is changed to the hydrocarbon-based flow rate at the time of completion of start-up operation.
  • step d) a step of increasing the flow rate of water vapor supplied to the fuel 'water vapor mixed gas line while monitoring the voltage of the fuel cell while continuing the oxygen supply and hydrogen supply; and e) the fuel after step d
  • the desired flow rate of water vapor is represented as F, and the start-up operation is completed.
  • the flow rate of steam supplied to the steam mixture gas line is (F Z2) and
  • the flow rate of the hydrocarbon-based fuel gas supplied to this line is (F / 2), and
  • St HC hydrocarbon fuel gas can be supplied.
  • the supply of the hydrocarbon-based fuel gas to the fuel / steam mixed gas line can be suitably performed by an operation of starting a booster such as a pump or a blower or a compressor, or an operation of opening a valve.
  • Increasing the flow rate of the hydrocarbon-based gas can be appropriately performed by an operation for increasing the rotation speed of the pressurizing means or an operation for increasing the opening of the valve.
  • the supply of water vapor to the fuel / water vapor mixed gas line can be appropriately performed by an operation of starting a pressure increasing means such as a pump or an operation of opening a valve.
  • the increase in the flow rate of water vapor can be appropriately performed by an operation for increasing the number of rotations of the pressure increasing means or an operation for increasing the opening of the valve.
  • step i After step i, the step of supplying steam to the fuel's steam mixing line while monitoring the voltage of the fuel cell while continuing the supply of oxygen and hydrogen, and iii) of step ii And a step of detecting a decrease in the voltage of the fuel cell.
  • the time from when the operation of supplying water vapor in step ii to the time when the voltage drop is detected in step iii can be measured, and this measured time can be set as the predetermined time interval.
  • the operation of supplying water vapor to the fuel / water vapor mixed gas line is an operation that finally completes necessary preparation such as preheating of the vaporizer and finally allows water vapor to flow through the line, such as opening a valve.
  • the operation of supplying hydrocarbon fuel gas to the fuel / steam mixed gas line means that it is possible to flow hydrocarbon fuel gas through the line after completing the necessary preparations such as preheating the vaporizer. For example, opening a valve.
  • each device has a predetermined temperature as necessary.
  • the temperature can continue to rise.
  • the supply of hydrogen to the anode can be stopped when it is no longer necessary to detect the aforementioned voltage drop. If a reformer is present, reforming can be started in the reformer.
  • Normal operation includes not only rated operation but also partial load operation.
  • the reformed gas obtained from the reformer 10 is supplied to the anode of the fuel cell 20 as an anode gas.
  • An oxygen-containing gas such as air is supplied to the power sword of the fuel cell as a power sword gas.
  • hydrogen contained in the anode gas and oxygen contained in the power sword gas react electrochemically to generate power. Since the anode off-gas discharged from the anode contains combustible components, the amount of heat can be appropriately used by combustion. Moreover, the sensible heat of the anode off gas or the force sword off gas discharged from the force sword can be used as appropriate.
  • hydrocarbon-based fuel a compound or a mixture thereof containing carbon and hydrogen (including other elements such as oxygen) known in the field of fuel cell systems as a raw material for reformed gas may be used.
  • compounds having carbon and hydrogen in the molecule such as hydrocarbons and alcohols, can be used.
  • hydrocarbon fuels such as methane, ethane, propane, butane, natural gas, LPG (liquid petroleum gas), city gas, gasoline, naphtha, kerosene, light oil, alcohols such as methanol and ethanol, dimethyl ether, etc.
  • ether such as ether.
  • kerosene is preferable because it is easily available for industrial use and for consumer use, and is easy to handle.
  • a vaporizer When using a liquid hydrocarbon fuel, a vaporizer is used to vaporize the fuel.
  • a known vaporizer capable of vaporizing the hydrocarbon fuel to be used can be used.
  • a vaporizer having a structure capable of heating a pipe through which a liquid flows from the outside and evaporating the liquid in the pipe can be used.
  • a vaporizer having a structure in which a heating member such as an evaporating dish or an evaporation container is heated and a liquid can be brought into contact with the heating member to evaporate can also be exemplified.
  • an electric heater or a combustion gas can be used as a heat source.
  • a known vaporizer capable of vaporizing water can be used as the water vaporizer.
  • a computer or a sequencer can be used to automatically perform the operation of supplying the water vapor to the water and supplying the hydrocarbon fuel gas at predetermined time intervals.
  • the reformed gas obtained from the reformer can be subjected to a sacrificial treatment as necessary.
  • a shift reaction CO + H 0 ⁇ CO + H
  • a selective acid reaction (2) to reduce the concentration of carbon monoxide.
  • the reformer is a known reformer capable of performing steam reforming, partial acid reforming or autothermal reforming (performing both water steam reforming reaction and partial acid reforming reaction).
  • the instrument can be used as appropriate.
  • a heat source is required in the reformer, for example, an available high temperature gas can be appropriately used.
  • a combustion gas obtained by burning a hydrocarbon-based fuel node off gas can be used as a heat source.
  • a fuel cell that electrochemically reacts hydrogen can be used as appropriate.
  • solid polymer, phosphoric acid, molten carbonate, or solid oxide fuel cells can be employed.
  • cooling systems for cooling various devices such as fuel cells, pumps for pressurizing various fluids, boosting means such as compressors and blowers, adjusting the flow rate of fluids, Flow control means such as a valve for switching the flow Z, etc., flow path shutoff, Z switching means, heat exchanger for heat exchange and heat recovery, condenser for condensing gas, steam, etc.
  • Heating Z Z heat retention means storage means for various fluids, instrument air and electrical systems, control signal systems, control devices, output and power electrical systems.
  • the start-up method of the fuel cell system of the present invention can be used for, for example, a stationary or mobile power generation system, and a fuel cell system used for a cogeneration system.

Abstract

Disclosed is a method for starting a fuel cell system using a hydrocarbon fuel. This starting method enables to suppress deposition of carbon from the hydrocarbon fuel. Specifically disclosed is a method for starting a fuel cell system comprising a line for flowing a mixed gas of a hydrocarbon fuel gas and water vapor, and a fuel cell connected to the downstream of the line. In this starting method, water vapor is supplied to the line before the hydrocarbon fuel gas is supplied to the line.

Description

明 細 書  Specification
燃料電池システムの起動方法  Starting method of fuel cell system
技術分野  Technical field
[0001] 本発明は、灯油等の炭化水素系燃料を改質して得た改質ガスを用いて発電を行う 燃料電池システムの起動方法に関する。  The present invention relates to a method for starting a fuel cell system that generates power using a reformed gas obtained by reforming a hydrocarbon fuel such as kerosene.
背景技術  Background art
[0002] 燃料電池システムでは、通常、灯油や都市ガスなどの炭化水素系燃料を改質して 水素を含有する改質ガスを製造し、得られた改質ガスと空気とを燃料電池に供給し、 電気化学的に反応させて発電を行う。  [0002] In a fuel cell system, a hydrocarbon-based fuel such as kerosene or city gas is usually reformed to produce a reformed gas containing hydrogen, and the resulting reformed gas and air are supplied to the fuel cell. And generate electricity by electrochemical reaction.
[0003] 燃料電池システムを起動する際、特に固体酸ィヒ物形燃料電池など高温で作動する 燃料電池を用いる場合には、燃料電池のアノード電極ゃ改質触媒が酸化されて発 電性能や改質性能が低下しないよう、燃料電池アノードおよび改質触媒に水素など の還元性ガスを流通させる。  [0003] When starting up a fuel cell system, particularly when using a fuel cell that operates at a high temperature, such as a solid acid fuel cell, the anode electrode of the fuel cell is oxidized and the reforming catalyst is oxidized. A reducing gas such as hydrogen is circulated through the fuel cell anode and the reforming catalyst so that the reforming performance does not deteriorate.
[0004] 改質には、水蒸気改質、部分酸化改質、オートサーマルリフォーミング (水蒸気改 質と部分酸化改質の両者を行う)など種々の改質反応が利用される。水蒸気改質を 行う場合 (オートサーマルリフォーミングの場合も含む)、炭化水素系燃料のガスと水 蒸気とを混合し、改質器に供給する。このとき、炭化水素系燃料が液体の場合は予 め気化しておく。  [0004] Various reforming reactions such as steam reforming, partial oxidation reforming, and autothermal reforming (performing both steam reforming and partial oxidation reforming) are used for reforming. When steam reforming is performed (including autothermal reforming), hydrocarbon fuel gas and water vapor are mixed and supplied to the reformer. At this time, if the hydrocarbon fuel is liquid, vaporize it beforehand.
[0005] 一般に、炭化水素系燃料を用いる場合、特には灯油など分子中の炭素組成比率 が高い炭化水素系燃料を用いる場合には、例えば 400°C程度以上の高温雰囲気下 において炭化水素系燃料力 炭素が析出するおそれがある。炭素析出は、配管や 改質器などにおいて流路閉塞を引き起こす原因となる。特に、改質器において改質 触媒を用いる場合に、改質触媒上で炭素析出が生じやすい。  [0005] Generally, when using a hydrocarbon-based fuel, particularly when using a hydrocarbon-based fuel having a high carbon composition ratio in the molecule such as kerosene, the hydrocarbon-based fuel is used in a high-temperature atmosphere of, for example, about 400 ° C or higher. Force Carbon may be deposited. Carbon deposition causes channel blockage in piping and reformers. In particular, when a reforming catalyst is used in the reformer, carbon deposition is likely to occur on the reforming catalyst.
[0006] 炭化水素系燃料に水蒸気を混合することによって、高温雰囲気下でも炭素析出を 抑制可能であることが知られている。そのため、例えば灯油を用いる燃料電池システ ムにおいては、 300°C〜400°C程度にて水蒸気と灯油蒸気とを混合し、この混合ガ スを改質器に供給することが行われて 、る。 [0007] なお、改質反応の種類によらず、改質器までの炭化水素系燃料が流れるライン〖こ おいて、炭化水素系燃料力も炭素が析出するおそれがある。従って、改質には水蒸 気を必要としな!/ヽ部分酸化改質の場合であっても、炭化水素系燃料に水蒸気を混合 させることが行われている。 [0006] It is known that carbon deposition can be suppressed even in a high temperature atmosphere by mixing water vapor with a hydrocarbon fuel. Therefore, for example, in a fuel cell system using kerosene, steam and kerosene steam are mixed at about 300 ° C to 400 ° C, and this mixed gas is supplied to the reformer. . [0007] Note that, regardless of the type of reforming reaction, carbon may also be deposited in the hydrocarbon fuel power in the line where the hydrocarbon fuel to the reformer flows. Therefore, water vapor is not required for reforming! Even in the case of partial oxidation reforming, steam is mixed with hydrocarbon fuel.
[0008] このような炭化水素燃料供給方法が、特許文献 1に記載されて!ヽる。  Such a hydrocarbon fuel supply method is described in Patent Document 1.
特許文献 1:特許公開 2005— 213057号公報  Patent Document 1: Patent Publication 2005-213057
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 炭化水素系燃料を改質して利用する燃料電池システムで発電を行うためには、シ ステムを構成する機器を所望の温度まで暖め、また燃料電池で電気化学反応を行う に適した組成のガスを発生可能とするための起動運転を行う。 [0009] In order to perform power generation with a fuel cell system that reforms and uses a hydrocarbon-based fuel, it is suitable for warming up the equipment constituting the system to a desired temperature and for performing an electrochemical reaction in the fuel cell. A start-up operation is performed to enable generation of a gas having a composition.
[0010] 起動運転においても前述のような炭素析出が生じる可能性があり、より確実に炭素 析出を抑制することのできる起動方法が求められている。 [0010] In the start-up operation, carbon deposition as described above may occur, and there is a demand for a start-up method that can more reliably suppress carbon deposition.
[0011] 本発明の目的は、炭化水素系燃料を用いる燃料電池システムにおいて、炭化水素 系燃料力 炭素が析出することを抑制することのできる起動方法を提供することであ る。  [0011] An object of the present invention is to provide a start-up method capable of suppressing the deposition of hydrocarbon-based fuel-powered carbon in a fuel cell system using a hydrocarbon-based fuel.
課題を解決するための手段  Means for solving the problem
[0012] 本発明により、次の方法が提供される。  [0012] The present invention provides the following method.
[0013] (1)炭化水素系燃料のガスと水蒸気との混合ガスを流すためのラインと、該ラインの 下流に接続された燃料電池とを有する燃料電池システムを起動する燃料電池システ ムの起動方法において、  [0013] (1) Activation of a fuel cell system that activates a fuel cell system having a line for flowing a mixed gas of hydrocarbon fuel gas and water vapor, and a fuel cell connected downstream of the line In the method
該ラインに炭化水素系燃料のガスを供給する前に、該ラインに水蒸気を供給すること を特徴とする燃料電池システムの起動方法。  A method for starting a fuel cell system, comprising: supplying water vapor to the line before supplying hydrocarbon fuel gas to the line.
[0014] (2) a)前記ラインへの炭化水素系燃料のガスおよび水蒸気の供給を行う前に、 燃料電池力ソードへの酸素供給と、燃料電池アノードへの水素供給とを行って、燃料 電池にて電気化学反応による電圧を発生させる工程、 (2) a) Before supplying the hydrocarbon-based fuel gas and water vapor to the line, oxygen is supplied to the fuel cell power sword and hydrogen is supplied to the fuel cell anode. A step of generating a voltage by an electrochemical reaction in a battery;
b)工程 aの後、前記酸素供給および水素供給を継続したまま、燃料電池の電圧を 監視しつつ、前記ラインに水蒸気を供給する工程、および、 c)工程 bの後、燃料電池の電圧の低下を検知してから、該ラインに炭化水素系燃 料のガスを供給する工程 b) after step a, supplying water vapor to the line while monitoring the voltage of the fuel cell while continuing the oxygen supply and hydrogen supply; and c) After step b, after detecting a drop in the voltage of the fuel cell, supplying hydrocarbon fuel gas to the line
を有する(1)記載の方法。  (1) The method of description.
[0015] (3)前記工程 bにおいて、水蒸気の供給流量を、起動運転完了時における水蒸気 の所望流量とし、 (3) In the step b, the supply flow rate of water vapor is set to a desired flow rate of water vapor at the completion of the start-up operation,
前記工程 cにおいて、炭化水素系燃料のガスの供給流量を、起動運転完了時にお ける炭化水素系燃料のガスの所望流量とする(2)記載の方法。  The method according to (2), wherein in step c, the supply flow rate of the hydrocarbon-based fuel gas is set to a desired flow rate of the hydrocarbon-based fuel gas when the start-up operation is completed.
[0016] (4)前記工程 bにおいて、水蒸気の供給流量を、起動運転完了時における水蒸気 の所望流量の一部とし、 (4) In the step b, the supply flow rate of water vapor is a part of the desired flow rate of water vapor when the start-up operation is completed,
前記工程 cにおいて、炭化水素系燃料のガスの供給流量を、起動運転完了時にお ける炭化水素系燃料のガスの所望流量の一部とし、  In step c, the supply flow rate of the hydrocarbon fuel gas is a part of the desired flow rate of the hydrocarbon fuel gas at the completion of the start-up operation,
工程 cの後に、  After step c
d)前記酸素供給および水素供給を継続したまま、燃料電池の電圧を監視しつつ、 前記ラインに供給する水蒸気の流量を増加させる工程、および、  d) increasing the flow rate of water vapor supplied to the line while monitoring the voltage of the fuel cell while continuing the oxygen supply and hydrogen supply; and
e)工程 dの後、燃料電池の電圧の低下を検知してから、該ラインに供給する炭化水 素系燃料のガスの流量を増加させる工程  e) After step d, after detecting a decrease in the voltage of the fuel cell, increasing the flow rate of hydrocarbon fuel gas supplied to the line
をさらに有する(2)記載の方法。  The method according to (2), further comprising:
[0017] (5)前記工程 dおよび eの組み合わせを複数回繰り返して、前記ラインに供給する 水蒸気の流量を、起動運転完了時における水蒸気の所望流量にし、かつ前記ライン に供給する炭化水素系燃料のガスの流量を、起動運転完了時における炭化水素系 燃料のガスの所望流量にする(4)記載の方法。 [0017] (5) A hydrocarbon-based fuel supplied by repeating the combination of steps d and e a plurality of times so that the flow rate of water vapor supplied to the line is the desired flow rate of water vapor at the completion of start-up operation and supplied to the line (4) The method according to (4), wherein the flow rate of the gas is set to a desired flow rate of the hydrocarbon-based fuel gas at the completion of the startup operation.
[0018] (6)前記ラインに水蒸気を供給する操作を行う時点から、前記ラインに炭化水素系 燃料のガスを供給する操作を行う時点までの間に、所定の時間間隔をおく燃料電池 システムの起動方法であって、 [0018] (6) A fuel cell system having a predetermined time interval between a time point at which an operation for supplying water vapor to the line and a time point at which an operation for supplying a hydrocarbon-based fuel gas to the line is performed. A startup method,
該所定の時間間隔は、予備的に燃料電池システムを起動する予備起動運転によつ て予め設定し、  The predetermined time interval is set in advance by a preliminary start operation for starting the fuel cell system in advance,
該予備起動運転の方法が、  The method of the preliminary start-up operation is
i)前記ラインへの炭化水素系燃料のガスおよび水蒸気の供給を行う前に、 燃料電池力ソードへの酸素供給と、燃料電池アノードへの水素供給とを行って、燃料 電池にて電気化学反応による電圧を発生させる工程、 i) Before supplying hydrocarbon fuel gas and water vapor to the line, Performing oxygen supply to the fuel cell power sword and hydrogen supply to the fuel cell anode to generate a voltage due to an electrochemical reaction in the fuel cell;
ii)工程 iの後、前記酸素供給および水素供給を継続したまま、燃料電池の電圧を 監視しつつ、前記ラインに水蒸気を供給する操作を行う工程、および、  ii) after step i, performing the operation of supplying water vapor to the line while monitoring the voltage of the fuel cell while continuing the oxygen supply and hydrogen supply; and
iii)工程 iiの後、燃料電池の電圧の低下を検知する工程  iii) After step ii, a step of detecting a decrease in the voltage of the fuel cell
を有し、  Have
工程 iiにお 、て水蒸気を供給する操作を行った時点から、工程 iiiにお 、て電圧の低 下を検知した時点までの時間を計測し、この計測した時間を該所定の時間間隔とす る  In Step ii, the time from when the operation of supplying water vapor is performed until the time when the voltage drop is detected in Step iii is measured, and this measured time is defined as the predetermined time interval. Ru
(1)記載の燃料電池システムの起動方法。  (1) A method for starting the fuel cell system according to (1).
発明の効果  The invention's effect
[0019] 本発明により、炭化水素系燃料を用いる燃料電池システムにおいて、炭化水素系 燃料力 炭素が析出することを抑制することのできる起動方法が提供される。  [0019] According to the present invention, in a fuel cell system using a hydrocarbon-based fuel, a start-up method capable of suppressing the deposition of hydrocarbon-based fuel power carbon is provided.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]本発明を実施可能な燃料電池システムの一形態の概略を示すフロー図である  FIG. 1 is a flowchart showing an outline of an embodiment of a fuel cell system capable of implementing the present invention.
[図 2]本発明の燃料電池システムの起動方法の一形態を説明するためのフローチヤ ートである。 FIG. 2 is a flow chart for explaining an embodiment of a starting method of the fuel cell system of the present invention.
[図 3]本発明を実施可能な燃料電池システムの別の一形態につき、ポンプまわりを部 分的に示すフロー図である。  FIG. 3 is a flowchart partially showing the periphery of a pump in another embodiment of a fuel cell system in which the present invention can be implemented.
符号の説明  Explanation of symbols
[0021] 1 ポンプ (灯油用) [0021] 1 pump (for kerosene)
2 気化器 (灯油用)  2 Vaporizer (for kerosene)
3 ポンプ (水用)  3 Pump (for water)
4 気化器 (水用)  4 Vaporizer (for water)
5 混合器  5 Mixer
6、 7、 8 ノ レブ  6, 7, 8
9、 11 三方バルブ 10 改質器 9, 11 Three-way valve 10 Reformer
20 燃料電池  20 Fuel cell
101 灯油ガスと水蒸気の混合ガスが流れるライン  101 Line through which a mixed gas of kerosene gas and water vapor flows
102、 103 ポンプまわりの循環ライン  102, 103 Circulation line around the pump
A 燃料電池アノード  A Fuel cell anode
C 燃料電池力ソード  C Fuel cell power sword
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 本発明は、炭化水素系燃料のガスと水蒸気との混合ガスを流すためのライン (以下 、燃料'水蒸気混合ガスラインという。)と、このラインの下流に接続された燃料電池と を有する燃料電池システムを起動する燃料電池システムの起動方法に関するもので ある。より詳しくは、燃料電池のアノードがこのラインの下流に接続される。このライン の下流に直接燃料電池が接続される必要はない。炭化水素系燃料を改質器にて改 質する場合は、燃料電池は、改質器を介して燃料水蒸気混合ガスラインの下流に接 続される。この場合、燃料'水蒸気混合ガスラインに改質器が接続され、改質器の下 流には改質ガスを流すための改質ガスラインが接続され、改質ガスラインの下流に燃 料電池が接続される。さら〖こは、改質器と燃料電池アノードとの間に、シフト反応器( CO+H 0→H +CO )や一酸化炭素選択酸化反応器(2CO + 0→2CO )を設け[0022] The present invention includes a line for flowing a mixed gas of a hydrocarbon-based fuel gas and water vapor (hereinafter referred to as a fuel's water vapor mixed gas line) and a fuel cell connected downstream of this line. The present invention relates to a fuel cell system activation method for activating a fuel cell system having the fuel cell system. More specifically, the fuel cell anode is connected downstream of this line. There is no need to connect a fuel cell directly downstream of this line. When hydrocarbon fuel is modified by a reformer, the fuel cell is connected downstream of the fuel vapor mixed gas line via the reformer. In this case, the reformer is connected to the fuel / water vapor mixed gas line, the reformed gas line for flowing the reformed gas is connected to the downstream of the reformer, and the fuel cell is downstream of the reformed gas line. Is connected. Sarakuko installed a shift reactor (CO + H0 → H + CO) and a carbon monoxide selective oxidation reactor (2CO + 0 → 2CO) between the reformer and the fuel cell anode.
2 2 2 2 2 てもよい。あるいは、燃料電池内部で炭化水素系燃料を改質可能である場合、燃料- 水蒸気混合ガスラインの下流に直接燃料電池アノードを接続することができる。 2 2 2 2 2 May be. Alternatively, when the hydrocarbon fuel can be reformed inside the fuel cell, the fuel cell anode can be directly connected downstream of the fuel-water vapor mixed gas line.
[0023] 本発明では、燃料 ·水蒸気混合ガスラインに炭化水素系燃料のガスを供給する前 に、このラインに水蒸気を供給する。これによつて起動に際して炭化水素系燃料から 炭素が析出することをより確実に防止することができる。  In the present invention, before supplying the hydrocarbon-based fuel gas to the fuel / steam mixed gas line, steam is supplied to this line. As a result, it is possible to more reliably prevent carbon from being deposited from the hydrocarbon-based fuel during startup.
[0024] このとき、炭化水素系燃料のガスと水蒸気との混合ガスにおけるスチーム Zカーボ ン比(SZC)が 3以上となる水蒸気を供給することが好ましい。 SZCは、この混合ガ ス中に含まれる炭化水素燃料の炭素 (C)原子のモル数に対する水蒸気 (H O)分子  [0024] At this time, it is preferable to supply steam having a steam Z carbon ratio (SZC) of 3 or more in a mixed gas of hydrocarbon-based fuel gas and steam. SZC is a water vapor (H 2 O) molecule relative to the number of moles of carbon (C) atoms in the hydrocarbon fuel contained in this mixed gas.
2 のモル数の比である。  2 is the ratio of moles.
[0025] 以下図面を用いて本発明について説明する力 本発明はこれによって限定される ものではない。 [0026] 図 1に本発明の起動方法を実施可能な燃料電池システムの一形態につき概略構 成を示す。ここでは炭化水素系燃料として灯油を用い、また燃料電池が改質器を介 して燃料 ·水蒸気混合ガスラインの下流に接続されて ヽる。 [0025] The following describes the present invention with reference to the drawings. The present invention is not limited thereto. FIG. 1 shows a schematic configuration of one form of a fuel cell system that can implement the starting method of the present invention. Here, kerosene is used as the hydrocarbon fuel, and the fuel cell is connected downstream of the fuel / steam mixed gas line via a reformer.
[0027] 〔昇温〕  [0027] [Temperature rise]
まず、加熱が必要な機器、ここでは灯油気化器 2、水気化器 4、改質器 10、燃料電 池 20の加熱を行う。適宜、配管の加熱も行う。この加熱は、燃料電池システムの公知 の起動運転において採用される方法によって適宜行うことができる。カロ熱のための熱 源としては、発電に利用するために用意される炭化水素系燃料などの可燃物をバー ナ等の燃焼手段で燃焼させた燃焼熱を用いることができる。あるいは、電気ヒータに よるカロ熱を行うことちできる。  First, the equipment that needs to be heated, in this case, kerosene vaporizer 2, water vaporizer 4, reformer 10, and fuel cell 20 is heated. If necessary, the piping is also heated. This heating can be appropriately performed by a method employed in a known start-up operation of the fuel cell system. As a heat source for the calorie heat, combustion heat obtained by burning a combustible material such as a hydrocarbon fuel prepared for use in power generation by a combustion means such as a burner can be used. Alternatively, it can be heated by an electric heater.
[0028] 〔還元性ガス供給〕  [0028] [Reducing gas supply]
燃料電池のアノード電極ゃ改質器に収容される改質触媒の酸化を防止するために 、還元性ガスを改質器および燃料電池のアノードに供給することができる。アノード電 極ゃ改質触媒が、酸ィ匕するおそれがある温度範囲になるまでにバルブ 8を開き、還 元性ガスの供給を開始すればよ 、。  In order to prevent oxidation of the reforming catalyst accommodated in the anode electrode reformer of the fuel cell, a reducing gas can be supplied to the reformer and the anode of the fuel cell. Open the valve 8 and start supplying the reducing gas until the anode electrode reaches the temperature range where there is a risk of acidification.
[0029] 図 1では、還元性ガス (水素)を、混合器 5を経て改質器 10に供給している力 必ず しもその必要はない。還元性ガスは、改質器 (改質触媒層)と燃料電池アノードのそ れぞれに別個に供給することもできるが、改質器が存在する場合、改質器 (改質触媒 層)を経て燃料電池アノードに供給することができる。  In FIG. 1, the force for supplying the reducing gas (hydrogen) to the reformer 10 via the mixer 5 is not necessarily required. The reducing gas can be supplied separately to the reformer (reforming catalyst layer) and the fuel cell anode, respectively, but when a reformer is present, the reformer (reforming catalyst layer). Then, the fuel cell anode can be supplied.
[0030] 還元性ガスとして水素を用いることができる。水素は純水素でもよいが、還元性を損 なわない他のガス、例えば窒素を伴っていてもよい。還元性ガスの供給源としては、 ボンべを用いることができる。  [0030] Hydrogen can be used as the reducing gas. Hydrogen may be pure hydrogen, but may be accompanied by another gas that does not impair the reducibility, such as nitrogen. A cylinder can be used as the source of the reducing gas.
[0031] 〔炭化水素系燃料 '水蒸気供給〕  [0031] [Hydrocarbon fuel 'steam supply]
改質器が改質可能な状態になったら、灯油を気化したガス (灯油ガス)を改質器に 供給することができる。例えば、灯油を水蒸気改質する場合、 550°C〜750°Cで反応 が進行するので、改質器に備わる改質触媒層がこの温度範囲になった後、改質触媒 層に灯油ガスを供給することができる。このために灯油を昇圧手段であるポンプ 1に て昇圧し、気化器 2で気化する。ポンプや気化器は必要に応じて設ければよい。例え ば、所望の圧力を持ったメタンガスを炭化水素系燃料として利用する場合は、昇圧手 段も気化器も不要である。 When the reformer is ready for reforming, gas obtained by vaporizing kerosene (kerosene gas) can be supplied to the reformer. For example, when kerosene is steam reformed, the reaction proceeds at 550 ° C to 750 ° C, so after the reforming catalyst layer in the reformer reaches this temperature range, kerosene gas is added to the reforming catalyst layer. Can be supplied. For this purpose, kerosene is boosted by a pump 1 as a boosting means and vaporized by a vaporizer 2. A pump and a vaporizer may be provided as necessary. example For example, when methane gas having a desired pressure is used as a hydrocarbon-based fuel, neither a booster nor a vaporizer is required.
[0032] このとき、炭素析出抑制のために水蒸気を灯油ガスに混合するが、本発明では、灯 油ガスと水蒸気の混合ガスが流れるラインに、灯油ガスを供給する前に水蒸気を供 給する。これによつて、炭素析出をより確実に抑制することが可能となる。  [0032] At this time, water vapor is mixed with kerosene gas in order to suppress carbon deposition. In the present invention, water vapor is supplied to the line through which the mixed gas of kerosene gas and water vapor flows before the kerosene gas is supplied. . This makes it possible to more reliably suppress carbon deposition.
[0033] 具体的には、バルブ 7を開き、水をポンプ 3で昇圧し、気化器 4で気化する。得られ た水蒸気を混合器 5から、灯油ガスと水蒸気との混合ガスが流れるライン (燃料'水蒸 気混合ガスライン) 101に供給する。ノ レブ 7は昇温前に開いておいてもよい。また、 バルブ 7は設置しなくてもよぐこの場合にはバルブ 7を開く操作は発生しない。図 3 に示すように、ポンプ 3の上流と、ポンプ 3と気化器 4の間とを繋ぐ循環ライン 103があ る場合には (この場合、ポンプ 3と気化器 4の間には三方バルブ 11が設けられる)、水 蒸気を供給開始するまでに予め三方バルブ 11をポンプ 3上流側に切替え、水をボン プ 3で昇圧して、水を循環ラインに循環させておき、三方バルブ 11を気化器側 4に切 替えて水を気化器 4で気化する。得られた水蒸気を混合器 5から、灯油ガスと水蒸気 との混合ガスが流れるライン (燃料'水蒸気混合ガスライン) 101に供給する。  [0033] Specifically, the valve 7 is opened, the pressure of the water is increased by the pump 3, and the vaporizer 4 vaporizes the water. The obtained water vapor is supplied from the mixer 5 to a line (fuel / water vapor mixed gas line) 101 through which a mixed gas of kerosene gas and water vapor flows. Noreb 7 may be opened before the temperature rises. In addition, valve 7 need not be installed. In this case, opening of valve 7 does not occur. As shown in Fig. 3, when there is a circulation line 103 connecting the upstream of the pump 3 and between the pump 3 and the vaporizer 4 (in this case, a three-way valve 11 between the pump 3 and the vaporizer 4). The three-way valve 11 is switched to the upstream side of the pump 3 in advance before the supply of water vapor is started, the pressure of the water is increased by the pump 3, and the water is circulated through the circulation line to vaporize the three-way valve 11. Switch to vessel side 4 and vaporize water with vaporizer 4. The obtained water vapor is supplied from the mixer 5 to a line (fuel “water vapor mixed gas line) 101 through which a mixed gas of kerosene gas and water vapor flows.
[0034] この後に、バルブ 6を開き、灯油をポンプ 1で昇圧し気ィ匕器 2から得られる灯油ガス を混合器に導き、水蒸気と混合してライン 101に流す。バルブ 6は昇温前に開いてお いても良い。また、バルブ 6は設置しなくても良ぐこの場合にはバルブ 6を開く操作 は発生しない。図 3に示すように、ポンプ 1の上流と、ポンプ 1と気化器 2の間とを繋ぐ 循環ライン 102がある場合には (この場合、ポンプ 1と気化器 2の間には三方ノ レブ 9 が設けられる)、灯油を供給開始するまでに予め三方バルブ 9をポンプ 1上流側に切 替え、灯油をポンプ 1で昇圧して、灯油を循環ラインに循環させておき、三方バルブ 9 を気化器 2側に切替えて灯油を気化器 2で気化し、得られる灯油ガスを混合器に導 き、水蒸気と混合してライン 101に流す。  [0034] After that, the valve 6 is opened, the kerosene pressure is increased by the pump 1, the kerosene gas obtained from the air heater 2 is guided to the mixer, and mixed with the water vapor to flow to the line 101. Valve 6 may be opened before the temperature rises. In this case, it is not necessary to install the valve 6. In this case, the operation to open the valve 6 does not occur. As shown in Fig. 3, when there is a circulation line 102 connecting the upstream of pump 1 and between pump 1 and vaporizer 2 (in this case, there is a three-way solenoid 9 between pump 1 and vaporizer 2). Before the start of kerosene supply, switch the three-way valve 9 to the upstream side of the pump 1, boost the kerosene with the pump 1, and circulate the kerosene through the circulation line, and set the three-way valve 9 to the vaporizer. Switch to 2 side, vaporize kerosene with vaporizer 2, introduce the resulting kerosene gas to the mixer, mix with water vapor, and flow to line 101.
[0035] 次に、燃料 ·水蒸気混合ガスラインへの水蒸気供給と灯油ガス供給のタイミングに ついて説明する。  [0035] Next, the timing of water vapor supply and kerosene gas supply to the fuel / water vapor mixed gas line will be described.
[0036] 流路の容積や供給ガスの流量に基づ!/ヽて、灯油供給の操作端を操作 (ポンプを起 動すること、バルブを開くことなど)して力も灯油ガスが燃料 '水蒸気混合ガスライン 1 01に到達するまでの時間を推定することができる。水供給についても同様である。こ れら推定した時間にもとづいて、水蒸気供給の操作端を操作した後、時間間隔をお いて、灯油供給の操作端を操作することにより、水蒸気がライン 101に到達した後に 灯油ガスがライン 101に到達するようにシステムを制御することができる。ただし、起 動開始前の流路内の液体充填状態や、気泡などの不確定要因があるため、上記時 間を正確に推定することは容易とは限らないため、安全のため、上記時間間隔は推 定した時間より長く設定することが好ま 、。 [0036] Based on the volume of the flow path and the flow rate of the supply gas, operate the operating end of the kerosene supply (starting the pump, opening the valve, etc.) Mixed gas line 1 The time to reach 01 can be estimated. The same applies to the water supply. Based on these estimated times, after operating the operating end of the steam supply, operating the operating end of the kerosene supply for a time interval, the steam reaches the line 101 after the steam reaches the line 101. The system can be controlled to reach However, because there are uncertain factors such as the liquid filling state in the flow path before starting and bubbles, it is not always easy to estimate the above time accurately. It is preferable to set longer than the estimated time.
[0037] 一方、燃料電池電圧は、水素や酸素など、電気化学的に反応する化学種の分圧 に敏感に反応する。水素分圧が低いほど、電圧は低くなる。例えば、アノードに水素 (水素を含む混合ガスでもよい)を供給しておき、ここに水蒸気を添加した場合、水蒸 気の添カ卩によって水素分圧が下がり、これに対応して燃料電池の電圧が即座に下が る。従って、この電圧低下を検知することによって、アノードに水蒸気が到達したこと を知ることが可能である。アノードまで水蒸気が達していれば、その上流にある燃料- 水蒸気混合ガスライン 101に水蒸気が流れているので、ライン 101に灯油ガスを供給 してよい。 [0037] On the other hand, the fuel cell voltage reacts sensitively to the partial pressure of electrochemically reactive chemical species such as hydrogen and oxygen. The lower the hydrogen partial pressure, the lower the voltage. For example, when hydrogen (a mixed gas containing hydrogen) is supplied to the anode and water vapor is added thereto, the hydrogen partial pressure is lowered by the addition of water vapor, and the fuel cell The voltage drops immediately. Therefore, by detecting this voltage drop, it is possible to know that water vapor has reached the anode. If the water vapor reaches the anode, the water vapor flows into the fuel-water vapor mixed gas line 101 located upstream of the anode, so that the kerosene gas may be supplied to the line 101.
[0038] このような原理を利用して、燃料電池システムを起動する際、次の工程 a〜cを行うこ とが、炭素析出をより確実に抑制する観点から好まし 、。  [0038] When starting the fuel cell system using such a principle, it is preferable to perform the following steps a to c from the viewpoint of more reliably suppressing carbon deposition.
[0039] 〔工程 a〕 [Step a]
燃料'水蒸気混合ガスラインへの炭化水素系燃料のガスおよび水蒸気の供給を行 う前に、燃料電池力ソードへの酸素供給と、燃料電池アノードへの水素供給とを行つ て、燃料電池にて電気化学反応による電圧を発生させる。  Before supplying the hydrocarbon fuel gas and water vapor to the fuel / water vapor mixed gas line, supply oxygen to the fuel cell power sword and hydrogen to the fuel cell anode to supply the fuel cell. To generate voltage by electrochemical reaction.
[0040] アノードに水素を供給するために、純水素を用いてもよいがその限りではなぐ水素 を含むガスを適宜用いることができる。例えば、水素と窒素等の不活性ガスの混合ガ スを用いることができる。  [0040] In order to supply hydrogen to the anode, pure hydrogen may be used, but as long as it is not limited to this, a gas containing hydrogen can be appropriately used. For example, a mixed gas of inert gas such as hydrogen and nitrogen can be used.
[0041] アノードへの水素供給は、炭化水素系燃料を燃料'水蒸気混合ガスラインに供給し ようとする前に適宜のタイミングで行うことができる。上述のように、アノード電極等の 酸ィ匕防止のための還元性ガスとして水素(水素を含む混合ガスでもよ ヽ)をアノード に供給しておけば、この供給を続けることで、工程 aにおけるアノードへの水素供給を 行うことができる。 [0041] Hydrogen supply to the anode can be performed at an appropriate timing before the hydrocarbon fuel is supplied to the fuel / steam mixed gas line. As described above, if hydrogen (or a mixed gas containing hydrogen) is supplied to the anode as a reducing gas for preventing acidification of the anode electrode or the like, by continuing this supply, in step a Hydrogen supply to the anode It can be carried out.
[0042] 力ソードに酸素を供給するために、純酸素を用いてもよいがその限りではなぐ酸素 を含むガスを適宜用いることができる。例えば空気を力ソードに供給すればょ 、。  [0042] In order to supply oxygen to the force sword, pure oxygen may be used, but a gas containing oxygen that is not limited thereto may be used as appropriate. For example, if you supply air to a power sword,
[0043] 力ソードへの酸素供給は、炭化水素系燃料を燃料'水蒸気混合ガスラインに供給し ようとする前に適宜のタイミングで行えばよ 、。  [0043] The oxygen supply to the power sword may be performed at an appropriate timing before the hydrocarbon fuel is supplied to the fuel / steam mixed gas line.
[0044] 燃料電池が電気化学反応による電圧を発生可能な温度になり、アノードに水素が 供給され、力ソードに酸素が供給されれば、燃料電池において電圧が発生する。  [0044] When the fuel cell reaches a temperature at which a voltage can be generated by an electrochemical reaction, hydrogen is supplied to the anode and oxygen is supplied to the power sword, a voltage is generated in the fuel cell.
[0045] なお、この時点では燃料電池力も電流は取り出さな 、ことが好ま U、。電流を取り出 さない限り、アノードへの水素供給量は僅かでもよいからである。このときの力ソード への酸素供給も僅かでよい。このとき、上記電圧は開放電圧である。  [0045] It should be noted that at this time, it is preferable that the current of the fuel cell power is not extracted. This is because the amount of hydrogen supplied to the anode may be small as long as no current is taken out. At this time, oxygen supply to the power sword is also small. At this time, the voltage is an open circuit voltage.
[0046] 〔工程 b〕  [Step b]
工程 aの後、前記酸素供給および水素供給を継続したまま、燃料電池の電圧を監 視しつつ、燃料'水蒸気混合ガスラインに水蒸気を供給する。  After step a, steam is supplied to the fuel / steam mixed gas line while monitoring the voltage of the fuel cell while continuing the oxygen supply and hydrogen supply.
[0047] 酸素供給および水素供給にぉ 、ては、酸素濃度および水素濃度は 、ずれも極力 一定とすることが好ましい。電圧変動要因を極力排除し、アノードへの水蒸気到達に よる電圧低下を観察しやすくするためである。例えば、水素 (水素混合ガスでもよい) の供給源としてボンべを用い、酸素供給源として大気を用いることができる。燃料電 池は昇温途中であってよい。温度によっても電圧は変化するが、ガス組成の変化に よる電圧変化の大きさおよびスピードは、昇温による電圧変化に比べて大きく速いた めである。 [0047] For the oxygen supply and the hydrogen supply, it is preferable to keep the oxygen concentration and the hydrogen concentration as constant as possible. This is to eliminate the voltage fluctuation factor as much as possible and to make it easier to observe the voltage drop due to the arrival of water vapor at the anode. For example, a cylinder can be used as a supply source of hydrogen (or a mixed hydrogen gas), and air can be used as an oxygen supply source. The fuel cell may be in the process of being heated. This is because the voltage changes with temperature, but the magnitude and speed of the voltage change due to the change in gas composition is much faster than the voltage change due to temperature rise.
[0048] 燃料電池のセル電圧は以下のネルンストの式を用いて見積もることができる。 Ε、 Δ G、 F、 R、 Tはそれぞれセル電圧、ギブス自由エネルギー、ファラデー定数、気体定 数、温度である。 ρ 、ρ 、ρ  [0048] The cell voltage of the fuel cell can be estimated using the following Nernst equation. Ε, ΔG, F, R, and T are cell voltage, Gibbs free energy, Faraday constant, gas constant, and temperature, respectively. ρ, ρ, ρ
Η2 02 Η20はそれぞれ反応界面での水素分圧、酸素分圧、水蒸 気分圧である。  Η2 02 Η20 are the hydrogen partial pressure, oxygen partial pressure, and water vapor partial pressure at the reaction interface, respectively.
[0049] [数 1]
Figure imgf000011_0001
アノードへの水蒸気到達による燃料電池のセル電圧低下は、水蒸気の添カ卩による 分圧の変化から、以下の式を用いて見積もることができる。—Δ Εはセル電圧低下で ある。「 '」は水蒸気到達後を表す。
[0049] [Equation 1]
Figure imgf000011_0001
The cell voltage drop of the fuel cell due to the arrival of water vapor at the anode can be estimated from the change in partial pressure due to the addition of water vapor using the following equation. —Δ で is the cell voltage drop. “” Represents after the arrival of water vapor.
[数 2] [Equation 2]
f H iト PHI0F f H i to PH I0 , F
\ 2F 2 PH I 2F AAV 特に、水蒸気到達前後で温度、酸素分圧が変化しない場合、燃料電池のセル電 圧低下は以下の式を用いて見積もることができる。 n枚のセルを直列に接続したスタ ックの場合、電圧低下は一 η Δ Εとなる。 \ 2F 2 PH I 2F AAV Especially when the temperature and oxygen partial pressure do not change before and after the arrival of water vapor, the cell voltage drop of the fuel cell can be estimated using the following formula. In a stack with n cells connected in series, the voltage drop is 1 η Δ Ε.
[数 3] [Equation 3]
 —
Figure imgf000012_0001
水蒸気を供給することにより、 p' H20 Zp H20は 1より大きくなるため、 RTZ2F X ln(p H2
Figure imgf000012_0001
By supplying water vapor, p 'H20 Zp H20 becomes larger than 1, so RTZ2F X ln (p H2
ZP' ) x nが電圧計で十分検知できる大きさとなるよう流量を調節するのが望ましいIt is desirable to adjust the flow rate so that ZP ') x n is large enough to be detected by a voltmeter.
H2 H2
。たとえば、 100枚のセルを直列に接続したスタックを昇温する過程で、工程 aにより 水素 4NLM (NLMは、 0°C、 0. lOlMPaに換算したリットル Z分を表す)をアノード へ、空気 50NLMを力ソードへ供給開始する。この際、アノード電極が酸化するおそ れのある温度範囲になるまでに、少なくともアノードへ水素を供給開始する。工程 bで アノードへ水蒸気を 6NLM供給し、水蒸気供給前後でスタック温度が 800°Cと変わ らないとすれば、少なくとも 3. 2V電圧が低下し、一般の電圧計で電圧低下を検知で きる。より詳細に電圧低下を求める場合は、アノード反応界面での水素'水蒸気分圧 と電圧の関係、あるいは供給する水素 Z水蒸気混合比と電圧の関係を、予備実験あ るいはシミュレーションにより求めればよい。  . For example, in the process of increasing the temperature of a stack of 100 cells connected in series, hydrogen 4NLM (NLM is 0 ° C, 0. lOlMPa converted to liter Z) converted to the anode and air 50NLM Begins to be supplied to the power sword. At this time, supply of hydrogen to at least the anode is started until the anode electrode reaches a temperature range in which oxidation is likely to occur. If 6NLM of steam is supplied to the anode in step b and the stack temperature does not change to 800 ° C before and after steam supply, the voltage drops by at least 3.2V, and a voltage drop can be detected with a general voltmeter. In order to obtain the voltage drop in more detail, the relationship between the hydrogen's water vapor partial pressure and the voltage at the anode reaction interface or the relationship between the supplied hydrogen Z water vapor mixing ratio and the voltage may be obtained by preliminary experiments or simulations.
〔工程 c〕  [Process c]
工程 bの後、燃料電池電圧の低下を検知してから、燃料'水蒸気混合ガスラインに 炭化水素系燃料のガスを供給する。 [0053] 電圧低下は、アノードに水蒸気が到達したことを意味する。よって、燃料'水蒸気混 合ガスラインに炭化水素系燃料のガスを供給してよ 、。 After step b, after the fuel cell voltage drop is detected, the hydrocarbon fuel gas is supplied to the fuel / steam mixed gas line. [0053] A voltage drop means that water vapor has reached the anode. Therefore, supply hydrocarbon fuel gas to the fuel's steam-mixed gas line.
[0054] 図 2に、以上の工程 a〜cをフローチャートとして整理する。工程 aで燃料電池に水 素と酸素を供給して電圧を発生させ、工程 bにて燃料 ·水蒸気混合ガスラインに水蒸 気を供給する。そして電圧を監視し、工程 cにて、電圧低下を検知したらこのラインに 炭化水素系燃料のガスの供給を開始する。  FIG. 2 arranges the above steps a to c as a flowchart. In step a, hydrogen and oxygen are supplied to the fuel cell to generate voltage, and in step b, water vapor is supplied to the fuel / steam mixed gas line. The voltage is monitored, and if a voltage drop is detected in step c, supply of hydrocarbon fuel gas to this line is started.
[0055] 〔水蒸気および炭化水素系燃料の供給量〕  [Supply amount of water vapor and hydrocarbon fuel]
工程 bにおいて、水蒸気の供給量を、起動運転完了時における水蒸気の所望流量 とし、工程 cにおいて、炭化水素系燃料のガスの供給量を、起動運転完了時における 炭化水素系燃料のガスの所望流量とすることができる。この方法は、水蒸気および炭 化水素系燃料のガスの所望量をそれぞれ一度で供給することができ、簡便な方法で ある。  In step b, the amount of water vapor supplied is the desired flow rate of water vapor at the completion of startup operation, and in step c, the amount of hydrocarbon fuel gas supplied is the desired flow rate of hydrocarbon fuel gas at the time of completion of startup operation. It can be. This method is a simple method that can supply desired amounts of water vapor and hydrocarbon fuel gas at a time.
[0056] あるいは、工程 bにおいて、水蒸気の流量を、起動運転完了時における水蒸気の 所望流量の一部とし、工程 cにおいて、炭化水素系燃料のガスの流量を、起動運転 完了時における炭化水素系燃料のガスの所望流量の一部としておき、さらに、工程 c の後に、  [0056] Alternatively, in step b, the flow rate of water vapor is a part of the desired flow rate of water vapor at the completion of start-up operation, and in step c, the flow rate of hydrocarbon-based fuel gas is changed to the hydrocarbon-based flow rate at the time of completion of start-up operation. As part of the desired flow rate of the fuel gas, and after step c,
d)前記酸素供給および水素供給を継続したまま、燃料電池の電圧を監視しつつ、燃 料'水蒸気混合ガスラインに供給する水蒸気の流量を増加させる工程、および、 e)工程 dの後、燃料電池電圧の低下を検知してから、燃料 ·水蒸気混合ガスラインに 供給する炭化水素系燃料のガスの流量を増加させる工程  d) a step of increasing the flow rate of water vapor supplied to the fuel 'water vapor mixed gas line while monitoring the voltage of the fuel cell while continuing the oxygen supply and hydrogen supply; and e) the fuel after step d The process of increasing the flow rate of hydrocarbon fuel gas supplied to the fuel / steam mixed gas line after detecting a drop in battery voltage
を行ってもよい。  May be performed.
[0057] この方法によって、水蒸気と炭化水素系燃料の供給量を段階的に増やすことがで きる。  [0057] With this method, the supply amount of water vapor and hydrocarbon fuel can be increased stepwise.
[0058] 例えば、起動運転完了時における水蒸気の所望流量を Fと表し、起動運転完了  [0058] For example, when the start-up operation is completed, the desired flow rate of water vapor is represented as F, and the start-up operation is completed.
St  St
時における炭化水素系燃料のガスの所望流量を F と表したとき、工程 bにおいて燃  When the desired flow rate of hydrocarbon fuel gas at the time is expressed as F, the fuel in step b
HC  HC
料'水蒸気混合ガスラインに供給する水蒸気流量を (F Z2)とし、工程 cにおいてこ  The flow rate of steam supplied to the steam mixture gas line is (F Z2) and
St  St
のラインに供給する炭化水素系燃料のガスの流量を (F /2)とし、工程 dにお 、て  The flow rate of the hydrocarbon-based fuel gas supplied to this line is (F / 2), and
HC  HC
このラインに供給する水蒸気流量を Fまで増加させ、工程 eにおいてこのラインに供 給する炭化水素系燃料のガスの流量を F まで増加させることができる。 Increase the flow rate of water vapor supplied to this line to F and use this line in step e. The flow rate of hydrocarbon fuel to be supplied can be increased to F.
HC  HC
[0059] また、工程 dおよび eの組み合わせを複数回繰り返すことによって、水蒸気と炭化水 素系燃料の供給流量を 3段階以上で増やし、最終的にそれぞれ所望流量とすること ができる。例えば 3段階にする場合には、工程 bおよび cにおいてそれぞれ (F /3)  [0059] Further, by repeating the combination of steps d and e a plurality of times, the supply flow rates of water vapor and hydrocarbon fuel can be increased in three or more stages, and finally the desired flow rates can be obtained. For example, in the case of 3 steps, (F / 3) in steps b and c respectively
St の水蒸気と (F Z3)の炭化水素系燃料のガスを供給し、次いで、一回目の工程 dお  Supply the steam of St and gas of hydrocarbon fuel of (F Z3), then the first step d
HC  HC
よび eにおいてそれぞれ(2F Z3)の水蒸気と(2F Z3)の炭化水素系燃料のガス  And (2F Z3) water vapor and (2F Z3) hydrocarbon fuel gas in and
St HC  St HC
を供給し、さらに二回目の工程 dおよび eにおいてそれぞれ (F )の水蒸気と (F )の  And in the second step d and e, (F) water vapor and (F)
St HC 炭化水素系燃料のガスを供給することができる。  St HC hydrocarbon fuel gas can be supplied.
[0060] このように、水蒸気の存在を確認しつつ段階的に炭化水素系燃料のガスを供給す ることにより、よりスムーズな起動運転が可能となる。  [0060] In this way, by supplying the hydrocarbon-based fuel gas step by step while confirming the presence of water vapor, a smoother start-up operation becomes possible.
[0061] 燃料'水蒸気混合ガスラインへの炭化水素系燃料のガスの供給は、ポンプゃブロワ もしくはコンプレッサなどの昇圧手段を起動する操作やバルブを開く操作などによつ て適宜行うことができる。炭化水素系燃料のガスの流量増加は、昇圧手段の回転数 を増加させる操作やバルブの開度を大きくする操作などによって適宜行うことができ る。  [0061] The supply of the hydrocarbon-based fuel gas to the fuel / steam mixed gas line can be suitably performed by an operation of starting a booster such as a pump or a blower or a compressor, or an operation of opening a valve. Increasing the flow rate of the hydrocarbon-based gas can be appropriately performed by an operation for increasing the rotation speed of the pressurizing means or an operation for increasing the opening of the valve.
[0062] 燃料 ·水蒸気混合ガスラインへの水蒸気の供給は、ポンプなどの昇圧手段を起動 する操作やバルブを開く操作などによって適宜行うことができる。水蒸気の流量増加 は、昇圧手段の回転数を増加させる操作やバルブの開度を大きくする操作などによ つて適宜行うことができる。  [0062] The supply of water vapor to the fuel / water vapor mixed gas line can be appropriately performed by an operation of starting a pressure increasing means such as a pump or an operation of opening a valve. The increase in the flow rate of water vapor can be appropriately performed by an operation for increasing the number of rotations of the pressure increasing means or an operation for increasing the opening of the valve.
[0063] あるいは、燃料,水蒸気混合ガスラインに水蒸気を供給する操作を行う時点から、こ のラインに炭化水素系燃料のガスを供給する操作を行う時点までの間に、予備起動 運転により予め設定された所定の時間間隔をおくことにより、このラインに炭化水素 系燃料のガスを供給する前に、このラインに水蒸気を供給することができる。  [0063] Alternatively, it is set in advance by a preliminary start-up operation from the time when the operation of supplying water vapor to the fuel / water vapor mixed gas line to the time of performing the operation of supplying gas of hydrocarbon-based fuel to this line. By setting the predetermined time interval, it is possible to supply water vapor to this line before supplying hydrocarbon fuel gas to this line.
[0064] 上記予備起動運転においては、次の工程 i〜iiiを行うことができる。  [0064] In the preliminary start-up operation, the following steps i to iii can be performed.
i)燃料 ·水蒸気混合ガスラインへの炭化水素系燃料のガスおよび水蒸気の供給を行 う jに、  i) Supplying hydrocarbon fuel gas and water vapor to the fuel / steam mixed gas line j
燃料電池力ソードへの酸素供給と、燃料電池アノードへの水素供給とを行って、燃料 電池にて電気化学反応による電圧を発生させる工程、 ii)工程 iの後、前記酸素供給および水素供給を継続したまま、燃料電池の電圧を監 視しつつ、燃料'水蒸気混合ラインに水蒸気を供給する操作を行う工程、および、 iii)工程 iiの後、燃料電池の電圧の低下を検知する工程。 Performing oxygen supply to the fuel cell power sword and hydrogen supply to the fuel cell anode to generate a voltage due to an electrochemical reaction in the fuel cell; ii) After step i, the step of supplying steam to the fuel's steam mixing line while monitoring the voltage of the fuel cell while continuing the supply of oxygen and hydrogen, and iii) of step ii And a step of detecting a decrease in the voltage of the fuel cell.
[0065] 工程 iiにおいて水蒸気を供給する操作を行った時点から、工程 iiiにおいて電圧の 低下を検知した時点までの時間を計測し、この計測した時間を前記所定の時間間隔 とすることができる。  [0065] The time from when the operation of supplying water vapor in step ii to the time when the voltage drop is detected in step iii can be measured, and this measured time can be set as the predetermined time interval.
[0066] 燃料'水蒸気混合ガスラインに水蒸気を供給する操作とは、気化器の予熱など必要 な準備を終え、同ラインに水蒸気を流すことを最終的に可能とする操作、例えばバル ブを開くことを意味する。また、燃料'水蒸気混合ガスラインに炭化水素系燃料のガス を供給する操作とは、気化器の予熱など必要な準備を終え、同ラインに炭化水素系 燃料のガスを流すことを最終的に可能とする操作、例えばバルブを開くことを意味す る。  [0066] The operation of supplying water vapor to the fuel / water vapor mixed gas line is an operation that finally completes necessary preparation such as preheating of the vaporizer and finally allows water vapor to flow through the line, such as opening a valve. Means that. In addition, the operation of supplying hydrocarbon fuel gas to the fuel / steam mixed gas line means that it is possible to flow hydrocarbon fuel gas through the line after completing the necessary preparations such as preheating the vaporizer. For example, opening a valve.
[0067] この燃料電池システム起動方法は、簡便である。  [0067] This fuel cell system activation method is simple.
[0068] 〔炭化水素系燃料のガスを供給した後〕  [After supplying hydrocarbon fuel gas]
上記のようにして、所望の量の炭化水素系燃料のガスと水蒸気との混合ガスが、燃 料-水蒸気混合ガスラインに供給された後は、必要に応じて各機器が所定の温度に なるまで昇温を続けることができる。アノードへの水素供給は、前述の電圧低下の検 知の必要が無くなった時点で停止することができる。また改質器が存在する場合には 、改質器にて改質を開始することができる。  As described above, after a mixed gas of a desired amount of hydrocarbon fuel gas and water vapor is supplied to the fuel-water vapor mixed gas line, each device has a predetermined temperature as necessary. The temperature can continue to rise. The supply of hydrogen to the anode can be stopped when it is no longer necessary to detect the aforementioned voltage drop. If a reformer is present, reforming can be started in the reformer.
[0069] 起動運転が完了したら、通常運転を開始することができる。通常運転は、定格運転 だけでなく部分負荷運転も含む。改質器 10から得られる改質ガスはアノードガスとし て燃料電池 20のアノードに供給される。燃料電池の力ソードには、空気などの酸素 含有ガスが力ソードガスとして供給される。燃料電池において、アノードガスに含まれ る水素と力ソードガスに含まれる酸素とが電気化学的に反応し、発電が行われる。ァ ノードから排出されるアノードオフガスには可燃分が含まれるため、その熱量を燃焼 などにより適宜利用することができる。またアノードオフガスや、力ソードから排出され る力ソードオフガスの顕熱も適宜利用できる。  [0069] When the start-up operation is completed, the normal operation can be started. Normal operation includes not only rated operation but also partial load operation. The reformed gas obtained from the reformer 10 is supplied to the anode of the fuel cell 20 as an anode gas. An oxygen-containing gas such as air is supplied to the power sword of the fuel cell as a power sword gas. In the fuel cell, hydrogen contained in the anode gas and oxygen contained in the power sword gas react electrochemically to generate power. Since the anode off-gas discharged from the anode contains combustible components, the amount of heat can be appropriately used by combustion. Moreover, the sensible heat of the anode off gas or the force sword off gas discharged from the force sword can be used as appropriate.
[0070] 〔炭化水素系燃料〕 炭化水素系燃料としては、改質ガスの原料として燃料電池システムの分野で公知 の、分子中に炭素と水素を含む (酸素など他の元素を含んでもょ 、)化合物もしくは その混合物を用いることができ、炭化水素類、アルコール類など分子中に炭素と水 素を有する化合物を用いることができる。例えばメタン、ェタン、プロパン、ブタン、天 然ガス、 LPG (液ィ匕石油ガス)、都市ガス、ガソリン、ナフサ、灯油、軽油等の炭化水 素燃料、また、メタノール、エタノール等のアルコール、ジメチルエーテル等のエーテ ル等である。なかでも灯油は工業用としても民生用としても入手容易であり、その取り 扱いも容易である点で、好ましい。 [0070] [Hydrocarbon-based fuel] As the hydrocarbon-based fuel, a compound or a mixture thereof containing carbon and hydrogen (including other elements such as oxygen) known in the field of fuel cell systems as a raw material for reformed gas may be used. And compounds having carbon and hydrogen in the molecule, such as hydrocarbons and alcohols, can be used. For example, hydrocarbon fuels such as methane, ethane, propane, butane, natural gas, LPG (liquid petroleum gas), city gas, gasoline, naphtha, kerosene, light oil, alcohols such as methanol and ethanol, dimethyl ether, etc. Such as ether. Of these, kerosene is preferable because it is easily available for industrial use and for consumer use, and is easy to handle.
[0071] 〔燃料電池システムの構成機器〕  [Components of Fuel Cell System]
液状の炭化水素系燃料を用いる場合は、これを気化する気化器を使用する。気化 器としては、使用する炭化水素系燃料を気化することのできる公知の気化器を用いる ことができる。その例として、液体が流通する配管を外部から加熱し、配管内で液体 を蒸発させることのできる構造を有する気化器を挙げることができる。また、蒸発皿や 蒸発容器などの加熱部材を加熱し、これに液体を接触させて蒸発させることのできる 構造を有する気化器を挙げることもできる。これらの加熱のために、電気ヒータや燃 焼ガスなどを熱源として利用することができる。水気化器も水を気化することのできる 公知の気化器を用いることができる。  When using a liquid hydrocarbon fuel, a vaporizer is used to vaporize the fuel. As the vaporizer, a known vaporizer capable of vaporizing the hydrocarbon fuel to be used can be used. For example, a vaporizer having a structure capable of heating a pipe through which a liquid flows from the outside and evaporating the liquid in the pipe. In addition, a vaporizer having a structure in which a heating member such as an evaporating dish or an evaporation container is heated and a liquid can be brought into contact with the heating member to evaporate can also be exemplified. For these heating, an electric heater or a combustion gas can be used as a heat source. As the water vaporizer, a known vaporizer capable of vaporizing water can be used.
[0072] 燃料電池の電圧低下を検知し、燃料 ·水蒸気混合ガスラインに炭化水素系燃料の ガスを供給したりその流量を増加させたりする制御を自動的に行うために、また、同ラ インに水蒸気を供給する操作を行い、所定の時間間隔をおいて、炭化水素系燃料 のガスを供給する操作を行う制御を自動的に行うために、コンピュータやシーケンサ を利用することができる。  [0072] In order to detect the voltage drop of the fuel cell and automatically control the supply of the hydrocarbon-based fuel gas to the fuel / steam mixed gas line or increase the flow rate thereof, the same line is used. A computer or a sequencer can be used to automatically perform the operation of supplying the water vapor to the water and supplying the hydrocarbon fuel gas at predetermined time intervals.
[0073] 燃料電池システムにおいて、改質器から得られる改質ガスを、必要に応じてさら〖こ 処理することができる。例えば、一酸ィ匕炭素濃度を低減し水素濃度を高めるためのシ フト反応 (CO +H 0→CO +H )、一酸ィ匕炭素濃度低減のための選択酸ィ匕反応(2  [0073] In the fuel cell system, the reformed gas obtained from the reformer can be subjected to a sacrificial treatment as necessary. For example, a shift reaction (CO + H 0 → CO + H) to reduce the concentration of carbon monoxide and increase the hydrogen concentration, and a selective acid reaction (2) to reduce the concentration of carbon monoxide.
2 2 2  2 2 2
CO + O→2CO )、加湿または除湿などの処理を行うことができる。  CO + O → 2CO), humidification or dehumidification can be performed.
2 2  twenty two
[0074] また、必要に応じて炭化水素系燃料に含まれる硫黄分の濃度を低減するための脱 硫を行うこともできる。 [0075] 改質器としては水蒸気改質、部分酸ィ匕改質またはオートサーマルリフォーミング (水 蒸気改質反応と部分酸ィ匕改質反応の両者を行う)を行うことのできる公知の改質器を 適宜利用することができる。改質器において熱源を必要とする場合は、例えば、利用 可能な高温ガスを適宜利用することができる。具体例としては、炭化水素系燃料ゃァ ノードオフガスを燃焼させた燃焼ガスを熱源とすることができる。 [0074] Further, if necessary, desulfurization for reducing the concentration of sulfur contained in the hydrocarbon-based fuel can be performed. [0075] The reformer is a known reformer capable of performing steam reforming, partial acid reforming or autothermal reforming (performing both water steam reforming reaction and partial acid reforming reaction). The instrument can be used as appropriate. When a heat source is required in the reformer, for example, an available high temperature gas can be appropriately used. As a specific example, a combustion gas obtained by burning a hydrocarbon-based fuel node off gas can be used as a heat source.
[0076] 燃料電池としては、水素を電気化学反応させる燃料電池を適宜利用することができ る。例えば、固体高分子形、燐酸形、溶融炭酸塩形あるいは固体酸化物形の燃料電 池を採用することができる。  [0076] As the fuel cell, a fuel cell that electrochemically reacts hydrogen can be used as appropriate. For example, solid polymer, phosphoric acid, molten carbonate, or solid oxide fuel cells can be employed.
[0077] 上記機器の他にも、燃料電池システムの公知の構成要素は、必要に応じて適宜設 けることができる。具体例を挙げれば、燃料電池等の各種機器を冷却するための冷 却系、各種流体を加圧するためのポンプ、圧縮機、ブロワなどの昇圧手段、流体の 流量を調節するため、あるいは流体の流れを遮断 Z切り替えるためのバルブ等の流 量調節手段ゃ流路遮断 Z切り替え手段、熱交換,熱回収を行うための熱交換器、気 体を凝縮する凝縮器、スチームなどで各種機器を外熱する加熱 Z保温手段、各種流 体の貯蔵手段、計装用の空気や電気系統、制御用の信号系統、制御装置、出力用 や動力用の電気系統などである。  [0077] In addition to the above devices, known constituent elements of the fuel cell system can be appropriately provided as necessary. Specific examples include cooling systems for cooling various devices such as fuel cells, pumps for pressurizing various fluids, boosting means such as compressors and blowers, adjusting the flow rate of fluids, Flow control means such as a valve for switching the flow Z, etc., flow path shutoff, Z switching means, heat exchanger for heat exchange and heat recovery, condenser for condensing gas, steam, etc. Heating Z Z heat retention means, storage means for various fluids, instrument air and electrical systems, control signal systems, control devices, output and power electrical systems.
産業上の利用可能性  Industrial applicability
[0078] 本発明の燃料電池システムの起動方法は、例えば定置用もしくは移動体用の発電 システムに、またコージェネレーションシステムに利用される燃料電池システムにお ヽ て利用できる。 The start-up method of the fuel cell system of the present invention can be used for, for example, a stationary or mobile power generation system, and a fuel cell system used for a cogeneration system.

Claims

請求の範囲 The scope of the claims
[1] 炭化水素系燃料のガスと水蒸気との混合ガスを流すためのラインと、該ラインの下 流に接続された燃料電池とを有する燃料電池システムを起動する燃料電池システム の起動方法において、  [1] In a fuel cell system start-up method for starting a fuel cell system comprising a line for flowing a mixed gas of hydrocarbon-based fuel gas and water vapor, and a fuel cell connected to the downstream of the line,
該ラインに炭化水素系燃料のガスを供給する前に、該ラインに水蒸気を供給すること を特徴とする燃料電池システムの起動方法。  A method for starting a fuel cell system, comprising: supplying water vapor to the line before supplying hydrocarbon fuel gas to the line.
[2] a)前記ラインへの炭化水素系燃料のガスおよび水蒸気の供給を行う前に、  [2] a) Before supplying the hydrocarbon fuel gas and water vapor to the line,
燃料電池力ソードへの酸素供給と、燃料電池アノードへの水素供給とを行って、燃料 電池にて電気化学反応による電圧を発生させる工程、  Performing oxygen supply to the fuel cell power sword and hydrogen supply to the fuel cell anode to generate a voltage due to an electrochemical reaction in the fuel cell;
b)工程 aの後、前記酸素供給および水素供給を継続したまま、燃料電池の電圧を 監視しつつ、前記ラインに水蒸気を供給する工程、および、  b) after step a, supplying water vapor to the line while monitoring the voltage of the fuel cell while continuing the oxygen supply and hydrogen supply; and
c)工程 bの後、燃料電池の電圧の低下を検知してから、該ラインに炭化水素系燃 料のガスを供給する工程  c) After step b, after detecting a drop in the voltage of the fuel cell, supplying hydrocarbon fuel gas to the line
を有する請求項 1記載の方法。  The method of claim 1 comprising:
[3] 前記工程 bにおいて、水蒸気の供給流量を、起動運転完了時における水蒸気の所 望流量とし、 [3] In step b, the supply flow rate of water vapor is the desired flow rate of water vapor at the completion of the start-up operation,
前記工程 cにおいて、炭化水素系燃料のガスの供給流量を、起動運転完了時にお ける炭化水素系燃料のガスの所望流量とする請求項 2記載の方法。  3. The method according to claim 2, wherein, in step c, the supply flow rate of the hydrocarbon-based fuel gas is set to a desired flow rate of the hydrocarbon-based fuel gas when the start-up operation is completed.
[4] 前記工程 bにおいて、水蒸気の供給流量を、起動運転完了時における水蒸気の所 望流量の一部とし、 [4] In step b, the supply flow rate of water vapor is a part of the desired flow rate of water vapor when the start-up operation is completed,
前記工程 cにおいて、炭化水素系燃料のガスの供給流量を、起動運転完了時にお ける炭化水素系燃料のガスの所望流量の一部とし、  In step c, the supply flow rate of the hydrocarbon fuel gas is a part of the desired flow rate of the hydrocarbon fuel gas at the completion of the start-up operation,
工程 cの後に、  After step c
d)前記酸素供給および水素供給を継続したまま、燃料電池の電圧を監視しつつ、 前記ラインに供給する水蒸気の流量を増加させる工程、および、  d) increasing the flow rate of water vapor supplied to the line while monitoring the voltage of the fuel cell while continuing the oxygen supply and hydrogen supply; and
e)工程 dの後、燃料電池の電圧の低下を検知してから、該ラインに供給する炭化水 素系燃料のガスの流量を増加させる工程  e) After step d, after detecting a decrease in the voltage of the fuel cell, increasing the flow rate of hydrocarbon fuel gas supplied to the line
をさらに有する請求項 2記載の方法。 The method of claim 2 further comprising:
[5] 前記工程 dおよび eの組み合わせを複数回繰り返して、前記ラインに供給する水蒸 気の流量を、起動運転完了時における水蒸気の所望流量にし、かつ前記ラインに供 給する炭化水素系燃料のガスの流量を、起動運転完了時における炭化水素系燃料 のガスの所望流量にする請求項 4記載の方法。 [5] The hydrocarbon fuel to be supplied to the line by repeating the combination of the steps d and e a plurality of times so that the flow rate of water vapor supplied to the line becomes the desired flow rate of water vapor when the start-up operation is completed. 5. The method according to claim 4, wherein the flow rate of the gas is set to a desired flow rate of the hydrocarbon-based fuel gas when the start-up operation is completed.
[6] 前記ラインに水蒸気を供給する操作を行う時点から、前記ラインに炭化水素系燃料 のガスを供給する操作を行う時点までの間に、所定の時間間隔をおく燃料電池シス テムの起動方法であって、  [6] A method for starting a fuel cell system having a predetermined time interval between a time point at which an operation for supplying water vapor to the line and a time point at which an operation for supplying a hydrocarbon-based fuel gas to the line is performed. Because
該所定の時間間隔は、予備的に燃料電池システムを起動する予備起動運転によつ て予め設定し、  The predetermined time interval is set in advance by a preliminary start operation for starting the fuel cell system in advance,
該予備起動運転の方法が、  The method of the preliminary start-up operation is
i)前記ラインへの炭化水素系燃料のガスおよび水蒸気の供給を行う前に、 燃料電池力ソードへの酸素供給と、燃料電池アノードへの水素供給とを行って、燃料 電池にて電気化学反応による電圧を発生させる工程、  i) Before supplying the hydrocarbon-based fuel gas and water vapor to the line, supply oxygen to the fuel cell power sword and supply hydrogen to the fuel cell anode, and perform an electrochemical reaction in the fuel cell. Generating a voltage according to
ii)工程 iの後、前記酸素供給および水素供給を継続したまま、燃料電池の電圧を 監視しつつ、前記ラインに水蒸気を供給する操作を行う工程、および、  ii) after step i, performing the operation of supplying water vapor to the line while monitoring the voltage of the fuel cell while continuing the oxygen supply and hydrogen supply; and
iii)工程 iiの後、燃料電池の電圧の低下を検知する工程  iii) After step ii, a step of detecting a decrease in the voltage of the fuel cell
を有し、  Have
工程 iiにお 、て水蒸気を供給する操作を行った時点から、工程 iiiにお 、て電圧の低 下を検知した時点までの時間を計測し、この計測した時間を該所定の時間間隔とす る  In Step ii, the time from when the operation of supplying water vapor is performed until the time when the voltage drop is detected in Step iii is measured, and this measured time is defined as the predetermined time interval. Ru
請求項 1記載の燃料電池システムの起動方法。  The method for starting the fuel cell system according to claim 1.
PCT/JP2007/062374 2006-06-28 2007-06-20 Method for starting fuel cell system WO2008001656A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-178160 2006-06-28
JP2006178160A JP5065627B2 (en) 2006-06-28 2006-06-28 Starting method of fuel cell system

Publications (1)

Publication Number Publication Date
WO2008001656A1 true WO2008001656A1 (en) 2008-01-03

Family

ID=38845423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062374 WO2008001656A1 (en) 2006-06-28 2007-06-20 Method for starting fuel cell system

Country Status (3)

Country Link
JP (1) JP5065627B2 (en)
TW (1) TW200820481A (en)
WO (1) WO2008001656A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5148681B2 (en) 2010-12-20 2013-02-20 アイシン精機株式会社 Fuel cell system
JP6460319B2 (en) * 2014-12-25 2019-01-30 Toto株式会社 Solid oxide fuel cell system
KR101856300B1 (en) 2015-12-09 2018-06-26 현대자동차주식회사 Method for controlling start of fuelcell vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6188461A (en) * 1984-10-05 1986-05-06 Fuji Electric Co Ltd Method of starting and stopping fuel cell power generation system
JP2002075426A (en) * 2000-08-29 2002-03-15 Sanyo Electric Co Ltd Starting method of fuel cell power generating equipment
JP2002093451A (en) * 2000-09-13 2002-03-29 Corona Corp Vaporization method for water-insoluble liquid fuel used for fuel cell system
JP2002231293A (en) * 2001-01-31 2002-08-16 Toshiba Corp Purge device for fuel cell system and its method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4030322B2 (en) * 2002-02-27 2008-01-09 荏原バラード株式会社 Fuel processing apparatus, fuel cell power generation system, fuel processing method, and fuel cell power generation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6188461A (en) * 1984-10-05 1986-05-06 Fuji Electric Co Ltd Method of starting and stopping fuel cell power generation system
JP2002075426A (en) * 2000-08-29 2002-03-15 Sanyo Electric Co Ltd Starting method of fuel cell power generating equipment
JP2002093451A (en) * 2000-09-13 2002-03-29 Corona Corp Vaporization method for water-insoluble liquid fuel used for fuel cell system
JP2002231293A (en) * 2001-01-31 2002-08-16 Toshiba Corp Purge device for fuel cell system and its method

Also Published As

Publication number Publication date
JP5065627B2 (en) 2012-11-07
TW200820481A (en) 2008-05-01
JP2008010260A (en) 2008-01-17

Similar Documents

Publication Publication Date Title
JP5164441B2 (en) Starting method of fuel cell system
JP5325403B2 (en) Starting method of fuel cell system
JP5064830B2 (en) Reformer system, fuel cell system, and operation method thereof
JP5214230B2 (en) Starting method of fuel cell system
US8927166B2 (en) Indirect internal reforming solid oxide fuel cell and method for shutting down the same
WO2006073150A1 (en) Method of starting solid oxide fuel cell system
EP2278650B1 (en) Method for operating indirect internal reforming solid oxide fuel cell system
JP5037214B2 (en) Reformer system, fuel cell system, and operation method thereof
JP2008177058A (en) Reformer system, fuel cell system, and its operation method
JP5325666B2 (en) Method for stopping indirect internal reforming solid oxide fuel cell
WO2008001656A1 (en) Method for starting fuel cell system
JP2009238598A (en) Method of load following operation of fuel cell system
JP2008084571A (en) Indirect internal modifying type solid oxide fuel cell system
JP2008177059A (en) Reformer system, fuel cell system, and its operation method
JP5291915B2 (en) Indirect internal reforming type solid oxide fuel cell and operation method thereof
JP5325662B2 (en) Method for stopping indirect internal reforming solid oxide fuel cell
JP2010244922A (en) Stopping method for indirect internal reforming type solid oxide fuel cell
JP2011204430A (en) Fuel cell system
JP2009224114A (en) Operation method for solid oxide fuel cell system
JP5325660B2 (en) Method for stopping indirect internal reforming solid oxide fuel cell
JP2008247662A (en) Vaporization device, hydrogen production apparatus, and fuel cell system
JP2010225285A (en) Indirect interior reforming type solid oxide fuel cell system and its operation method
JP2006225216A (en) Hydrogen generator and pretreatment method for safekeeping the same
JP2010287328A (en) Method of stopping indirect internal reforming solid oxide fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07767213

Country of ref document: EP

Kind code of ref document: A1